Increasing the Amounts of Bioactive Components in American Ginseng (Panax quinquefolium L.) Leaves Using Far-Infrared Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Collection and FIR Treatment
2.3. Bioactive Compound Analysis
2.3.1. Sample Extraction
2.3.2. TPC Determination
2.3.3. HPLC Analysis of Panasenoside, Kaempferol, and Ginsenoside Amounts
2.4. Determination of the Free Radical Scavenging and Antioxidant Activities
2.4.1. Determination of the Free Radical Scavenging Activity
2.4.2. Determination of the Reducing Power
2.5. Statistical Analysis
3. Results and Discussion
3.1. The Effect of FIR Heat Treatment on the TPC in American Ginseng Leaves
3.2. The Effect of FIR Heat Treatment on the Amounts of Panasenoside and Kaempferol in American Ginseng Leaves
3.3. The Effect of FIR Treatment on the Ginsenoside Content in American Ginseng Leaves
3.3.1. Protopanaxadiol (PPD)-Type Ginsenosides
3.3.2. Protopanaxatriol (PPT)-Type Ginsenosides
3.4. The Effects of FIR Treatment on the Free Radical Scavenging and Antioxidant Activities of American Ginseng Leaves
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, J.; Zhang, Q.; Huang, H. Ginseng extract and its constituents alleviate cisplatin toxicity and reverse cisplatin resistance. Integr. Cancer Sci. Therap. 2019, 6, 1–7. [Google Scholar] [CrossRef]
- Wang, L.; Li, S.; Liu, H.; Bao, L. Advances in research on the effects of natural drugs with immune-promoting effects on immune function. Eur. J. Inflamm. 2020, 18, 2058739220926878. [Google Scholar] [CrossRef]
- He, S.; Lyu, F.; Lou, L.; Liu, L.; Li, S.; Jakowitsch, J.; Ma, Y. Anti-tumor activities of Panax quinquefolius saponins and potential biomarkers in prostate cancer. J. Ginseng Res. 2021, 45, 273–286. [Google Scholar] [CrossRef]
- Im, D.S. Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng. Biomolecules 2020, 10, 444. [Google Scholar] [CrossRef]
- Liu, Z.; Qu, C.Y.; Li, J.X.; Wang, Y.F.; Li, W.; Wang, C.Z.; Wang, D.S.; Song, J.; Sun, G.Z.; Yuan, C.S. Hypoglycemic and Hypolipidemic Effects of Malonyl Ginsenosides from American Ginseng (Panax quinquefolius L.) on Type 2 Diabetic Mice. ACS Omega 2021, 6, 33652–33664. [Google Scholar] [CrossRef]
- Walsh, J.P.; Garnham, C.P.; Yeung, K.K.C.; Sumarah, M.W. Ilyonectria Root Rot of Ginseng Is Attenuated via Enzymatic Degradation of the Extracellular Fe3+-Bound Siderophore N,N′,N″-Triacetylfusarinine C. ACS Agric. Sci. Technol. 2022, 2, 402–408. [Google Scholar] [CrossRef]
- Fang, X.; Wang, M.; Zhou, X.; Wang, H.; Wang, H.; Xiao, H. Effects of growth years on ginsenoside biosynthesis of wild ginseng and cultivated ginseng. BMC Genom. 2022, 23, 325. [Google Scholar] [CrossRef]
- Xue, P.; Yao, Y.; Yang, X.S.; Feng, J.; Ren, G.X. Improved antimicrobial effect of ginseng extract by heat transformation. J. Ginseng Res. 2017, 41, 180–187. [Google Scholar] [CrossRef]
- Leung, K.W.; Wong, A.S.T. Pharmacology of ginsenosides: A literature review. Chin. Med. 2010, 5, 20. [Google Scholar] [CrossRef]
- Park, C.S.; Yoo, M.H.; Noh, K.H.; Oh, D.K. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biot. 2010, 87, 9–19. [Google Scholar] [CrossRef]
