Identification and Classification of Coix seed Storage Years Based on Hyperspectral Imaging Technology Combined with Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Hyperspectral Imaging System
where R was the corrected hyperspectral image; R0 was the hyperspectral image before correction; IMdark and IMwhite were the black and white reference images, respectively. The region of interest (ROI) was manually extracted using the ENVI 5.3 software (Research Systems Inc., Boulder, CO, USA). Each subsample represented the average value of a specific ROI.
2.3. Preprocessing and Feature Wavelength Screening
2.4. Conventional Machine Learning Methods
2.5. ResNet Model
2.6. Data Analysis and Model Evaluation
where TP is true positive; TN is true negative; FP is false positive; FN is false negative. For each index, a higher value represents the better performance of the corresponding model.
3. Results
3.1. Spectral Profile of Coix Seed Samples from Different Storage Years
3.2. Classification Results
3.3. Classification with VNIR and SWIR Fusion
3.4. Extraction of Spectral Feature Wavelength
3.5. Recognition Results of the Models on Characteristic Spectra
3.6. Identification and Visualization of Coix seed Samples from Different Storage Years for Validation Sets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, F. Coix: Chemical Composition and Health Effects. Trends Food Sci. Technol. 2017, 61, 160–175. [Google Scholar] [CrossRef]
- Du, W.; Zhu, W.; Ge, W.; Li, C. Research on the Effect of Spleen-Invigorating and Anti-Swelling Active Ingredients in Crude and Processed Coix Seed Based on Spectrum—Effects Relationship Combined with Chemometrics. J. Pharm. Biomed. Anal. 2021, 205, 114350. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, R.D.; Jeepipalli, S.P.K.; Xu, B. Phytochemistry and Health Promoting Effects of Job’s Tears (Coix lacryma-jobi)—A Critical Review. Food Biosci. 2020, 34, 100537. [Google Scholar] [CrossRef]
- Xu, M.; He, D.; Teng, H.; Chen, L.; Song, H.; Huang, Q. Physiological and Proteomic Analyses of Coix Seed Aging during Storage. Food Chem. 2018, 260, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Li, H.; Jiang, D.; Meng, J.; Zhang, F.; Xu, Q.; Chen, X.; Liu, C.; Yang, Y. Analysis of Fungi on Coix (Coix lacryma-jobi) Seed and the Effect of Its Aqueous Extract on the Growth of Aspergillus Flavus. J. Food. Prot. 2019, 82, 1775–1782. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; He, X.; Chen, H.; Li, Z.; Yin, C.; Shi, Y. A residual dense comprehensively regulated convolutional neural network to identify spectral information for egg quality traceability. Anal. Methods 2022, 14, 3780–3789. [Google Scholar] [CrossRef]
- Jin, B.; Zhang, C.; Jia, L.; Tang, Q.; Gao, L.; Zhao, G.; Qi, H. Identification of Rice Seed Varieties Based on Near-Infrared Hyperspectral Imaging Technology Combined with Deep Learning. ACS Omega 2022, 7, 4735–4749. [Google Scholar] [CrossRef]
- Pang, L.; Wang, L.; Yuan, P.; Yan, L.; Yang, Q.; Xiao, J. Feasibility study on identifying seed viability of Sophora japonica with optimized deep neural network and hyperspectral imaging. Comput. Electron. Agric. 2021, 190, 106426. [Google Scholar] [CrossRef]
- Van De Steene, J.; Ruyssinck, J.; Fernandez-Pierna, J.-A.; Vandermeersch, L.; Maes, A.; Van Langenhove, H.; Walgraeve, C.; Demeestere, K.; De Meulenaer, B.; Jacxsens, L.; et al. Fingerprinting methods for origin and variety assessment of rice: Development, validation and data fusion experiments. Food Control 2023, 151, 109780. [Google Scholar] [CrossRef]
