Effects of Geographical Origin and Tree Age on the Stable Isotopes and Multi-Elements of Pu-erh Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Cultivation and Collection
2.2. Sample Pretreatment
2.3. Multi-Element Analysis
2.4. Stable Carbon and Nitrogen Isotope Analysis
2.5. Statistical Analysis
3. Results
3.1. Comparison of Isotopic Ratios and Mineral Contents from Different Regions
3.2. Comparison of Isotopic Ratios and Mineral Contents from Different Tree Ages
3.3. Multi-Way Analysis of Variance for Stable Isotopic Ratios and Elements
3.4. Principal Component Analysis of Isotope Ratios and Mineral Content of Pu-erh Tea from Different Regions
3.5. Discriminant Analysis of Isotope Ratio and Mineral Element Content of Pu-erh Tea from Different Regions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Yuan, Y.W.; Zhang, Y.Z.; Shi, Y.Z.; Hu, G.Z.; Zhu, J.H.; Rogers, K.M. Geographical traceability of Chinese green tea using stable isotope and multi-element chemometrics. Rapid Commun. Mass Spectrom. 2019, 33, 778–788. [Google Scholar] [CrossRef]
- Chen, W.; Keita, Y.; Osamu, S.K.; Akiko, M.; Alexis, G.; Naohiro, Y. Development of a methodology using gas chromatography-combustion-isotope ratio mass spectrometry for the determination of the carbon isotope ratio of caffeine extracted from tea leaves (Camellia sinensis). Rapid Commun. Mass Spectrom. 2012, 26, 978–982. [Google Scholar] [CrossRef]
- Lin, F.J.; Wei, X.L.; Liu, H.Y.; Li, H.; Xia, Y.; Wu, D.T.; Zhang, P.Z.; Gandhi, G.R.; Li, H.B.; Gan, R.Y. State-of-the-art review of dark tea: From chemistry to health benefits. Trends Food Sci. Technol. 2021, 109, 126–138. [Google Scholar] [CrossRef]
- Huyen, T.V.; Fu, V.S.; Kun, V.T.; Haibin, S.; Gregory, A.C. Systematic characterization of the structure and radical scavenging potency of Pu-erh tea polyphenol theaflavin. Org. Biomol. Chem. 2019, 17, 9942–9950. [Google Scholar] [CrossRef]
- Su, J.J.; Wang, X.Q.; Song, W.J.; Bai, X.L.; Li, C.W. Reducing oxidative stress and hepatoprotective effect of the water extracts from Pu-erh tea on rats fed with high-fat diet. Food Sci. Hum. Wellness 2016, 5, 199–206. [Google Scholar] [CrossRef]
- Lv, H.P.; Zhu, Y.; Tan, J.F.; Guo, L.; Dai, W.D.; Lin, Z. Bioactive compounds from Pu-erh tea with therapy for hyperlipidaemia. J. Funct. Foods 2016, 19, 194–203. [Google Scholar] [CrossRef]
- Huang, F.J.; Wang, S.L.; Zhao, A.H.; Zheng, X.J.; Zhang, Y.J.; Lei, S.; Ge, K.; Qu, C.; Zhao, Q.; Yan, C.; et al. Pu-erh tea regulates fatty acid metabolism in mice under high-fat diet. Front. Pharmacol. 2019, 10, 63. [Google Scholar] [CrossRef]
- Luo, D.; Chen, X.J.; Zhu, X.; Liu, S.; Li, J.; Xu, J.P.; Zhao, J.H.; Ji, X. Pu-erh tea relaxes the thoracic aorta of rats by reducing intracellular calcium. Front. Pharmacol. 2019, 10, 1430. [Google Scholar] [CrossRef]
- Gabriella, R.; Cristina, M.; Anita, G.; Claudia, P.; Giancarlo, A.; Marina, C.; Luca, R. Ripe and raw Pu-erh tea: LCMS profiling, antioxidant capacity and enzyme inhibition activities of aqueous and Hydro-alcoholic extracts. Molecules 2004, 24, 473–475. [Google Scholar] [CrossRef]
- Navratilova, K.; Hrbek, V.; Kratky, F. Green tea: Authentication of geographic origin based on UHPLC-HRMS fingerprints. J. Food Compos. Anal. 2019, 78, 121–128. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, P.; Pan, Z.Q. Discrimination of oolong tea (Camellia sinensis) varieties based on feature extraction and selection from aromatic profiles analysed by HS-SPME/GC-MS. Food Chem. 2013, 141, 259–265. [Google Scholar] [CrossRef]
- Kumar, V.; Roy, B.K. Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis. Sci. Rep. 2018, 8, 10714. [Google Scholar] [CrossRef] [PubMed]
- Kovcs, Z.; Dalmadi, I.; Lukcs, L. Geographical origin identification of pure Sri Lanka tea infusions with electronic nose, electronic tongue and sensory profile analysis. J. Chemom. 2009, 24, 121–130. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Jiang, L.; Feng, N.C.; Gao, Y.Y.; Zhu, M.L. Content Comparison of Seven Harmful Elements in Lycium barbarum Berry from the Geographical Origin Fields and Supermarkets. Int. J. Agric. Biol. 2020, 6, 1565–1572. [Google Scholar] [CrossRef]