- Kang, O.J.; Kim, J.S. Comparison of Ginsenoside Contents in Different Parts of Korean Ginseng (Panax ginseng C.A. Meyer). Prev. Nutr. Food Sci. 2016, 21, 389–392. [Google Scholar] [CrossRef]
- Duan, S.; Liu, J.R.; Wang, X.; Sun, X.M.; Gong, H.S.; Jin, C.W.; Eom, S.H. Thermal Control Using Far-Infrared Irradiation for Producing Deglycosylated Bioactive Compounds from Korean Ginseng Leaves. Molecules 2022, 27, 4782. [Google Scholar] [CrossRef]
- Jang, G.Y.; Kim, M.Y.; Lee, Y.J.; Li, M.; Shin, Y.S.; Lee, J.; Jeong, H.S. Influence of organic acids and heat treatment on ginsenoside conversion. J. Ginseng Res. 2018, 42, 532–539. [Google Scholar] [CrossRef]
- Kim, K.T.; Yoo, K.M.; Lee, J.W.; Eom, S.H.; Hwang, I.K.; Lee, C.Y. Protective effect of steamed American ginseng (Panax quinquefolius L.) on V79-4 cells induced by oxidative stress. J. Ethnopharmacol. 2007, 111, 443–450. [Google Scholar] [CrossRef]
- Kim, K.T.; Yoo, K.M. Effect of hot water boiling and autoclaving on physicochemical properties of American ginseng (Panax quinquefolium L.). J. Ginseng Res. 2009, 33, 40–47. [Google Scholar]
- Zhang, F.; Tang, S.; Zhao, L.; Yang, X.; Yao, Y.; Hou, Z.; Xue, P. Stem-leaves of Panax as a rich and sustainable source of less-polar ginsenosides: Comparison of ginsenosides from Panax ginseng, American ginseng and Panax notoginseng prepared by heating and acid treatment. J. Ginseng Res. 2021, 45, 163–175. [Google Scholar] [CrossRef]
- Zeng, Y.; Liu, Y.; Zhang, J.; Xi, H.; Duan, X. Effects of far-infrared radiation temperature on drying characteristics, water status, microstructure and quality of kiwifruit slices. J. Food Meas. Charact. 2019, 13, 3086–3096. [Google Scholar] [CrossRef]
- Aboud, S.A.; Altemimi, A.B.; Al-HiIphy, A.R.S.; Yi-Chen, L.; Cacciola, F. A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules 2019, 24, 4125. [Google Scholar] [CrossRef]
- Geng, Z.; Torki, M.; Kaveh, M.; Beigi, M.; Yang, X. Characteristics and multi-objective optimization of carrot dehydration in a hybrid infrared/hot air dryer. LWT 2022, 172, 114229. [Google Scholar] [CrossRef]
- Ren, Z.; Yu, X.; Yagoub, A.; Fakayode, O.; Ma, H.; Sun, Y.; Zhou, C. Combinative effect of cutting orientation and drying techniques (hot air, vacuum, freeze and catalytic infrared drying) on the physicochemical properties of ginger (Zingiber officinale Roscoe). LWT 2021, 144, 111238. [Google Scholar] [CrossRef]
- Rajoriya, D.; Shewale, S.; Bhavya, M.; Hebbar, H. Far infrared assisted refractance window drying of apple slices: Comparative study on flavour, nutrient retention and drying characteristics. Innov. Food Sci. Emerg. 2020, 66, 102530. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, F.; Yue, Y.; Zang, Z.; Xu, Y.; Jiang, C.; Shang, J.; Wang, T.; Huang, X. Study on Ultrasonic Far-Infrared Radiation Drying and Quality Characteristics of Wolfberry (Lycium barbarum L.) under Different Pretreatments. Molecules 2023, 28, 1732. [Google Scholar] [CrossRef]
- Ratseewo, J.; Meeso, N.; Siriamornpun, S. Changes in amino acids and bioactive compounds of pigmented rice as affected by far-infrared radiation and hot air drying. Food Chem. 2020, 306, 125644. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, Y.; Zhu, Z.; Wang, Y.; Zeng, Z.; Liu, C. Comparative study on physicochemical and nutritional properties of black rice influenced by superheated steam, far infrared radiation, and microwave treatment. Innov. Food Sci. Emerg. 2023, 84, 103282. [Google Scholar] [CrossRef]
