Milk Whey Protein Fibrils—Effect of Stirring and Heating Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Process for mWPI Fibril Formation
2.3. Confirmation of the Presence of mWPI Fibrils
2.3.1. Thioflavin T (Th T) Fluorescence Value
2.3.2. Transmission Electron Microscopy (TEM)
2.3.3. Tricine Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.4. Rheology
2.5. Protein Oxidation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Confirmation of the Presence of mWPI Fibrils
3.1.1. Th T Value
3.1.2. TEM
3.1.3. Tricine SDS-PAGE
3.2. Rheology
3.3. Protein Oxidation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Damodaran, S. Food Proteins: An Overview. In Food Proteins and Their Applications; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–24. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B. The Functional Modification of Legume Proteins by Ultrasonication: A Review. Trends Food Sci. Technol. 2020, 98, 107–116. [Google Scholar] [CrossRef]
- Cao, Y.; Mezzenga, R. Food Protein Amyloid Fibrils: Origin, Structure, Formation, Characterization, Applications and Health Implications. Adv. Colloid Interface Sci. 2019, 269, 334–356. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.; Qi, G.; Li, Y.; Sun, X.S.; Qiu, D.; Li, Y. Formation and Physicochemical Properties of Amyloid Fibrils from Soy Protein. Int. J. Biol. Macromol. 2020, 149, 609–616. [Google Scholar] [CrossRef]
- Mantovani, R.A.; Fattori, J.; Michelon, M.; Cunha, R.L. Formation and PH-Stability of Whey Protein Fibrils in the Presence of Lecithin. Food Hydrocoll. 2016, 60, 288–298. [Google Scholar] [CrossRef]
- Munialo, C.D.; Martin, A.H.; Van Der Linden, E.; De Jongh, H.H.J. Fibril Formation from Pea Protein and Subsequent Gel Formation. J. Agric. Food Chem. 2014, 62, 2418–2427. [Google Scholar] [CrossRef]
- An, B.; Wu, X.; Li, M.; Chen, Y.; Li, F.; Yan, X.; Wang, J.; Li, C.; Brennan, C. Hydrophobicity-Modulating Self-Assembled Morphologies of α-Zein in Aqueous Ethanol. Int. J. Food Sci. Technol. 2016, 51, 2621–2629. [Google Scholar] [CrossRef]
- Ridgley, D.M.; Barone, J.R. Evolution of the Amyloid Fiber over Multiple Length Scales. ACS Nano 2013, 7, 1006–1015. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Huang, L.H. Effect of Heat-Induced Formation of Rice Bran Protein Fibrils on Morphological Structure and Physicochemical Properties in Solutions and Gels. Food Sci. Biotechnol. 2014, 23, 1417–1423. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Zhang, H.; Yang, H.Y.; Wang, L.; Qian, H.F. Formation of Heat-Induced Cottonseed Congossypin(7S) Fibrils at PH 2.0. J. Sci. Food Agric. 2014, 94, 2009–2015. [Google Scholar] [CrossRef] [PubMed]
- Loveday, S.M.; Anema, S.G.; Singh, H. β-Lactoglobulin Nanofibrils: The Long and the Short of It. Int. Dairy J. 2017, 67, 35–45. [Google Scholar] [CrossRef]
- Loveday, S.M.; Wang, X.L.; Rao, M.A.; Anema, S.G.; Singh, H. β-Lactoglobulin Nanofibrils: Effect of Temperature on Fibril Formation Kinetics, Fibril Morphology and the Rheological Properties of Fibril Dispersions. Food Hydrocoll. 2012, 27, 242–249. [Google Scholar] [CrossRef]
- Šarić, A.; Michaels, T.C.T.; Zaccone, A.; Knowles, T.P.J.; Frenkel, D. Kinetics of Spontaneous Filament Nucleation via Oligomers: Insights from Theory and Simulation. J. Chem. Phys. 2016, 145, 211926. [Google Scholar] [CrossRef] [PubMed]