- Pilgrim, T.S.; Watling, R.J.; Grice, K. Application of trace element and stable isotope signatures to determine the provenance of tea (Camellia sinensis) samples. Food Chem. 2010, 118, 921–926. [Google Scholar] [CrossRef]
- Fern, N.C.; Mart, N.M.J.; Pablos, F. Differentiation of tea (Camellia sinensis) varieties and their geographical origin according to their metal content. J. Agric. Food Chem. 2001, 49, 4775–4779. [Google Scholar] [CrossRef]
- Budnov, G.; Vláčil, D.; Mestek, O.; Volka, K. Application of infrared spectroscopy to the assessment of authenticity of tea. Talanta 1998, 47, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.L.; Huang, C.W.; Zhang, J.Y. Accurate discrimination of tea from multiple geographical regions by combining multi-elements with multivariate statistical analysis. J. Food Meas. Charact. 2020, 14, 3361–3370. [Google Scholar] [CrossRef]
- Liu, W.W.; Chen, Y.; Liao, R.X.; Zhao, J.; Yang, H.; Wang, F.H. Authentication of the geographical origin of Guizhou green tea using stable isotope and mineral element signatures combined with chemometric analysis. Food Control 2021, 125, 3–8. [Google Scholar] [CrossRef]
- Ni, K.; Wang, J.; Zhang, Q.F.; Yi, X.Y.; Ma, L.F.; Shi, Y.Z.; Ruan, J.Y. Multi-element composition and isotopic signatures for the geographical origin discrimination of green tea in China: A case study of Xihu Longjing. J. Food Compos. Anal. 2018, 67, 104–109. [Google Scholar] [CrossRef]
- Rashid, M.H.; Fardous, Z.; Chowdhury, M.A.Z.; Alam, M.K.; Bari, M.L.; Moniruzzaman, M.L.; Gan, S.H. Determination of heavy metals in the soils of tea plantations and in fresh and processed tea leaves: An evaluation of six digestion methods. Chem. Cent. J. 2016, 10, 7. [Google Scholar] [CrossRef]
- Han, W.; Shi, Y.; Ma, L.; Ruan, J.; Zhao, F. Effect of liming and seasonal variation on lead concentration of tea plant (Camellia sinensis (L.) O. Kuntze). Chemosphere 2007, 66, 84–90. [Google Scholar] [CrossRef]
- Du, Y.; Shin, S.; Wang, K.; Lu, J.; Liang, Y. Effect of temperature on the expression of genes related to the accumulation of chlorophylls and carotenoids in albino tea. J. Hortic. Sci. Biotechnol. 2015, 84, 365–369. [Google Scholar] [CrossRef]
- Jayasekera, S.; Kaur, L.; Molan, A.; Garg, M.L.; Moughan, P. Effects of season and plantation on phenolic content of unfermented and fermented Sri Lankan tea. Food Chem. 2014, 152, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Ma, G.C.; Chen, L.Y.; Liu, T.; Liu, X.; Lu, C.Y. Profiling elements in Pu-erh tea from Yunnan province, China. Food Addit. Contam. Part B 2017, 10, 155–164. [Google Scholar] [CrossRef]
- Li, F.; Lu, Q.H.; Li, M.; Yang, X.M.; Xiong, C.Y.; Yang, B. Comparison and risk assessment for trace heavy metals in raw Pu-erh tea with different storage years. Biol. Trace Elem. Res. 2020, 195, 696–706. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Yang, Q.L. The suitability of rare earth elements for geographical traceability of tea leaves. J. Sci. Food Agric. 2019, 99, 6509–6514. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Yu, C.D.; Li, M. Effects of geographical origin, variety, season and their interactions on minerals in tea for traceability. J. Food Compos. Anal. 2017, 63, 15–20. [Google Scholar] [CrossRef]
- Ding, B.; Zeng, G.F.; Wang, Z.Y.; Xie, J.J.; Wang, L.; Chen, W.R. Authenticity determination of tea drinks in the Chinese market by liquid chromatography coupled to isotope ratio mass spectrometry. Microchem. J. 2019, 144, 139–143. [Google Scholar] [CrossRef]
- Liu, H.Y.; Wei, Y.M.; Zhang, Y.Q.; Wei, S.; Zhang, S.S.; Guo, B.L. The effectiveness of multi-element fingerprints for identifying the geographical origin of wheat. Int. J. Food Sci. Technol. 2017, 52, 1018–1025. [Google Scholar] [CrossRef]
- GB/T 22111-2008; Geographical Indication Products Pu-erh Tea. Available online: https://www.chinesestandard.net/PDF/English.aspx/GBT22111-2008 (accessed on 8 August 2023).
