Optimization of Microwave-Assisted Extraction Process of Total Flavonoids from Salicornia bigelovii Torr. and Its Hepatoprotective Effect on Alcoholic Liver Injury Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Experimental Animals and Grouping
2.3. Samples and Processing of S. bigelovii
2.4. Creation of Standard Curve for Rutin
2.5. Extraction and Content Determination of Total Flavonoids from S. bigelovii
2.6. Response Surface Experimental Design
2.7. The Protective Effect of Total Flavonoids from S. bigelovii on Alcoholic Liver Injury
2.7.1. Determination of Biochemical Indicators of ALT, AST, SOD, GSH-Px, and MDA in Mouse Serum
2.7.2. Analysis of Organ Coefficients and Liver Pathological Tissue Slices in Mice
2.7.3. Analysis of Expression Levels of Inflammatory Factor mRNA in Mouse Liver Tissue
2.8. Data Statistics
3. Results and Discussion
3.1. Single Factor Experiment
3.2. Box–Behnken Response Surface Test Results
3.3. Response Surface Graphic Analysis and Determination of Optimal Extraction Process Conditions
3.4. The Effects of Total Flavonoids from S. bigelovii on Serum ALT, AST, SOD, GSH-Px, and MDA in Mice with Acute Alcoholic Liver Injury
3.5. The Effect of Total Flavonoids from S. bigelovii on Liver Tissue Pathology in Mice with Alcoholic Liver Injury
3.6. The Effect of Total Flavonoids from S. bigelovii on the mRNA Expression of Inflammatory Factors in Liver Tissue of Mice with Alcoholic Liver Injury
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2010, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Alfheeaid, H.A.; Raheem, D.; Ahmed, F.; Alhodieb, F.S.; Alsharari, Z.D.; Alhaji, J.H.; BinMowyna, M.N.; Saraiva, A.; Raposo, A. Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes. Foods 2022, 11, 3402. [Google Scholar] [CrossRef] [PubMed]
- Han, E.H.; Kim, J.Y.; Kim, H.G.; Chun, H.K.; Chung, Y.C.; Jeong, H.G. Inhibitory effect of 3-caffeoyl-4-dicaffeoylquinic acid from Salicornia herbacea against phorbol ester-induced cyclooxygenase-2 expression in macrophages. Chem. Biol. Interact. 2010, 183, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Cho, J.Y.; Ma, Y.K.; Park, K.Y.; Lee, S.H.; Ham, K.S.; Lee, H.J.; Park, K.H.; Moon, J.H. Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chem. 2011, 125, 55–62. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Liu, X.F.; Shan, Y.; Guan, F.Q.; Chen, Y.; Wang, X.Y.; Wang, M.; Feng, X. Two new nortriterpenoid saponins from Salicornia bigelovii Torr. and their cytotoxic activity—ScienceDirect. Fitoterapia 2012, 83, 742–749. [Google Scholar] [CrossRef]
- Chaturvedi, V.; Kaore, S.N.; Kaore, N.; Gautam, S. Evaluation of the antimicrobial property of green tea extract and its synergistic effect on antimicrobials showing resistance in clinical isolates of a tertiary care hospital. J. Mahatma Gandhi Inst. Med. Sci. 2019, 24, 33–38. [Google Scholar]