- Wu, N.; Weng, S.; Chen, J.; Xiao, Q.; Zhang, C.; He, Y. Deep convolution neural network with weighted loss to detect rice seeds vigor based on hyperspectral imaging under the sample-imbalanced condition. Comput. Electron. Agric. 2022, 196, 106850. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, W.; Zhou, L.; Cheng, H.; Ye, X.; He, Y. Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging. Food. Chem. 2020, 319, 126536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Q.; Wu, J.; Liu, Y.; Yu, L.; Chen, Y. Moisture detection of single corn seed based on hyperspectral imaging and deep learning. Infrared Phys. Technol. 2022, 125, 104279. [Google Scholar] [CrossRef]
- Wang, Y.; Song, S. Variety identification of sweet maize seeds based on hyperspectral imaging combined with deep learning. Infrared Phys. Technol. 2023, 130, 104611. [Google Scholar] [CrossRef]
- Cai, Z.; Huang, Z.; He, M.; Li, C.; Qi, H.; Peng, J.; Zhou, F.; Zhang, C. Identification of geographical origins of Radix Paeoniae Alba using hyperspectral imaging with deep learning-based fusion approaches. Food Chem. 2023, 422, 136169. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.; Shi, J.; Yang, C.; Li, Y.; Zhao, Y.; Liu, Z.; An, T.; Li, X.; Yan, P.; Dong, C. Detection of anthocyanin content in fresh Zijuan tea leaves based on hyperspectral imaging. Food Control 2023, 152, 109839. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, F.; Zhang, Y.; Wang, S.; Yuan, Y.; Lu, C.; Nie, J.; Nan, T.; Yang, B.; Huang, L.; et al. Application of hyperspectral imaging assisted with integrated deep learning approaches in identifying geographical origins and predicting nutrient contents of Coix seeds. Food Chem. 2023, 404, 134503. [Google Scholar] [CrossRef]
- Fanyi, Z.; Weidong, S.; Jiaming, K.; Jixin, Y.; Xu, Z.; Yang, L.; Huihui, W. Detection of moisture content in salted sea cucumbers by hyperspectral and low field nuclear magnetic resonance based on deep learning network framework. Food Res. Int. 2022, 156, 111174. [Google Scholar] [CrossRef]
- Baosheng, W.; An, L.; Ling, Y. A multi-kernel channel attention combined with convolutional neural network to identify spectral information for tracing the origins of rice samples. Anal. Methods 2023, 15, 179–186. [Google Scholar] [CrossRef]
- Medus, L.D.; Saban, M.; Frances-Villora, J.V.; Bataller-Mompean, M.; Rosado-Munoz, A. Hyperspectral image classification using CNN: Application to industrial food packaging. Food Control 2021, 125, 107962. [Google Scholar] [CrossRef]
- Dandan, K.; Yongqiang, S.; Dawei, S.; Lei, Z.; Wenkai, Z.; Ruicheng, Q.; Yong, H. Hyperspectral imaging coupled with CNN: A powerful approach for quantitative identification of feather meal and fish by-product meal adulterated in marine fishmeal. Microchem. J. 2022, 180, 107517. [Google Scholar] [CrossRef]
- Gui, J.; Xu, H.; Fei, J. Non-Destructive Detection of Soybean Pest Based on Hyperspectral Image and Attention-ResNet Meta-Learning Model. Sensors 2023, 23, 678. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Zhao, X.; Que, H.; Sun, X.; Zhu, Q.; Huang, M. Hybrid Convolutional Network Based on Hyperspectral Imaging for Wheat Seed Varieties Classification. Infrared Phys. Technol. 2022, 125, 104270. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Bai, R.; Li, X.; Yuan, Y.; Nan, T.; Kang, C.; Yang, J.; Huang, L. Prediction Performance and Reliability Evaluation of Three Ginsenosides in Panax Ginseng Using Hyperspectral Imaging Combined with a Novel Ensemble Chemometric Model. Food Chem. 2024, 430, 136917. [Google Scholar] [CrossRef]