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Wu, Y.; Qu, F.; Liu, L.; Wang, B.; Wang, P.; Zhang, X. HS−SPME/GC−MS Reveals the Season Effects on Volatile Compounds of Green Tea in High−Latitude Region. Foods 2022, 11, 3016. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; O’Leary, M.H.; Berry, J.A. On the Relationship Between Carbon Isotope Discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 1982, 9, 121–137. [Google Scholar] [CrossRef]
- Vogel, J.C. Fractionation of the Carbon Isotopes during Photosynthesis; Springer: Berlin/Heidelberg, Germany, 1980; pp. 111–135. [Google Scholar] [CrossRef]
- Deng, X.F.; Liu, Z.; Zhan, Y.; Ni, K.; Zhang, Y.Z.; Ma, W.Z.; Shao, S.Z.; Lv, X.N.; Yuan, Y.W.; Rogers, K.M. Predictive geographical authentication of green tea with protected designation of origin using a random forest model. Food Control 2020, 107, 106807. [Google Scholar] [CrossRef]
- Kendall, C. Tracing nitrogen sources and cycling in catchments. In Isotope Tracers in Catchment Hydrology; Kendall, C., McDonnell, J.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 519–576. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Nie, J.Y.; Zhang, L.B.; Xu, G.F.; Zheng, H.D.; Shen, Y.M.; Kuang, L.X.; Gao, X.Q.; Zhang, H. Multielement authentication of apples from the cold highlands in southwest China. J. Sci. Food Agric. 2022, 102, 241–249. [Google Scholar] [CrossRef]
- Lv, H.P.; Lin, Z.; Zhang, Y.; Liang, Y.R. Study on the content of the major mineral elements in Pu-erh tea. J. Tea Sci. 2013, 33, 411–419. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Chen, L.; Chen, Y.; Rong, Y.T.; Jiang, Y.W.; Liu, F.Q.; Zhou, Q.H.; Wei, X.H.; Yuan, H.B.; Zhang, J.J.; et al. Effect of geographical origins and pile-fermentation on the multi-element profiles of ripen Pu-erh tea revealed by comprehensive elemental fingerprinting. Food Control 2013, 105, 109978. [Google Scholar] [CrossRef]
- Lagad, R.A.; Alamelu, D.; Laskar, A.H.; Rai, V.K.; Singh, S.K.; Aggarwal, S.K. Isotope signature study of the tea samples produced at four different regions in India. Anal. Methods 2013, 5, 1604. [Google Scholar] [CrossRef]
- Lou, Y.X.; Fu, X.S.; Yu, X.P.; Ye, Z.H.; Cui, H.F.; Zhang, Y.F. Stable isotope ratio and elemental profile combined with support vector machine for provenance discrimination of Oolong tea (Wuyi-Rock Tea). J. Anal. Methods Chem. 2017, 2017, 5454231. [Google Scholar] [CrossRef]
