Potency of Dimethyl Dicarbonate on the Microbial Inhibition Growth Kinetics, and Quality of Passion Fruit (Passiflora edulis) Juice during Refrigerated Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Passion Fruit Juice Procurement and Preparation
2.2. Pathogenic Bacteria and Microbial Growth Inhibition Kinetic Model
2.3. Microbial Inhibition Growth Kinetics in PFJ
2.4. Analysis of Physicochemical Properties of PFJ Treated with DMDC
2.5. Physicochemical and Microbial Analysis of DMDC-Treated, and Pasteurized PFJ during Storage at 4 °C
2.6. Statistical Analysis
3. Results and Discussion
3.1. Efficacy of DMDC on Microbial Inhibition in PFJ
3.2. Impact of DMDC on the Antioxidant and Physicochemical Quality Changes in PFJ
3.3. Effect of DMDC (250 ppm) vs. Pasteurization on Microbial Populations in PFJ during Storage at 4 °C
3.4. Impact of DMDC (250 ppm) and Thermal Pasteurization on Physicochemical and Antioxidant Properties of PFJ during Storage at 4 °C
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Assatarakul, K.; Churey, J.J.; Manns, D.C.; Worobo, R.W. Patulin reduction in apple juice from concentrate by UV radiation and comparison of kinetic degradation models between apple juice and apple cider. J. Food Prot. 2012, 75, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Wongsa, P. Application of consumer-driven product design for development of a passion fruit drink in Thailand: A case study. In Using Food Sciences and Technology to Improve Nutrition and Promote National Development: Selected Case Studies; IUFoST: Toronto, ON, Canada, 2022; pp. 1–15. [Google Scholar]
- Viera, W.; Shinohara, T.; Samaniego, I.; Sanada, A.; Terada, N.; Ron, L.; Suárez-Tapia, A.; Koshio, K. Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador. Plants 2022, 11, 328. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, L.C.R.; Facco, E.M.P.; Salvador, M.; Flôres, S.H.; de Oliveira Rios, A. Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. J. Food Sci. Technol. 2018, 55, 2679–2691. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.M.A.; Geraldi, M.V.; Junior, M.R.M.; Silvestre, A.J.D.; Rocha, S.M. Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Res. Int. 2022, 160, 111665. [Google Scholar] [CrossRef] [PubMed]
- Sourri, P.; Tassou, C.C.; Nychas, G.E.; Panagou, E.Z. Fruit Juice Spoilage by Alicyclobacillus: Detection and Control Methods-A Comprehensive Review. Foods 2022, 11, 747. [Google Scholar] [CrossRef] [PubMed]
- Salomão, B.d.C.M. Chapter 16—Pathogens and Spoilage Microorganisms in Fruit Juice: An Overview. In Fruit Juices; Rajauria, G., Tiwari, B.K., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 291–308. [Google Scholar]
- Aghajanzadeh, S.; Ziaiifar, A.M.; Verkerk, R. Effect of thermal and non-thermal treatments on the color of citrus juice: A review. Food Rev. Int. 2021, 39, 3555–3577. [Google Scholar] [CrossRef]
- Picart-Palmade, L.; Cunault, C.; Chevalier-Lucia, D.; Belleville, M.P.; Marchesseau, S. Potentialities and Limits of Some Non-thermal Technologies to Improve Sustainability of Food Processing. Front. Nutr. 2018, 5, 130. [Google Scholar] [CrossRef]
- Santhirasegaram, V.; Razali, Z.; George, D.S.; Somasundram, C.J.F.; Processing, B. Comparison of UV-C treatment and thermal pasteurization on quality of Chokanan mango (Mangifera indica L.) juice. Food Bioprod. Process. 2015, 94, 313–321. [Google Scholar] [CrossRef]
- Assatarakul, K. Degradation kinetic models and inactivation of pathogenic microorganisms by dimethyl dicarbonate in fresh mandarin juice. J. Food Saf. 2017, 37, e12319. [Google Scholar] [CrossRef]
- Jafari, S.; Rungroj, N.; Worobo, R.W.; Assatarakul, K. Kinetic study of selected microorganisms and quality attributes during cold storage of mango and passion fruit smoothie subjected to dimethyl dicarbonate. Int. J. Food Microbiol. 2021, 358, 109404. [Google Scholar] [CrossRef]
- Jafari, S.; Pongsarn, K.; Srestasupana, C.; Wetchasart, N.; Assatarakul, K. Kinetic study of microbial inhibition by dimethyl dicarbonate and quality attributes of pomegranate juice during cold storage. LWT 2021, 152, 112309. [Google Scholar] [CrossRef]