- Yao, L.; Fan, L.; Duan, Z. Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices. Food Chem. 2020, 305, 125477. [Google Scholar] [CrossRef]
- Kim, C.; Kim, B.; Kim, C.; Baek, J.; Jung, I. Variations in Ginsenosides of Raw Ginseng According to Heating Temperature and Time. J. Pharmacopunct. 2020, 23, 79–87. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.; Rahmat, A. Variation of the Phytochemical Constituents and Antioxidant Activities of Zingiber officinale var. rubrum Theilade Associated with Different Drying Methods and Polyphenol Oxidase Activity. Molecules 2016, 21, 780. [Google Scholar] [CrossRef]
- Kossah, R.; Zhang, H.; Chen, W. Antimicrobial and antioxidant activities of Chinese sumac (Rhus typhina L.) fruit extract. Food Control 2011, 22, 128–132. [Google Scholar] [CrossRef]
- Lim, Y.J.; Kwon, S.J.; Qu, S.; Kim, D.G.; Eom, S.H. Antioxidant contributors in seed, seed coat, and cotyledon of γ-ray-induced soybean mutant lines with different seed coat colors. Antioxidants 2021, 10, 353. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Nutr. Diet. 1986, 44, 307–315. [Google Scholar]
- Hwang, I.G.; Kim, H.Y.; Joung, E.M.; Woo, K.S.; Jeong, J.H.; Yu, K.W.; Lee, J.; Jeong, H.S. Changes in ginsenosides and antioxidant activity of Korean ginseng (Panax ginseng C.A. Meyer) with Heating Temperature and Pressure. Food Sci. Biotechnol. 2010, 19, 941–949. [Google Scholar] [CrossRef]
- Jeong, H.; Park, D.; Seo, H.; Choi, M.; Cho, Y. Effect of Roasting Time and Cryogenic Milling on the Physicochemical Characteristics of Dried Ginseng Powder. Foods 2020, 9, 223. [Google Scholar] [CrossRef]
- Yu, J.; Jang, I.; Moon, J.; Jang, I.; Kim, Y.; Kim, D.; Suh, S. Change of Proximate Composition, Antioxidant Activity, and Ginsenoside Content of White Ginseng with Different Roasting Conditions. Korean J. Med. Crop Sci. 2022, 30, 1–11. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, C.; Lo, Y.M.; Moon, B. The Hypoglycemic Effects of American Red Ginseng (Panax quinquefolius L.) on a Diabetic Mouse Model. J. Food Sci. 2012, 77, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Musilova, J.; Lidikova, J.; Vollmannova, A.; Frankova, H.; Urminska, D.; Bojnanska, T.; Toth, T. Influence of Heat Treatments on the Content of Bioactive Substances and Antioxidant Properties of Sweet Potato (Ipomoea batatas L.) Tubers. J. Food Quality 2020, 2020, 8856260. [Google Scholar] [CrossRef]
- Escobedo, R.; Miranda, R.; Martínez, J. Infrared irradiation: Toward green chemistry, a review. Int. J. Mol. Sci. 2016, 17, 453. [Google Scholar] [CrossRef]
- Qian, Z.; Lu, J.; Gao, Q.; Li, S. Rapid method for simultaneous determination of flavonoid, saponins and polyacetylenes in Folium Ginseng and Radix Ginseng by pressurized liquid extraction and high-performance liquid chromatography coupled with diode array detection and mass spectrometry. J. Chromatogr. A 2009, 1216, 3825–3830. [Google Scholar] [CrossRef]