Region | Number of Samples | N Latitude (deg) | E Longitude (deg) | Altitude (m) | Tree Age (Year) |
---|---|---|---|---|---|
Jinggu | 24 | 23.7227 | 100.6877 | 1842–1901 | 20~100 (12), 100~200 (6), >200 (6) |
Bangdong | 14 | 23.9374–23.9397 | 100.3532–100.3562 | 1633–1739 | 20~100 (8), 100~200 (3), >200 (3) |
Ning’er | 15 | 23.2548 | 101.0822 | 1614 | 20~100 (5), 100~200 (5), >200 (5) |
Element | Jinggu | Bangdong | Ning’er |
---|---|---|---|
δ13C (‰) * | −25.16 ± 0.83 a | −26.77 ± 0.61 b | −24.82 ± 1.16 a |
δ15N (‰) ** | 4.06 ± 3.35 a | −0.11 ± 0.66 c | 2.39 ± 1.30 b |
Mg (mg/kg) ** | 1776.176 ± 184.688 b | 2077.253 ± 152.236 c | 1601.886 ± 201.680 a |
K (mg/kg) | 19,617.81 ± 1591.58 a | 19,701.25 ± 1035.70 a | 20,368.84 ± 1833.42 a |
Ca (mg/kg) | 4193.70 ± 820.56 a | 4184.00 ± 486.66 a | 3864.72 ± 469.04 a |
Mn (mg/kg) ** | 376 ± 139 c | 790 ± 219 b | 1159 ± 359 a |
Fe (mg/kg) * | 155 ± 164 a | 70 ± 22 b | 84 ± 20 b |
Cu (mg/kg) * | 12.7 ± 2.5 b | 15.2 ± 1.1 a | 14.3 ± 2.5 a |
Zn (mg/kg) * | 34.7 ± 5.9 ab | 37.3 ± 4.8 a | 32.9 ± 4.2 b |
Rb (mg/kg) * | 75 ± 21 a | 28 ± 6 b | 65 ± 17 a |
Sr (mg/kg) ** | 14 ± 5 a | 7 ± 2 c | 11 ± 4 b |
Y (μg/kg) * | 876.96 ± 79.77 b | 843.16 ± 120.60 b | 1020.33 ± 125.51 a |
La (μg/kg) * | 119.86 ± 38.80 a | 25.08 ± 4.42 b | 123.80 ± 68.58 a |
Pr (μg/kg) * | 24 ± 8 a | 6 ± 2 b | 29 ± 14 a |
Nd (μg/kg) * | 88.38 ± 30.35 a | 24.53 ± 6.16 b | 115.51 ± 54.43 a |
Sm (μg/kg) ** | 18 ± 6 b | 6 ± 2 c | 25 ± 12 a |
Eu (μg/kg) ** | 5.0 ± 1.2 b | 2.7 ± 0.8 c | 6.5 ± 2.3 a |
Gd (μg/kg) ** | 16 ± 5 b | 7 ± 3 c | 26 ± 11 a |
Tb (μg/kg) ** | 1122.8 ± 238.5 a | 630.6 ± 124.7 b | 219.6 ± 110.1 c |
Dy (μg/kg) ** | 13 ± 4 b | 6 ± 2 c | 21 ± 9 a |
Ho (μg/kg) ** | 2.7 ± 0.7 b | 1.2 ± 0.5 c | 4.3 ± 1.6 a |
Er (μg/kg) ** | 9 ± 3 b | 3 ± 1 c | 13 ± 5 a |
Tm (μg/kg) ** | 1.2 ± 0.5 b | 0.4 ± 0.2 c | 1.9 ± 0.8 a |
Yb (μg/kg) ** | 8 ± 3 b | 3 ± 1 c | 13 ± 5 a |
Lu (μg/kg) ** | 3.6 ± 1.8 c | 8.5 ± 2.9 b | 11.8 ± 3.9 a |
Element | Jinggu | Bangdong | Ning’er |
---|---|---|---|
Mg (μg/kg) * | 4973.044 ± 1006.566 a | 2381.777 ± 168.522 b | 1535.505 ± 76.886 b |
K (mg/kg) * | 27.28 ± 2.41 a | 10.85 ± 0.08 | 11.55 ± 0.27 b |
Ca (μg/kg) * | 66.26 ± 22.42 a | 51.38 ± 5.59 ab | 37.26 ± 1.24 b |
Mn (μg/kg) ** | 1264 ± 46 b | 1470 ± 40 a | 341 ± 26 c |
Fe (mg/kg) * | 38 ± 5 a | 32 ± 1 a | 17 ± 1 b |
Cu (μg/kg) * | 57.2 ± 7.8 a | 49.3 ± 1.6 a | 18.4 ± 0.3 b |
Zn (μg/kg) ** | 156.1 ± 14.7 a | 96.9 ± 3.1 b | 42.9 ± 2.1 c |