- Lee, Y.S.; Lee, H.S.; Shin, K.H.; Kim, B.K.; Lee, S. Constituents of the Halophyte Salicornia herbacea. Arch. Pharmacal Res. 2004, 27, 1034–1036. [Google Scholar] [CrossRef]
- Arakawa, Y.; Chiji, H.; Izawa, M. Structural Elucidation of Two New Chromones Isolated from Glasswort (Salicornia europaea L.). Agric. Biol. Chem. 1983, 47, 2029–2033. [Google Scholar]
- Eganathan, P.; Subramanian, H.M.S.; Latha, R.; Rao, C.S. Oil analysis in seeds of Salicornia brachiata. Ind. Crops Prod. 2006, 23, 177–179. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Dong, G.; Shang, Y.; Lyu, Y.; Li, F.; Zhang, C.; Yu, X. The chemical composition analysis of dwarf saltwort (Salicornia bigelovii Torr.) and its preservative effects on snakehead fish fillets. J. Food Process. Preserv. 2022, 46, 16433. [Google Scholar] [CrossRef]
- Yusoff, I.M.; Mat Taher, Z.; Rahmat, Z.; Chua, L.S. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef]
- Chen, F.; Wang, B.; Zhao, G.; Liang, X.; Liu, S.; Liu, J. Optimization extraction of flavonoids from peony pods by response surface methodology, antioxidant activity and bioaccessibility in vitro. J. Food Meas. Charact. 2023, 17, 460–471. [Google Scholar] [CrossRef]
- Zhao, T.; Ding, Y.; Sun, W.; Turghun, C.; Han, B. Ultrasonic-assisted extraction of flavonoids from Nitraria sibirica leaf using response surface methodology and their anti-proliferative activity on 3T3-L1 preadipocytes and antioxidant activities. J. Food Sci. 2023, 88, 2325–2338. [Google Scholar] [CrossRef]
- Molina, G.A.; González-Fuentes, F.; Loske, A.M.; Fernández, F.; Estevez, M. Shock wave-assisted extraction of phenolic acids and flavonoids from Eysenhardtia polystachya heartwood: A novel method and its comparison with conventional methodologies. Ultrason. Sonochem. 2019, 61, 104809. [Google Scholar] [CrossRef]
- Quang, N.V.; Anh, N.N.; Thu, Q.T.M.; Vn, T.T.; Cuong, D.; Tam, N.Q.; Thuy, T.T.T. Optimization of Ultrasound-assisted Extraction of Ulvan from Green Seaweed Ulva lactuca. VNU J. Sci. Nat. Sci. Technol. 2022, 38, 70–76. [Google Scholar] [CrossRef]
- Gelik, H.; Kosar, M. Inhibitory effects of dietary flavonoids on purified hepatic NADH-cytochrome b5 reductase: Structure–activity relationships. Chem. Biol. Interact. 2012, 197, 103–109. [Google Scholar]
- Wan, L.; Jiang, J.G. Protective effects of plant-derived flavonoids on hepatic injury. J. Funct. Foods 2018, 44, 283–291. [Google Scholar] [CrossRef]
- Mandrekar, P.; Ambade, A.; Lim, A.; Szabo, G.; Catalano, D. An essential role for MCP-1 in alcoholic liver injury: Regulation of pro-inflammatory cytokines and hepatic steatosis. Hepatology 2011, 54, 2185–2197. [Google Scholar] [CrossRef] [PubMed]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef] [PubMed]