- Nasanbat, B.; Uchiyama, A.; Amalia, S.N.; Inoue, Y.; Yokoyama, Y.; Ogino, S.; Torii, R.; Hosoi, M.; Motegi, S.I. Kaempferol therapy improved MC903 induced-atopic dermatitis in a mouse by suppressing TSLP, oxidative stress, and type 2 inflammation. J. Dermatol. Sci. 2023, 111, 93–100. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X.; Yu, X.; Yao, Y.; Ren, G. Evaluation of antibacterial and anti-inflammatory activities of less polar ginsenosides produced from polar ginsenosides by heat-transformation. J. Agric. Food Chem. 2013, 61, 12274–12282. [Google Scholar] [CrossRef]
- Murugesan, M.; Mathiyalagan, R.; Boopathi, V.; Kong, B.M.; Choi, S.K.; Lee, C.S.; Yang, D.C.; Kang, S.C.; Thambi, T. Production of minor ginsenoside CK from major ginsenosides by biotransformation and its advances in targeted delivery to tumor tissues using nanoformulations. Nanomaterials 2022, 12, 3427. [Google Scholar] [CrossRef]
- Li, X.; Li, F.; Pei, W.; Yang, J.; Gu, Y.; Piao, X. The Content and Principle of the Rare Ginsenosides Produced from Gynostemma pentaphyllum after Heat Treatment. Molecules 2023, 28, 6415. [Google Scholar] [CrossRef]
- Ye, X.; Li, C.; Zhang, H.; Li, Q.; Cheng, S.; Wen, J.; Wang, X.; Ren, H.; Xia, L.; Wang, X.; et al. Saponins of ginseng products: A review of their transformation in processing. Front. Pharmacol. 2023, 14, 1177819. [Google Scholar] [CrossRef]
- Park, E.H.; Kim, Y.J.; Yamabe, N.; Park, S.H.; Kim, H.K.; Jang, H.J.; Kim, J.H.; Cheon, G.J.; Ham, J.; Kang, K.S. Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell. J. Ginseng Res. 2014, 38, 22–27. [Google Scholar] [CrossRef]
- Pu, J.; Ramadhania, Z.; Mathiyalagan, R.; Huo, Y.; Han, Y.; Li, J.; Ahn, J.; Xu, F.; Lee, D.; Zeng, X.; et al. Ginsenosides Conversion and Anti-Oxidant Activities in Puffed Cultured Roots of Mountain Ginseng. Processes 2021, 9, 2271. [Google Scholar] [CrossRef]
- Kim, G. Changes of Ginsenoside Compositions in Cultivated Wild Ginseng with Different Steaming Temperatures and Time. J. East Asian Soc. Diet. Life 2023, 33, 415–421. [Google Scholar] [CrossRef]
- Yoo, S.; Park, B.I.; Kim, D.H.; Lee, S.; Lee, S.H.; Shim, W.S.; Seo, Y.K.; Kang, K.; Lee, K.T.; Yim, S.V. Ginsenoside Absorption rate and extent enhancement of black ginseng (CJ EnerG) over red ginseng in healthy adults. Pharmaceutics 2021, 13, 487. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.J.; Kim, H.D.; Lee, E.S.; Jang, G.Y.; Seong, H.A. Heat Treatment Enhances the Neuroprotective Effects of Crude Ginseng Saponin by Increasing Minor Ginsenosides. Int. J. Mol. Sci. 2023, 24, 7223. [Google Scholar] [CrossRef] [PubMed]
- Park, S.E.; Na, C.S.; Yoo, S.A.; Seo, S.H.; Son, H.S. Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. J. Ginseng Res. 2017, 41, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Jeon, S.J.; Youn, S.J.; Lee, H.; Park, Y.J.; Kim, D.O.; Kim, B.Y.; Kim, W.; Baik, M.Y. Enhancement of minor ginsenosides contents and antioxidant capacity of american and canadian ginsengs (Panax quinquefolius) by puffing. Antioxidants 2019, 8, 527. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Jeong, S.M.; Kim, S.Y.; Park, H.R.; Nam, K.; Ahn, D. Effect of far-infrared radiation and heat treatment on the antioxidant activity of water extracts from peanut hulls. Food Chem. 2006, 94, 489–493. [Google Scholar] [CrossRef]