- Xu, P.; Fu, L.; Xu, K.; Sun, W.; Tan, Q.; Zhang, Y.; Zha, X.; Yang, R. Investigation into maize seed disease identification based on deep learning and multi-source spectral information fusion techniques. J. Food Compost. Anal. 2023, 119, 105254. [Google Scholar] [CrossRef]
- He, J.; Zhang, C.; Zhou, L.; He, Y. Simultaneous Determination of Five Micro-Components in Chrysanthemum Morifolium (Hangbaiju) Using near-Infrared Hyperspectral Imaging Coupled with Deep Learning with Wavelength Selection. Infrared Phys. Technol. 2021, 116, 103802. [Google Scholar] [CrossRef]
- Jiang, H.; Ye, L.; Li, X.; Shi, M. Variety Identification of Chinese Walnuts Using Hyperspectral Imaging Combined with Chemometrics. Appl. Sci. 2021, 11, 9124. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, X.; Ru, Y.; Chen, Q.; Li, X.; Xu, L.; Zhou, H.; Shi, M. Rapid and non-destructive detection of natural mildew degree of postharvest Camellia oleifera fruit based on hyperspectral imaging. Infrared Phys. Technol. 2022, 123, 104169. [Google Scholar] [CrossRef]
- Li, B.; Han, Z.; Wang, Q.; Yang, A.; Liu, Y. Detection of skin defects in loquats based on grayscale features combined with reflectance, absorbance, and Kubelka-Munk spectra. J. Chemom. 2022, 36, e3449. [Google Scholar] [CrossRef]
- Jiang, H.; Yuan, W.; Ru, Y.; Chen, Q.; Wang, J.; Zhou, H. Feasibility of identifying the authenticity of fresh and cooked mutton kebabs using visible and near-infrared hyperspectral imaging. Spectrochim. Acta A Mol. Biomol. 2022, 282, 121689. [Google Scholar] [CrossRef] [PubMed]
- Ziwei, L.; Jinbao, J.; Mengquan, L.; Deshuai, Y.; Cheng, N.; Yilin, S.; Peng, Z. Identification of moldy peanuts under different varieties and moisture content using hyperspectral imaging and data augmentation technologies. Foods 2022, 11, 1156. [Google Scholar] [CrossRef]
- Zhan, S.; Xiong, L.; Yande, L. Detection of Chili Foreign Objects Using Hyperspectral Imaging Combined with Chemometric and Target Detection Algorithms. Foods 2023, 12, 2618. [Google Scholar] [CrossRef]
- Xue, H.; Yang, Y.; Xu, X.; Zhang, N.; Lv, Y. Application of Near Infrared Hyperspectral Imaging Technology in Purity Detection of Hybrid Maize. Appl. Sci. 2023, 13, 3507. [Google Scholar] [CrossRef]
- Tunca, E.; Koksal, E.S.; Ozturk, E.; Akay, H.; Taner, S.C. Accurate estimation of sorghum crop water content under different water stress levels using machine learning and hyperspectral data. Environ. Monit. Assess. 2023, 195, 877. [Google Scholar] [CrossRef] [PubMed]
- Seongmin, P.; Suk-Ju, H.; Sungjay, K.; Jiwon, R.; Seungwoo, R.; Ghiseok, K. Classification of fresh and frozen-thawed beef using a hyperspectral imaging sensor and machine learning. Agriculture 2023, 13, 918. [Google Scholar] [CrossRef]
- Zou, Z.; Wu, Q.; Wang, J.; Xu, L.; Zhou, M.; Lu, Z.; He, Y.; Wang, Y.; Liu, B.; Zhao, Y. Research on non-destructive testing of hotpot oil quality by fluorescence hyperspectral technology combined with machine learning. Spectrochim. Acta A Mol. Biomol. 2023, 284, 121785. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Chen, J.; Wu, W.; Luo, J.; Long, T.; Wu, Q.; Wang, Q.; Zhen, J.; Zhao, Y.; Wang, Y.; et al. Detection of peanut seed vigor based on hyperspectral imaging and chemometrics. Front. Plant Sci. 2023, 14, 1127108. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Sun, J.; Chen, C.; Xu, M.; Zhou, X.; Cao, Y.; Tian, Y. Non-destructive detection of egg qualities based on hyperspectral imaging. J. Food Eng. 2022, 325, 111024. [Google Scholar] [CrossRef]