- Ghosh Dastidar, S.; Warner, J.B.; Warner, D.R.; McClain, C.J.; Kirpich, I.A. Rodent Models of Alcoholic Liver Disease: Role of Binge Ethanol Administration. Biomolecules 2018, 8, 3. [Google Scholar] [CrossRef]
- Li, J.E.; Fan, S.T.; Qiu, Z.H.; Li, C.; Nie, S.P. Total flavonoids content, antioxidant and antimicrobial activities of extracts from Mosla chinensis Maxim. cv. Jiangxiangru. LWT Food Sci. Technol. 2015, 64, 1022–1027. [Google Scholar] [CrossRef]
- Huang, D.; Wang, J.; Li, F.; Xie, M.; Qu, Q.; Wang, Y.; Sun, W.; Wu, C.; Xu, W.; Xiong, R. Optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Cortex fraxiniusing response surface methodology. Eur. J. Wood Wood Prod. 2022, 81, 685–697. [Google Scholar] [CrossRef]
- Gibson-Corley, K.N.; Olivier, A.K.; Meyerholz, D.K. Principles for Valid Histopathologic Scoring in Research. Vet. Pathol. 2013, 50, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Pkjpd, W.; Shahidi, F. Optimization of hexametaphosphate-assisted extraction of flaxseed proteins using response surface methodology. J. Food Sci. 1996, 61, 604–607. [Google Scholar]
- Wang, L.; Yang, B.; Du, X.; Yi, C. Optimisation of supercritical fluid extraction of flavonoids from Pueraria lobata. Food Chem. 2008, 108, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Breig, S.J.M.; Luti, K.J.K. Response surface methodology: A review on its applications and challenges in microbial cultures. Mater. Today Proc. 2021, 42, 2277–2284. [Google Scholar] [CrossRef]
- Kumari, M.; Gupta, S.K. Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP)—An endeavor to diminish probable cancer risk. Sci. Rep. 2019, 9, 18339. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, J.; Zheng, J.; Shang, Y.; Yu, X. Ca2+ and ABA on the Accumulation of GABA and Flavonoids in Germinated Salicornia bigelovii Torr. under NaCl Stress. J. Food Nutr. Res. 2021, 9, 263–273. [Google Scholar] [CrossRef]
- Wen, B.; Zhang, C.; Zhou, J.; Zhang, Z.; Che, Q.; Cao, H.; Bai, Y.; Guo, J.; Su, Z. Targeted treatment of alcoholic liver disease based on inflammatory signalling pathways. Pharmacol. Ther. 2021, 222, 107752. [Google Scholar] [CrossRef]
- Govindan, S.; Jayabal, A.; Shanmugam, J.; Ramani, P. Antioxidant and hepatoprotective effects of Hypsizygus ulmarius polysaccharide on alcoholic liver injury in rats. Food Sci. Hum. Wellness 2021, 10, 523–535. [Google Scholar] [CrossRef]
- Cai, Z.; Song, L.; Qian, B.; Xu, W.; Oey, I. Understanding the effect of anthocyanins extracted from purple sweet potatoes on alcohol-induced liver injury in mice. Food Chem. 2018, 245, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Herbert, T.; Alexander, R.M.; Szabo, G. Interleukin-1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 2016, 64, 955–965. [Google Scholar]