Rb (μg/kg) ** | 134 ± 13 a | 49 ± 4 c | 82.36 ± 2.04 b |
Sr (μg/kg) ** | 28 ± 4 b | 36 ± 0 a | 20 ± 1 c |
Y (μg/kg) * | 18.18 ± 1.35 a | 11.66 ± 0.85 b | 9.68 ± 1.80 b |
La (μg/kg) * | 40.03 ± 2.05 a | 27.05 ± 1.64 b | 31.82 ± 7.64 ab |
Pr (μg/kg) * | 9 ± 0 a | 5 ± 0 b | 6 ± 2 b |
Nd (μg/kg) * | 34.81 ± 1.35 a | 18.09 ± 1.27 b | 20.85 ± 7.20 b |
Sm (μg/kg) * | 7 ± 0 a | 3 ± 0 b | 4 ± 2 b |
Eu (μg/kg) ** | 0.8 ± 0.1 a | 0.5 ± 0.0 b | 0.3 ± 0.0 c |
Gd (μg/kg) * | 6 ± 0 a | 2 ± 0 b | 3 ± 1 b |
Tb (μg/kg) * | 0.7 ± 0.1 a | 0.3 ± 0.0 b | 0.4 ± 0.1 b |
Dy (μg/kg) * | 4 ± 0 a | 2 ± 0 b | 2 ± 1 b |
Ho (μg/kg) * | 0.7 ± 0.1 a | 0.4 ± 0.0 b | 0.3 ± 0.1 b |
Er (μg/kg) * | 2 ± 0 a | 1 ± 0 b | 1 ± 0 b |
Tm (μg/kg) ** | 0.2 ± 0.0 a | 0.2 ± 0.0 b | 0.1 ± 0.0 c |
Yb (μg/kg) ** | 2 ± 0 a | 1 ± 0 b | 1 ± 0 c |
Lu (μg/kg) ** | 0.2 ± 0.0 a | 0.1 ± 0.0 b | 0.1 ± 0.0 c |
Canonical Variable | Correlation Coefficient |
---|---|
1 | −0.077 |
2 | −0.150 |
3 | −0.069 |
4 | −0.255 |
5 | −0.246 |
6 | −0.215 |
7 | 0.317 |
8 | 0.111 |
9 | 0.371 |
Region | Bangdong | Jinggu | Ning’er |
---|---|---|---|
pH | 5.48 ± 0.15 a | 5.07 ± 0.17 b | 5.03 ± 0.06 b |
EC (μs/cm) | 46.98 ± 0.93 a | 34.99 ± 5.97 b | 24.21 ± 5.64 c |
Element | 20~100 | 100~200 | >200 |
---|---|---|---|
δ13C (‰) | −25.19 ± 1.27 a | −25.56 ± 1.07 a | −25.86 ± 1.37 a |
δ15N (‰) | 1.82 ± 2.30 a | 2.43 ± 2.93 a | 2.36 ± 2.43 a |
Mg (mg/kg) | 1758.798 ± 257.603 a | 1799.159 ± 335.310 a | 1808.026 ± 233.497 a |
K (mg/kg) | 20,348.89 ± 1777.85 a | 19,778.20 ± 1233.41 a | 19,528.80 ± 1504.73 a |
Ca (mg/kg) | 4109.37 ± 567.86 a | 3826.25 ± 757.32 a | 4137.37 ± 431.45 a |
Mn (μg/kg) | 821 ± 481 a | 889 ± 363 a | 855 ± 400 a |
Fe (mg/kg) | 1171 ± 124 a | 86 ± 50 a | 80 ± 20 a |
Cu (mg/kg) | 13.9 ± 2.5 a | 15.2 ± 2.5 a | 13.4 ± 1.7 a |
Zn (mg/kg) * | 34.4 ± 4.7 ab | 37.1 ± 5.9 a | 32.4 ± 4.0 b |
Rb (mg/kg) | 62 ± 25 a | 51 ± 23 a | 55 ± 25 a |
Sr (mg/kg) | 10 ± 4 a | 112 ± 6 a | 12 ± 5 a |
Y (μg/kg) | 935.15 ± 137.55 a | 942.68 ± 126.28 a | 916.89 ± 159.38 a |
La (μg/kg) | 109.72 ± 68.93 a | 68.80 ± 46.51 a | 94.24 ± 74.79 a |
Pr (μg/kg) | 25 ± 16 a | 16 ± 9 a | 20 ± 14 a |
Nd (μg/kg) | 95.70 ± 61.48 a | 61.80 ± 35.75 a | 79.98 ± 55.41 a |
Sm (μg/kg) | 21 ± 13 a | 13 ± 7 a | 17 ± 11 a |
Eu (μg/kg) | 5.4 ± 2.6 a | 4.3 ± 1.8 a | 5.1 ± 2.3 a |
Gd (μg/kg) | 20 ± 13 a | 14 ± 7 a | 18 ± 11 a |
Tb (μg/kg) | 638.3 ± 478.3 a | 520.7 ± 306.6 a | 560.2 ± 351.2 a |
Dy (μg/kg) | 16 ± 10 a | 12 ± 6 a | 146 ± 9 a |