- Akkermans, C.; Venema, P.; van der Goot, A.J.; Gruppen, H.; Bakx, E.J.; Boom, R.M.; van der Linden, E. Peptides Are Building Blocks of Heat-Induced Fibrillar Protein Aggregates of β-Lactoglobulin Formed at PH 2. Biomacromolecules 2008, 9, 1474–1479. [Google Scholar] [CrossRef]
- Meng, Y.; Wei, Z.; Xue, C. Protein Fibrils from Different Food Sources: A Review of Fibrillation Conditions, Properties, Applications and Research Trends. Trends Food Sci. Technol. 2022, 121, 59–75. [Google Scholar] [CrossRef]
- Bolder, S.G.; Sagis, L.M.C.; Venema, P.; Van Der Linden, E. Effect of Stirring and Seeding on Whey Protein Fibril Formation. J. Agric. Food Chem. 2007, 55, 5661–5669. [Google Scholar] [CrossRef]
- Rathod, G.; Amamcharla, J.K. Process Development for a Novel Milk Protein Concentrate with Whey Proteins as Fibrils. J. Dairy Sci. 2021, 104, 4094–4107. [Google Scholar] [CrossRef] [PubMed]
- Rathod, G.; Kapoor, R.; Meletharayil, G.H.; Amamcharla, J.K. Development of Spray Dried Functional Milk Protein Concentrate Containing Whey Proteins as Fibrils. Int. Dairy J. 2023, 145, 105719. [Google Scholar] [CrossRef]
- Scheidegger, D.; Pecora, R.P.; Radici, P.M.; Kivatinitz, S.C. Protein Oxidative Changes in Whole and Skim Milk after Ultraviolet or Fluorescent Light Exposure. J. Dairy Sci. 2010, 93, 5101–5109. [Google Scholar] [CrossRef] [PubMed]
- Keppler, J.K.; Heyn, T.R.; Meissner, P.M.; Schrader, K.; Schwarz, K. Protein Oxidation during Temperature-Induced Amyloid Aggregation of Beta-Lactoglobulin. Food Chem. 2019, 289, 223–231. [Google Scholar] [CrossRef]
- Loveday, S.M.; Wang, X.L.; Rao, M.A.; Anema, S.G.; Creamer, L.K.; Singh, H. Tuning the Properties of β-Lactoglobulin Nanofibrils with PH, NaCl and CaCl2. Int. Dairy J. 2010, 20, 571–579. [Google Scholar] [CrossRef]
- Akkermans, C.; Venema, P.; Rogers, S.S.; Van Der Goot, A.J.; Boom, R.M.; Van Der Linden, E. Shear Pulses Nucleate Fibril Aggregation. Food Biophys. 2006, 1, 144–150. [Google Scholar] [CrossRef]
- Loveday, S.M.; Su, J.; Rao, M.A.; Anema, S.G.; Singh, H. Whey Protein Nanofibrils: The Environment-Morphology-Functionality Relationship in Lyophilization, Rehydration, and Seeding. J. Agric. Food Chem. 2012, 60, 5229–5236. [Google Scholar] [CrossRef]
- Kroes-Nijboer, A.; Venema, P.; Linden, E. Van Der Fibrillar Structures in Food. Food Funct. 2012, 3, 221–227. [Google Scholar] [CrossRef]
- Arunkumar, A.; Etzel, M.R. Fractionation of α-Lactalbumin from β-Lactoglobulin Using Positively Charged Tangential Flow Ultrafiltration Membranes. Sep. Purif. Technol. 2013, 105, 121–128. [Google Scholar] [CrossRef]
- Bolder, S.G.; Hendrickx, H.; Sagis, L.M.C.; van der Linden, E. Ca2+-Induced Cold-Set Gelation of Whey Protein Isolate Fibrils. Appl. Rheol. 2006, 16, 258–264. [Google Scholar] [CrossRef]
- Mohammadian, M.; Madadlou, A. Technological Functionality and Biological Properties of Food Protein Nanofibrils Formed by Heating at Acidic Condition. Trends Food Sci. Technol. 2018, 75, 115–128. [Google Scholar] [CrossRef]
- Akkermans, C.; Van der Goot, A.J.; Venema, P.; Van der Linden, E.; Boom, R.M. Properties of Protein Fibrils in Whey Protein Isolate Solutions: Microstructure, Flow Behaviour and Gelation. Int. Dairy J. 2008, 18, 1034–1042. [Google Scholar] [CrossRef]
- Feng, X.; Li, C.; Ullah, N.; Cao, J.; Lan, Y.; Ge, W.; Hackman, R.M.; Li, Z.; Chen, L. Susceptibility of Whey Protein Isolate to Oxidation and Changes in Physicochemical, Structural, and Digestibility Characteristics. J. Dairy Sci. 2015, 98, 7602–7613. [Google Scholar] [CrossRef] [PubMed]