- Prystupa, A.; Kicinski, P.; Sak, J.; Boguszewska-Czubara, A.; Torun-Jurkowska, A.; Zaluska, W. Proinflammatory Cytokines (IL-1 alpha, IL-6) and Hepatocyte Growth Factor in Patients with Alcoholic Liver Cirrhosis. Gastroenterol. Res. Pract. 2015, 2015, 532615. [Google Scholar] [CrossRef] [PubMed]
Factors | Low | Center | High |
---|---|---|---|
Liquid to material ratio (mL/g, A) | −1 (25) | 0 (30) | 1 (35) |
Ethanol concentration (%, B) | −1 (50) | 0 (60) | 1 (70) |
Extraction temperature (°C, C) | −1 (40) | 0 (50) | 1 (60) |
Extraction power (W, D) | −1 (200) | 0 (250) | 1 (300) |
Run | Independent Variable | Response (Flavonoids Extraction Rate (%)) | |||
---|---|---|---|---|---|
A | B | C | D | ||
Liquid-to-Material Ratio (v/v%) | Ethanol Concentration (%) | Extraction Temperature (°C) | Extraction Power (W) | ||
1 | 25 | 50 | 50 | 250 | 4.72 |
2 | 35 | 50 | 50 | 250 | 4.50 |
3 | 25 | 70 | 50 | 250 | 4.14 |
4 | 35 | 70 | 50 | 250 | 4.61 |
5 | 30 | 60 | 40 | 200 | 4.84 |
6 | 30 | 60 | 60 | 200 | 4.78 |
7 | 30 | 60 | 40 | 300 | 4.87 |
8 | 30 | 60 | 60 | 300 | 4.72 |
9 | 25 | 60 | 50 | 200 | 4.62 |
10 | 35 | 60 | 50 | 200 | 4.50 |
11 | 25 | 60 | 50 | 300 | 4.24 |
12 | 35 | 60 | 50 | 300 | 4.95 |
13 | 30 | 50 | 40 | 250 | 4.51 |
14 | 30 | 70 | 40 | 250 | 4.65 |
15 | 30 | 50 | 60 | 250 | 4.72 |
16 | 30 | 70 | 60 | 250 | 4.22 |
17 | 25 | 60 | 40 | 250 | 4.19 |
18 | 35 | 60 | 40 | 250 | 4.87 |
19 | 25 | 60 | 60 | 250 | 4.75 |
20 | 35 | 60 | 60 | 250 | 4.60 |
21 | 30 | 50 | 50 | 200 | 4.86 |
22 | 30 | 70 | 50 | 200 | 4.89 |
23 | 30 | 50 | 50 | 300 | 4.65 |
24 | 30 | 70 | 50 | 300 | 4.54 |
25 | 30 | 60 | 50 | 250 | 5.61 |
26 | 30 | 60 | 50 | 250 | 5.63 |
27 | 30 | 60 | 50 | 250 | 5.79 |
28 | 30 | 60 | 50 | 250 | 5.61 |
29 | 30 | 60 | 50 | 250 | 5.83 |
Primer Name | Forward Primer Sequence (5′ to 3′) | Reverse Primer Sequence (5′ to 3′) |
---|---|---|
β-actin | GTCGTACCACAGGCATTGTGATGG | GCAATGCCTGGGTACATGGTGG |
IL-1 β | CTCGTGCTGTCGGACCCAT | CAGGCTTGTGCTCTGCTTGTGA |
IL-6 | TTCCATCCAGTTGCCTTCTT | CAGAATTGCCATTGCACAAC |
TNF-α | CTTCCAGAACTCCAGGCGGT | CACTTGGTGGTTTGCTACGACG |
Parameter | Sun of Squares | Degree of Freedom | Mean Square Error | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 5.69 | 14 | 0.41 | 23.39 | <0.0001 | *** |
A | 0.078 | 1 | 0.078 | 4.48 | 0.0527 | |
B | 0.069 | 1 | 0.069 | 3.97 | 0.0662 | |
C | 9.677 × 10−3 | 1 | 9.677 × 10−3 | 0.56 | 0.4679 | |
D | 0.15 | 1 | 0.15 | 8.57 | 0.0510 | |
AB | 0.12 | 1 | 0.12 | 6.85 | 0.0203 | * |
AC | 0.17 | 1 | 0.17 | 9.66 | 0.0077 | ** |
AD | 0.30 | 1 | 0.30 | 17.32 | 0.0010 | *** |
BC | 0.10 | 1 | 0.10 | 5.89 | 0.0293 | * |
BD | 4.900 × 10−3 | 1 | 4.900 × 10−3 | 0.28 | 0.6038 | |
CD | 3.720 × 10−3 | 1 | 3.720 × 10−3 | 0.21 | 0.6508 | |
A2 | 1.89 | 1 | 1.89 | 108.78 | <0.0001 | *** |