Ho (μg/kg) | 3.3 ± 2.0 a | 2.5 ± 1.2 a | 3.0 ± 1.8 a |
Er (μg/kg) | 10 ± 6 a | 8 ± 4 a | 9 ± 5 a |
Tm (μg/kg) | 1.4 ± 1.0 a | 1.1 ± 0.7 a | 1.3 ± 0.9 a |
Yb (μg/kg) | 9 ± 6 a | 7 ± 4 a | 9 ± 5 a |
Lu (μg/kg) | 9.9 ± 5.4 a | 7.9 ± 3.3 b | 9.2 ± 4.0 c |
Element | Jinggu | Bangdong | Ning’er | ||||||
---|---|---|---|---|---|---|---|---|---|
20~100 | 100~200 | >200 | 20~100 | 100~200 | >200 | 20~100 | 100~200 | >200 | |
δ13C (‰) * | −24.99 ± 0.90 a | −25.46 ± 0.33 a | −25.33 ± 1.11 a | −26.97 ± 0.34 b | −26.19 ± 0.53 a | −27.15 ± 0.50 b | −24.58 ± 1.04 a | −25.09 ± 1.43 a | −25.04 ± 1.22 a |
δ15N (‰) | 2.53 ± 3.20 a | 6.82 ± 3.29 a | 5.37 ± 1.67 a | −0.53 ± 0.50 a | 0.21 ± 0.88 a | −0.01 ± 0.38 a | 2.33 ± 1.33 a | 2.08 ± 0.88 a | 2.83 ± 1.65 a |
Mg (mg/kg) | 1801.02 ± 210.65 a | 1731.73 ± 184.49 a | 1754.36 ± 161.95 a | 2022.54 ± 196.35 a | 2146.70 ± 150.99 a | 2062.52 ± 98.59 a | 1620.76 ± 220.96 a | 1543.25 ± 241.60 a | 1622.79 ± 125.77 a |
K(mg/kg) | 19,745.13 ± 1778.10 a | 19,765.25 ± 1961.40 a | 19,130.87 ± 1048.56 a | 19,640.30 ± 794.35 a | 20,228.30 ± 1420.24 a | 19,235.15 ± 694.88 a | 21,046.64 ± 1905.34 a | 19,409.59 ± 661.17 a | 19,972.49 ± 2154.85 a |
Ca (mg/kg) * | 4573.75 ± 567.83 a | 3250.35 ± 1008.22 b | 4123.57 ± 558.13 a | 3886.28 ± 424.46 b | 4532.52 ± 350.73 a | 4133.20 ± 509.79 ab | 3892.74 ± 449.67 ab | 3525.65 ± 424.20 b | 4147.75 ± 388.87 a |
Mn (mg/kg) | 345 ± 147,577 a | 390 ± 162,990 a | 443 ± 106,601 a | 2 ± 196 a | 2 ± 151 a | 2 ± 99 a | 1207 ± 362 a | 1130 ± 299 a | 1093 ± 451 a |
Fe (mg/kg) | 182 ± 210 a | 138 ± 103 a | 100 ± 32 a | 76 ± 39 a | 66 ± 7 a | 68 ± 4 a | 90 ± 25 a | 76 ± 10 a | 80 ± 15 a |
Cu (mg/kg) | 12.1 ± 2.6 a | 14.5 ± 3.1 a | 12.5 ± 0.9 a | 15.6 ± 1.1 a | 15.6 ± 0.8 a | 14.4 ± 0.9 a | 14.5 ± 2.3 a | 15.1 ± 3.3 a | 13.1 ± 2.1 a |
Zn (mg/kg) * | 35.5 ± 4.8 a | 34.9 ± 11.0 a | 32.4 ± 3.7 a | 37.1 ± 3.6 ab | 41.7 ± 2.2 a | 33.0 ± 4.1 b | 32.6 ± 4.7 a | 34.5 ± 2.5 a | 31.9 ± 4.6 a |
Rb (mg/kg) | 77 ± 21 a | 62 ± 24 a | 82 ± 18 a | 26 ± 5 a | 27 ± 8 a | 32 ± 5 a | 67 ± 17 a | 65.477 ± 15 a | 60 ± 21 a |
Sr (mg/kg) | 12 ± 3 a | 20 ± 3 a | 15 ± 2 a | 7 ± 2 a | 6 ± 2 a | 8 ± 2 a | 11 ± 4 a | 10 ± 3 a | 13 ± 6 a |
Y (μg/kg) | 882.84 ± 89.57 a | 871.83 ± 76.97 a | 866.40 ± 83.77 a | 820.49 ± 126.44 a | 891.47 ± 98.12 a | 817.53 ± 144.60 a | 1017.80 ± 122.24 a | 1020.78 ± 135.79 a | 1024.94 ± 145.27 a |
La (μg/kg) | 104.81 ± 28.51 a | 118.79 ± 36.43 a | 161.04 ± 46.52 a | 22.65 ± 3.31 a | 26.91 ± 6.35 a | 25.70 ± 2.23 a | 149.27 ± 68.38 a | 78.72 ± 41.09 a | 117.96 ± 75.00 a |