- Tao, Y.; Bao, J.; Liu, Q.; Liu, L.; Zhu, J. Deep residual network enabled smart hyperspectral image analysis and its application to monitoring moisture, size distribution and contents of four bioactive compounds of granules in the fluid-bed granulation process of Guanxinning tablets. Spectrochim. Acta A Mol. Biomol. 2023, 287, 122083. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Yan, T.; Zhang, C.; Duan, L.; Chen, W.; Song, H.; Zhang, Y.; Xu, W.; Gao, P. Detection of Pesticide Residue Level in Grape Using Hyperspectral Imaging with Machine Learning. Foods 2022, 11, 1609. [Google Scholar] [CrossRef]
- Dong, F.; Hao, J.; Luo, R.; Zhang, Z.; Wang, S.; Wu, K.; Liu, M. Identification of the proximate geographical origin of wolfberries by two-dimensional correlation spectroscopy combined with deep learning. Comput. Electron. Agric. 2022, 198, 107027. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, L.; Li, H.; Rao, Z.; Ji, H. Nondestructive Identification of Barley Seeds Varieties Using Hyperspectral Data from Two Sides of Barley Seeds. J. Food Process. Eng. 2021, 44, e13769. [Google Scholar] [CrossRef]
- Zhang, L.; Rao, Z.; Ji, H. NIR Hyperspectral Imaging Technology Combined with Multivariate Methods to Study the Residues of Different Concentrations of Omethoate on Wheat Grain Surface. Sensors 2019, 19, 3147. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Jiang, H.; Bao, Y.; Zhang, C.; Zhang, J.; Song, W.; Zhao, Y.; Mi, C.; He, Y.; Liu, F. Practicability investigation of using near-infrared hyperspectral imaging to detect rice kernels infected with rice false smut in different conditions. Sens. Actuators B Chem. 2020, 308, 127696. [Google Scholar] [CrossRef]
- Tahmasbian, I.; Morgan, N.K.; Hosseini Bai, S.; Dunlop, M.W.; Moss, A.F. Comparison of Hyperspectral Imaging and Near-Infrared Spectroscopy to Determine Nitrogen and Carbon Concentrations in Wheat. Remote Sens. 2021, 13, 1128. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, B.; Wang, H.; Li, Y.; Zhang, Y.; Yu, G. Non-Destructive Detection of Different Pesticide Residues on the Surface of Hami Melon Classification Based on tHBA-ELM Algorithm and SWIR Hyperspectral Imaging. Foods 2023, 12, 1773. [Google Scholar] [CrossRef] [PubMed]
- Qin, O.; Li, W.; Bosoon, P.; Rui, K.; Zhen, W.; Quansheng, C.; Zhiming, G. Assessment of matcha sensory quality using hyperspectral microscope imaging technology. LWT 2020, 125, 109254. [Google Scholar] [CrossRef]
- Wang, B.; Sun, J.; Xia, L.; Liu, J.; Wang, Z.; Lia, P.; Guo, Y.; Sun, X. The Applications of Hyperspectral Imaging Technology for Agricultural Products Quality Analysis: A Review. Food Rev. Int. 2023, 39, 1043–1062. [Google Scholar] [CrossRef]
- Ru, C.; Li, Z.; Tang, R. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI). Sensors 2019, 19, 2045. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, H.N.; Chen, R.P.; Dai, T.; Meng, F.Y.; Wang, H.B. A Critical Evaluation of Machine Learning and Deep Learning in Shield-Ground Interaction Prediction. Tunn. Undergr. Space Technol. 2020, 106, 103593. [Google Scholar] [CrossRef]
- Lai, Y. A Comparison of Traditional Machine Learning and Deep Learning in Image Recognition. J. Phys. Conf. Ser. 2019, 1314, 012148. [Google Scholar] [CrossRef]
Layer Name | Output Size | 50-Layer |
---|---|---|
Conv1 | 112 × 112 | 7 × 7, 64, stride 2 3 × 3 max pool, stride 2 |
Conv2_x | 56 × 56 | |
Conv3_x | 28 × 28 | |
Conv4_x | 14 × 14 | |
Conv5_x | 7 × 7 | |
1 × 1 | average pool, 1000-d fc, softmax |
Methods | Training Set (%) | Testing Set (%) | ||
---|---|---|---|---|