- Headlam, H.A.; Davies, M.J. Markers of Protein Oxidation: Different Oxidants Give Rise to Variable Yields of Bound and Released Carbonyl Products. Free Radic. Biol. Med. 2004, 36, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.; Baum, F.; Vollmer, G.; Pischetsrieder, M. Distribution of Protein Oxidation Products in the Proteome of Thermally Processed Milk. J. Agric. Food Chem. 2012, 60, 7306–7311. [Google Scholar] [CrossRef]
Time (h) | Apparent Viscosity (m.Pa.s) at 100 s−1 | Consistency Coefficient (mPa.sn) | Flow Behavior Index | |||
---|---|---|---|---|---|---|
Stirring Heating | Static Heating | Stirring Heating | Static Heating | Stirring Heating | Static Heating | |
0 | 1.08 ± 0.03 A | 1.09 ± 0.03 A | 1.1 ± 0.2 A | 1.2 ± 0.1 A | 0.99 ± 0.03 A | 0.99 ± 0.01 A |
2 | 1.37 ± 0.19 A | 1.16 ± 0.03 B | 2.2 ± 0.7 A | 1.2 ± 0.1 B | 0.91 ± 0.04 B | 0.99 ± 0.01 A |
3 | 1.89 ± 0.05 A | 1.34 ± 0.07 B | 4.6 ± 0.2 A | 1.9 ± 0.5 B | 0.81 ± 0.01 B | 0.94 ± 0.05 A |
4 | 2.23 ± 0.19 A | 1.75 ± 0.55 A | 6.8 ± 0.9 A | 6.3 ± 5.7 A | 0.76 ± 0.02 A | 0.79 ± 0.14 A |
5 | 2.77 ± 0.31 A | 3.58 ± 1.23 A | 9.8 ± 1.2 A | 38.6 ± 36.4 A | 0.72 ± 0.01 A | 0.55 ± 0.14 B |
6 | 3.29 ± 0.24 A | 4.01 ± 1.55 A | 13.3 ± 1.3 A | 63.1 ± 62.8 A | 0.7 ± 0.01 A | 0.49 ± 0.16 B |
7 | 3.68 ± 0.21 A | 4.79 ± 1.53 A | 16.5 ± 2.2 B | 92.2 ± 73.8 A | 0.68 ± 0.02 A | 0.42 ± 0.12 B |
8 | 4.19 ± 0.39 A | 4.21 ± 0.35 A | 18.0 ± 2.1 B | 58.0 ± 16.4 A | 0.68 ± 0.02 A | 0.44 ± 0.05 B |
9 | 4.44 ± 0.29 A | 4.20 ± 0.56 A | 21.9 ± 1.5 B | 61.9 ± 21.9 A | 0.66 ± 0.01 A | 0.43 ± 0.05 B |
10 | 4.72 ± 0.13 A | 2.96 ± 1.01 B | 22.7 ± 1.4 A | 32.8 ± 29.4 A | 0.66 ± 0.02 A | 0.54 ± 0.12 B |
11 | 4.92 ± 0.16 A | 5.22 ± 1.56 A | 24.6 ± 0.9 B | 101.1 ± 64.4 A | 0.65 ± 0.02 A | 0.4 ± 0.09 B |
12 | 5.20 ± 0.14 A | 3.69 ± 1.21 A | 27.9 ± 2.9 A | 42.8 ± 33.1 A | 0.64 ± 0.02 A | 0.51 ± 0.1 B |
13 | 5.27 ± 0.16 A | 5.63 ± 1.63 A | 27.2 ± 1.1 B | 133.1 ± 49.0 A | 0.65 ± 0.02 A | 0.33 ± 0.03 B |
14 | 5.31 ± 0.07 A | 5.01 ± 0.91 A | 27.7 ± 1.0 B | 108.9 ± 32.0 A | 0.64 ± 0.01 A | 0.35 ± 0.06 B |
15 | 5.49 ± 0.06 A | 5.64 ± 2.58 A | 29.4 ± 2.0 A | 1564.2 ± 2.9 A | 0.64 ± 0.02 A | 0.41 ± 0.17 A |
16 | 5.06 ± 0.90 B | 5.62 ± 1.10 A | 28.8 ± 6.8 B | 142.6 ± 0.0 A | 0.63 ± 0.02 A | 0.3 ± 0.07 B |
17 | 6.09 ± 0.14 A | 3.84 ± 0.83 B | 33.7 ± 3.8 A | 68.7 ± 0.1 A | 0.63 ± 0.02 A | 0.41 ± 0.11 B |
18 | 6.07 ± 0.11 A | 6.48 ± 1.23 A | 36.8 ± 0.6 B | 241.8 ± 0.1 A | 0.61 ± 0.01 A | 0.23 ± 0.08 B |
19 | 6.08 ± 0.09 A | 6.48 ± 1.10 A | 33.0 ± 2.3 B | 161.1 ± 0.0 A | 0.63 ± 0.02 A | 0.31 ± 0.04 B |
20 | 5.94 ± 0.13 A | 6.06 ± 1.01 A | 32.3 ± 4.0 B | 128.7 ± 0.0 A | 0.64 ± 0.02 A | 0.35 ± 0.06 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathod, G.; Amamcharla, J. Milk Whey Protein Fibrils—Effect of Stirring and Heating Time. Foods 2024, 13, 466. https://doi.org/10.3390/foods13030466
Rathod G, Amamcharla J. Milk Whey Protein Fibrils—Effect of Stirring and Heating Time. Foods. 2024; 13(3):466. https://doi.org/10.3390/foods13030466
Chicago/Turabian StyleRathod, Gunvantsinh, and Jayendra Amamcharla. 2024. "Milk Whey Protein Fibrils—Effect of Stirring and Heating Time" Foods 13, no. 3: 466. https://doi.org/10.3390/foods13030466
APA StyleRathod, G., & Amamcharla, J. (2024). Milk Whey Protein Fibrils—Effect of Stirring and Heating Time. Foods, 13(3), 466. https://doi.org/10.3390/foods13030466