Pr (μg/kg) * | 21 ± 7 a | 27 ± 7 a | 29 ± 8 a | 6 ± 2 a | 7 ± 1 a | 6 ± 1 a | 36 ± 14 a | 18 ± 7 b | 28 ± 14 ab |
Nd (μg/kg) * | 77.34 ± 30.11 a | 99.98 ± 26.08 a | 106.19 ± 31.11 a | 20.61 ± 4.17 a | 26.65 ± 7.40 a | 26.33 ± 5.63 a | 139.23 ± 52.80 a | 71.99 ± 27.79 b | 111.59 ± 55.50 ab |
Sm (μg/kg) * | 16 ± 6 a | 20 ± 6 a | 21 ± 4 a | 5 ± 1 a | 7 ± 2 a | 7 ± 2 a | 30 ± 11 a | 16 ± 6 b | 24 ± 12 ab |
Eu (μg/kg) * | 4.5 ± 0.8 a | 5.7 ± 2.0 a | 5.6 ± 0.8 a | 2.1 ± 0.4 a | 2.9 ± 0.6 a | 2.9 ± 1.0 a | 7.4 ± 2.2 a | 4.6 ± 1.7 b | 6.6 ± 2.3 ab |
Gd (μg/kg) * | 14 ± 4 a | 8 ± 6 a | 17 ± 6 a | 5 ± 1 a | 8 ± 3 a | 8 ± 4 a | 31 ± 10 a | 18 ± 7 b | 26 ± 12 ab |
Tb (μg/kg) * | 1252.0 ± 207.2 a | 864.3 ± 64.2 b | 1036.8 ± 192.7 a | 654.1 ± 115.1 a | 652.9 ± 127.3 a | 584.9 ± 145.2 a | 222.6 ± 66.5 a | 182.2 ± 100.2 a | 249.6 ± 196.4 a |
Dy (μg/kg) | 12 ± 3 a | 14 ± 5 a | 14 ± 3 a | 4 ± 1 a | 6 ± 1 a | 7 ± 3 a | 24 ± 9 a | 15 ± 5 a | 21 ± 10 a |
Ho (μg/kg) * | 2.5 ± 0.6 a | 3.1 ± 0.7 a | 3.1 ± 0.8 a | 0.9 ± 0.2 b | 1.2 ± 0.2 ab | 1.5 ± 0.7 a | 4.8 ± 1.6 a | 3.2 ± 1.1 a | 4.3 ± 1.9 a |
Er (μg/kg) | 8 ± 2 a | 1 ± 4 a | 9 ± 3 a | 3 ± 1 a | 3 ± 1 a | 4 ± 2 a | 14 ± 5 a | 10 ± 3 a | 13 ± 5 a |
Tm (μg/kg) | 1.0 ± 0.4 a | 1.7 ± 0.7 a | 1.3 ± 0.5 a | 0.3 ± 0.1 a | 0.4 ± 0.1 a | 0.5 ± 0.3 a | 2.2 ± 0.9 a | 1.4 ± 0.5 a | 2.0 ± 0.8 a |
Yb (μg/kg) * | 7 ± 3 a | 10 ± 4 a | 10 ± 3 a | 2 ± 1 b | 3 ± 1 ab | 4 ± 2 a | 14 ± 4 a | 9 ± 3 a | 12 ± 5 ab |
Lu (μg/kg) | 3.7 ± 2.7 a | 3.5 ± 1.1 a | 3.6 ± 1.7 a | 7.6 ± 2.2 a | 8.2 ± 3.4 a | 9.6 ± 3.1 a | 12.9 ± 4.8 a | 9.8 ± 1.7 a | 11.8 ± 2.6 a |
Source of Variation | Region (R) | Age (A) | R × A | Error |
---|---|---|---|---|
DF | 2 | 2 | 4 | 44 |
cc (‰) | 16.162 ** | 0.453 | 0.783 | 0.918 |
δ15N (‰) | 89.32 ** | 4.98 | 3.31 | 3.24 |
Mg (mg/kg) | 940,372.990 ** | 214.532 | 16,805.581 | 35,097.374 |
K (mg/kg) | 320,175.52 | 4,407,718.36 | 1,902,670.37 | 2,576,350.83 |
Ca (mg/kg) | 343,041.76 | 441,090.52 | 973,706.97 | 223,680.31 |
Mn (mg/kg) | 212,6241 ** | 45,782 | 38,559,311 ** | 88,978,814 |
Fe (mg/kg) | 28,113 * | 12,679 | 7124 | 8161 |
Cu (mg/kg) | 12,380.3 | 9732.2 | 1244.7 | 5492.3 |
Zn (mg/kg) | 77,533.4 * | 48,583.2 | 22,130.5 | 21,778.1 |
Rb (mg/kg) | 7,570,777 ** | 208,510 | 230,305 | 211,491 |
Sr (mg/kg) | 231,854 ** | 32,516 | 34,624 | 13,801 |
Y (mg/kg) | 178.84 ** | 4.56 | 2.25 | 15.11 |