GZ | YN | GZ | YN | |
KNN | 100.00 | 100.00 | 58.70 | 57.41 |
RF | 100.00 | 100.00 | 61.30 | 60.37 |
SVM | 93.49 | 89.05 | 91.48 | 88.33 |
XGBoost | 100.00 | 100.00 | 64.44 | 65.19 |
ResNet | 100.00 | 100.00 | 84.07 | 83.52 |
Methods | Training Set (%) | Testing Set (%) | ||
---|---|---|---|---|
GZ | YN | GZ | YN | |
KNN | 100.00 | 100.00 | 76.85 | 71.48 |
RF | 100.00 | 100.00 | 85.55 | 75.18 |
SVM | 98.65 | 95.79 | 97.59 | 93.33 |
XGBoost | 100.00 | 99.92 | 86.85 | 78.52 |
ResNet | 100.00 | 100.00 | 96.85 | 93.15 |
Methods | Training Set (%) | Testing Set (%) | ||
---|---|---|---|---|
GZ | YN | GZ | YN | |
KNN | 100.00 | 100.00 | 70.56 | 60.00 |
RF | 100.00 | 100.00 | 83.52 | 72.22 |
SVM | 99.84 | 99.23 | 99.07 | 98.52 |
XGBoost | 100.00 | 100.00 | 86.85 | 80.18 |
ResNet | 100.00 | 100.00 | 97.22 | 94.63 |
Pretreatment | Methods | Training Set (%) | Testing Set (%) | ||
---|---|---|---|---|---|
GZ | YN | GZ | YN | ||
MSC | SVM | 99.60 | 99.60 | 99.25 | 99.26 |
ResNet | 100.00 | 100.00 | 95.37 | 93.15 | |
SNV | SVM | 100.00 | 99.37 | 99.07 | 98.70 |
ResNet | 100.00 | 100.00 | 94.44 | 92.04 | |
SG | SVM | 99.13 | 99.13 | 98.52 | 98.52 |
ResNet | 100.00 | 100.00 | 97.03 | 94.81 |
Data Type | Methods | Training Set (%) | Testing Set (%) | ||
---|---|---|---|---|---|
GZ | YN | GZ | YN | ||
SPA | SVM | 98.02 | 93.10 | 96.30 | 92.22 |
ResNet | 100.00 | 100.00 | 80.37 | 72.22 | |
CARS | SVM | 99.12 | 98.49 | 98.70 | 97.40 |
ResNet | 100.00 | 100.00 | 95.70 | 92.59 |
Methods | Group | Correct Number | Accuracy (%) | ||
---|---|---|---|---|---|
GZ (0/1/2) | YN (0/1/2) | GZ | YN | ||
CARS-SVM | 1 | 34/25/37 | 32/43/21 | 50.00 | 77.08 |
2 | 34/30/32 | 29/38/29 | 59.38 | 80.21 | |
3 | 31/27/38 | 37/39/20 | 60.42 | 70.83 | |
4 | 32/33/31 | 38/37/21 | 57.29 | 69.79 | |
5 | 38/24/34 | 33/41/22 | 61.46 | 78.13 | |
6 | 35/24/37 | 36/37/23 | 57.29 | 82.29 | |
7 | 36/27/33 | 34/39/23 | 48.96 | 76.04 | |
8 | 42/21/33 | 30/36/30 | 59.38 | 72.92 | |
Mean acc | - | - | 56.77 | 75.91 | |
CARS-ResNet | 1 | 33/32/31 | 21/30/45 | 91.67 | 87.5 |
2 | 25/34/37 | 24/42/30 | 93.75 | 88.54 | |
3 | 31/33/32 | 23/37/36 | 98.96 | 86.46 | |
4 | 31/32/33 | 29/35/32 | 97.92 | 86.46 | |
5 | 32/31/33 | 25/36/35 | 94.79 | 86.46 | |
6 | 30/35/31 | 26/38/32 | 92.71 | 83.33 | |
7 | 32/30/34 | 24/37/35 | 93.75 | 87.5 | |
8 | 31/31/34 | 21/30/45 | 89.58 | 87.5 | |
Mean acc | - | - | 94.14 | 86.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, R.; Zhou, J.; Wang, S.; Zhang, Y.; Nan, T.; Yang, B.; Zhang, C.; Yang, J. Identification and Classification of Coix seed Storage Years Based on Hyperspectral Imaging Technology Combined with Deep Learning. Foods 2024, 13, 498. https://doi.org/10.3390/foods13030498
Bai R, Zhou J, Wang S, Zhang Y, Nan T, Yang B, Zhang C, Yang J. Identification and Classification of Coix seed Storage Years Based on Hyperspectral Imaging Technology Combined with Deep Learning. Foods. 2024; 13(3):498. https://doi.org/10.3390/foods13030498
Chicago/Turabian StyleBai, Ruibin, Junhui Zhou, Siman Wang, Yue Zhang, Tiegui Nan, Bin Yang, Chu Zhang, and Jian Yang. 2024. "Identification and Classification of Coix seed Storage Years Based on Hyperspectral Imaging Technology Combined with Deep Learning" Foods 13, no. 3: 498. https://doi.org/10.3390/foods13030498
APA StyleBai, R., Zhou, J., Wang, S., Zhang, Y., Nan, T., Yang, B., Zhang, C., & Yang, J. (2024). Identification and Classification of Coix seed Storage Years Based on Hyperspectral Imaging Technology Combined with Deep Learning. Foods, 13(3), 498. https://doi.org/10.3390/foods13030498