B2 | 2.40 | 1 | 2.40 | 137.90 | <0.0001 | *** |
C2 | 1.62 | 1 | 1.62 | 93.05 | <0.0001 | *** |
D2 | 0.67 | 1 | 0.67 | 38.67 | <0.0001 | *** |
Residual value | 0.24 | 14 | 0.017 | |||
Lack of fit | 0.19 | 10 | 0.019 | 1.28 | 0.4382 | |
Pure error | 0.058 | 2 | 0.014 | |||
Sum | 5.94 | 28 | ||||
R2 | 0.9590 | |||||
RAdj2 | 0.9180 |
Group | ALT (U·L−1) | AST (U·L−1) | SOD (U/mg pro) | GSH-Px (U/mg pro) | MDA (μmol/mg pro) |
---|---|---|---|---|---|
Control | 27.36 ± 12.41 | 24.81 ± 1.75 | 389.24 ± 14.43 | 561.40 ± 42.36 | 5.12 ± 0.95 |
MG | 115.21 ± 13.56 ## | 112.18 ± 9.41 ## | 202.63 ± 32.14 ## | 270.23 ± 64.64 ## | 15.72 ± 2.26 ## |
PG | 46.27 ± 5.23 | 40.32 ± 16.01 | 352.23 ± 13.57 | 502.23 ± 21.32 | 7.03 ± 1.42 |
LSG | 88.17 ± 6.34 | 72.21 ± 11.35 | 251.25 ± 12.56 | 360.20 ± 51.22 | 13.18 ± 3.52 |
MSG | 71.03 ± 13.45 * | 66.92 ± 17.89 * | 300.49 ± 21.04 * | 455.11 ± 42.36 * | 9.31 ± 1.89 * |
HSG | 51.81 ± 9.89 ** | 44.34 ± 9.74 ** | 340.67 ± 26.52 ** | 481.42 ± 31.06 ** | 7.54 ± 0.96 ** |
Evaluation Project | Control | MG | PG | LSG | MSG | HSG |
---|---|---|---|---|---|---|
Liver cell necrosis | 0 | 2.67 ± 0.47 | 0.67 ± 0.24 | 1.80 ± 0.14 | 1.50 ± 0.53 | 0.80 ± 0.14 |
Liver fibrosis | 0 | 1.75 ± 0.50 | 0 | 1.29 + 0.20 | 0 | 0 |
Inflammation level | 0 | 3.25 ± 0.53 | 1.00 ± 0.00 | 2.16 ± 0.75 | 1.00 ± 0.00 | 0.60 ± 0.54 |
Bile duct injuries | 0 | 1.25 ± 0.18 | 0 | 0.71 ± 0.48 | 0 | 0 |
Total score | 0 | 8.08 ± 0.20 ## | 1.67 ± 0.24 | 5.96 ± 0.39 # | 2.50 ± 0.27 * | 1.40 ± 0.34 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Lv, J.; Fu, Y.; Shang, Y.; Liu, J.; Lyu, Y.; Wei, M.; Yu, X. Optimization of Microwave-Assisted Extraction Process of Total Flavonoids from Salicornia bigelovii Torr. and Its Hepatoprotective Effect on Alcoholic Liver Injury Mice. Foods 2024, 13, 647. https://doi.org/10.3390/foods13050647
Wang D, Lv J, Fu Y, Shang Y, Liu J, Lyu Y, Wei M, Yu X. Optimization of Microwave-Assisted Extraction Process of Total Flavonoids from Salicornia bigelovii Torr. and Its Hepatoprotective Effect on Alcoholic Liver Injury Mice. Foods. 2024; 13(5):647. https://doi.org/10.3390/foods13050647
Chicago/Turabian StyleWang, Dujun, Jing Lv, Yan Fu, Yueling Shang, Jinbin Liu, Yongmei Lyu, Ming Wei, and Xiaohong Yu. 2024. "Optimization of Microwave-Assisted Extraction Process of Total Flavonoids from Salicornia bigelovii Torr. and Its Hepatoprotective Effect on Alcoholic Liver Injury Mice" Foods 13, no. 5: 647. https://doi.org/10.3390/foods13050647
APA StyleWang, D., Lv, J., Fu, Y., Shang, Y., Liu, J., Lyu, Y., Wei, M., & Yu, X. (2024). Optimization of Microwave-Assisted Extraction Process of Total Flavonoids from Salicornia bigelovii Torr. and Its Hepatoprotective Effect on Alcoholic Liver Injury Mice. Foods, 13(5), 647. https://doi.org/10.3390/foods13050647