La (mg/kg) | 51.79 ** | 2.90 | 2.40 | 2.32 |
Pr (μg/kg) | 2357 ** | 82 | 152 | 95 |
Nd (mg/kg) | 35.45 ** | 1.23 | 2.20 | 1.38 |
Sm (μg/kg) | 1466 ** | 56 | 95 | 61 |
Eu (μg/kg) | 60.9 ** | 1.3 | 4.9 | 2.7 |
Gd (μg/kg) | 1439 ** | 28 | 97 | 57 |
Tb (mg/kg) | 2068.2 ** | 0.0 | 0.0 | 0.0 |
Dy (μg/kg) | 954 ** | 11 | 48 | 39 |
Ho (μg/kg) | 39.5 ** | 0.7 | 1.6 | 1.4 |
Er (μg/kg) | 363 ** | 2 | 18 | 13 |
Tm (μg/kg) | 9.5 ** | 0.0 | 0.5 | 0.4 |
Yb (μg/kg) | 364 ** | 5 | 22 | 13 |
Lu (μg/kg) | 215.4 ** | 3.8 | 5.5 | 11.3 |
Region | δ13C | δ15N | Mg | Mn | Rb | La | Tb |
---|---|---|---|---|---|---|---|
Bangdong | −26.01 | 1.40 | 2,724,050.97 | 1,235,282.25 | 90,404.89 | 523.63 | 8.20 |
−25.98 | 2.74 | 2,772,521.47 | 1,066,798.51 | 86,209.27 | 289.25 | 6.09 | |
−27.43 | 3.19 | 2,632,641.73 | 1,043,034.78 | 96,223.16 | 214.16 | 4.73 | |
−27.91 | 2.75 | 2,686,877.79 | 916,569.28 | 102,914.99 | 367.90 | 6.83 | |
−26.16 | 2.57 | 3,067,714.29 | 969,110.57 | 133,737.01 | 375.74 | 5.66 | |
−25.36 | 2.50 | 2,658,854.62 | 737,281.79 | 108,884.34 | 242.07 | 5.16 | |
−25.68 | 2.31 | 2,482,755.05 | 1,006,464.11 | 102,004.56 | 391.33 | 7.49 | |
−25.32 | 1.93 | 2,760,370.63 | 1,260,159.98 | 120,953.10 | 295.24 | 7.58 | |
−26.30 | 2.57 | 2,543,127.79 | 947,274.99 | 95,336.29 | 369.31 | 6.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.-M.; Liao, Q.-H.; Qian, L.-L.; Zou, H.-D.; Li, Y.-L.; Song, Y.; Xia, Y.; Liu, Y.; Liu, H.-Y.; Liu, Z.-L. Effects of Geographical Origin and Tree Age on the Stable Isotopes and Multi-Elements of Pu-erh Tea. Foods 2024, 13, 473. https://doi.org/10.3390/foods13030473
Chen M-M, Liao Q-H, Qian L-L, Zou H-D, Li Y-L, Song Y, Xia Y, Liu Y, Liu H-Y, Liu Z-L. Effects of Geographical Origin and Tree Age on the Stable Isotopes and Multi-Elements of Pu-erh Tea. Foods. 2024; 13(3):473. https://doi.org/10.3390/foods13030473
Chicago/Turabian StyleChen, Ming-Ming, Qiu-Hong Liao, Li-Li Qian, Hai-Dan Zou, Yan-Long Li, Yan Song, Yu Xia, Yi Liu, Hong-Yan Liu, and Ze-Long Liu. 2024. "Effects of Geographical Origin and Tree Age on the Stable Isotopes and Multi-Elements of Pu-erh Tea" Foods 13, no. 3: 473. https://doi.org/10.3390/foods13030473
APA StyleChen, M. -M., Liao, Q. -H., Qian, L. -L., Zou, H. -D., Li, Y. -L., Song, Y., Xia, Y., Liu, Y., Liu, H. -Y., & Liu, Z. -L. (2024). Effects of Geographical Origin and Tree Age on the Stable Isotopes and Multi-Elements of Pu-erh Tea. Foods, 13(3), 473. https://doi.org/10.3390/foods13030473