- Azad, M.O.K.; Piao, J.P.; Park, C.H.; Cho, D.H. Far infrared irradiation enhances nutraceutical compounds and antioxidant properties in Angelica gigas Nakai powder. Antioxidants 2018, 7, 189. [Google Scholar] [CrossRef] [PubMed]
Ginsenoside (mg/g) | FIR Treatment (°C) | |||||
---|---|---|---|---|---|---|
Con | FIR-160 | FIR-170 | FIR-180 | FIR-190 | FIR-200 | |
Rb1 | 7.88 ± 0.03 a | 6.54 ± 0.05 b | 5.91 ± 0.08 c | 4.86 ± 0.04 d | 2.82 ± 0.02 e | 2.12 ± 0.02 f |
Rb2 | 12.75 ± 0.03 a | 11.69 ± 0.03 b | 11.11 ± 0.05 c | 10.13 ± 0.03 d | 5.43 ± 0.02 e | 4.10 ± 0.02 f |
Rb3 | 48.25 ± 0.05 a | 43.53 ± 0.06 b | 40.65 ± 0.05 c | 30.33 ± 0.04 d | 17.46 ± 0.02 e | 12.70 ± 0.02 f |
Rc | 4.71 ± 0.03 a | 4.34 ± 0.04 b | 4.11 ± 0.04 c | 3.60 ± 0.05 d | 2.18 ± 0.02 e | 1.70 ± 0.02 f |
Rd | 31.73 ± 0.03 a | 27.48 ± 0.04 b | 25.48 ± 0.05 c | 20.23 ± 0.04 d | 11.75 ± 0.02 e | 8.66 ± 0.02 f |
Rk1 | 0.02 ± 0.00 e | 0.56 ± 0.01 d | 1.20 ± 0.01 c | 2.62 ± 0.02 b | 4.46 ± 0.01 a | 4.46 ± 0.00 a |
Rg3 | 0.11 ± 0.00 e | 0.65 ± 0.03 d | 0.93 ± 0.01 c | 1.45 ± 0.02 b | 1.94 ± 0.02 a | 1.97 ± 0.01 a |
Rg5 | 0.05 ± 0.01 e | 1.81 ± 0.03 d | 3.90 ± 0.03 c | 8.21 ± 0.03 b | 13.37 ± 0.02 a | 13.38 ± 0.01 a |
Ginsenoside (mg/g) | FIR Treatment (°C) | |||||
---|---|---|---|---|---|---|
Con | FIR-160 | FIR-170 | FIR-180 | FIR-190 | FIR-200 | |
Rg1 | 8.12 ± 0.03 a | 5.47 ± 0.07 b | 5.20 ± 0.02 c | 3.99 ± 0.03 d | 2.40 ± 0.02 e | 1.79 ± 0.02 f |
Re | 29.18 ± 0.03 a | 21.47 ± 0.04 b | 19.93 ± 0.04 c | 15.15 ± 0.04 d | 8.35 ± 0.02 e | 6.05 ± 0.02 f |
Rg2 | 0.77 ± 0.01 e | 1.74 ± 0.01 b | 1.75 ± 0.03 b | 1.83 ± 0.02 a | 1.65 ± 0.01 c | 1.35 ± 0.02 d |
Rh1 | 1.36 ± 0.01 c | 1.50 ± 0.02 b | 1.76 ± 0.03 a | 0.75 ± 0.01 d | 0.61 ± 0.00 e | 0.57 ± 0.01 f |
F4 | 0.05 ± 0.00 e | 0.56 ± 0.01 d | 0.85 ± 0.01 c | 1.41 ± 0.02 b | 1.89 ± 0.00 a | 1.88 ± 0.00 a |
Rh4 | 0.03 ± 0.00 e | 0.35 ± 0.00 d | 0.54 ± 0.00 c | 0.75 ± 0.00 b | 1.07 ± 0.00 a | 1.07 ± 0.00 a |
Rg6 | 0.36 ± 0.00 f | 0.83 ± 0.01 e | 0.99 ± 0.01 d | 1.42 ± 0.01 c | 1.82 ± 0.01 a | 1.79 ± 0.01 b |
Rk3 | 0.01 ± 0.00 e | 0.12 ± 0.00 d | 0.20 ± 0.00 c | 0.38 ± 0.00 b | 0.61 ± 0.01 a | 0.60 ± 0.00 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Kim, M.; Han, R.; Liu, J.; Sun, X.; Sun, S.; Jin, C.; Cho, D. Increasing the Amounts of Bioactive Components in American Ginseng (Panax quinquefolium L.) Leaves Using Far-Infrared Irradiation. Foods 2024, 13, 607. https://doi.org/10.3390/foods13040607
Wang X, Kim M, Han R, Liu J, Sun X, Sun S, Jin C, Cho D. Increasing the Amounts of Bioactive Components in American Ginseng (Panax quinquefolium L.) Leaves Using Far-Infrared Irradiation. Foods. 2024; 13(4):607. https://doi.org/10.3390/foods13040607
Chicago/Turabian StyleWang, Xuan, Myungjin Kim, Ruoqi Han, Jiarui Liu, Xuemei Sun, Shuyang Sun, Chengwu Jin, and Dongha Cho. 2024. "Increasing the Amounts of Bioactive Components in American Ginseng (Panax quinquefolium L.) Leaves Using Far-Infrared Irradiation" Foods 13, no. 4: 607. https://doi.org/10.3390/foods13040607
APA StyleWang, X., Kim, M., Han, R., Liu, J., Sun, X., Sun, S., Jin, C., & Cho, D. (2024). Increasing the Amounts of Bioactive Components in American Ginseng (Panax quinquefolium L.) Leaves Using Far-Infrared Irradiation. Foods, 13(4), 607. https://doi.org/10.3390/foods13040607