- Gouma, M.; Gayán, E.; Raso, J.; Condón, S.; Álvarez, I. Influence of dimethyl dicarbonate on the resistance of Escherichia coli to a combined UV-Heat treatment in apple juice. Front. Microbiol. 2015, 6, 501. [Google Scholar] [CrossRef] [PubMed]
- Swapnil Patil, S.G.; Ahlawat, D. Effect of dimethyl dicarbonate (DMDC) on survival of microbial activity in beverages. Int. J. Eng. Sci. Res. Technol. 2015, 4, 476–480. [Google Scholar]
- Luesuwan, S.; Naradisorn, M.; Shiekh, K.A.; Rachtanapun, P.; Tongdeesoontorn, W. Effect of Active Packaging Material Fortified with Clove Essential Oil on Fungal Growth and Post-Harvest Quality Changes in Table Grape during Cold Storage. Polymers 2021, 13, 3445. [Google Scholar] [CrossRef] [PubMed]
- Kantala, C.; Supasin, S.; Intra, P.; Rattanadecho, P. Evaluation of Pulsed Electric Field and Conventional Thermal Processing for Microbial Inactivation in Thai Orange Juice. Foods 2022, 11, 1102. [Google Scholar] [CrossRef] [PubMed]
- Vongluanngam, I.; Tocharoenvanith, N.; Assatarakul, K. Inactivation kinetic of selected pathogens of coconut water by dimethyl dicarbonate and microbial shelf life during cold storage. J. Food Process. Preserv. 2021, 45, e15229. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Hossain, M.B.; Brunton, N.; Lyng, J.; Valverde, J.; Rai, D.K. Pulsed electric fields pre-treatment of carrot purees to enhance their polyacetylene and sugar contents. Innov. Food Sci. Emerg. Technol. 2014, 23, 79–86. [Google Scholar] [CrossRef]
- Jafari, S.; Thongmat, K.; Kijpatanasilp, I.; Kerdsup, P.; Naknaen, P.; Taweechotipatr, M.; Assatarakul, K. Phenolic compound profile of probiotic (Lacticaseibacillus rhamnosus LR5) fortified vegetable tablet and probiotic survival in the simulated gastrointestinal tract. Sci. Rep. 2022, 12, 1014. [Google Scholar] [CrossRef]
- Zhu, Y.; Koutchma, T.; Warriner, K.; Zhou, T. Reduction of patulin in apple juice products by UV light of different wavelengths in the UVC range. J. Food Prot. 2014, 77, 963–971. [Google Scholar] [CrossRef]
- Panikov, N. Microbial growth dynamics. In Comprehensive Biotechnology, 2nd ed.; Elsevier B.V.: Oxford, UK, 2011; pp. 257–283. [Google Scholar]
- Ren, S.; Giusti, M. The effect of whey protein concentration and preheating temperature on the color and stability of purple corn, grape and black carrot anthocyanins in the presence of ascorbic acid. Food Res. Int. 2021, 144, 110350. [Google Scholar] [CrossRef]
- Insang, S.; Kijpatanasilp, I.; Jafari, S.; Assatarakul, K. Ultrasound-assisted extraction of functional compound from mulberry (Morus alba L.) leaf using response surface methodology and effect of microencapsulation by spray drying on quality of optimized extract. Ultrason. Sonochem. 2021, 82, 105806. [Google Scholar] [CrossRef]
- Lu, W.; Shi, Y.; Wang, R.; Su, D.; Tang, M.; Liu, Y.; Li, Z. Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. Int. J. Mol. Sci. 2021, 22, 4945. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Pathy, K.S. Process for Preparation of Vitamin C and Method for Determination of Vitamin C in Tablets. Surg. Case Stud. Open Access J. 2018, 1. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Xu, Y.; Wu, J.; Xiao, G. Effect of treatment with dimethyl dicarbonate on microorganisms and quality of Chinese cabbage. Postharvest Biol. Technol. 2013, 76, 139–144. [Google Scholar] [CrossRef]
- Kaddumukasa, P.P.; Imathiu, S.M.; Mathara, J.M.; Nakavuma, J.L. Influence of physicochemical parameters on storage stability: Microbiological quality of fresh unpasteurized fruit juices. Food Sci. Nutr. 2017, 5, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- De Farias Silva, C.; Silva, I.; Abud, A.K. Acidulants in Tropical Fruit Pulp: Physicochemical and Sensory Changes. Chem. Eng. Trans. 2015, 44, 109–114. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, J.; Xu, Y.; Xiao, G.; Zou, B. Effect of high pressure homogenization and dimethyl dicarbonate (DMDC) on microbial and physicochemical qualities of mulberry juice. J. Food Sci. 2016, 81, M702–M708. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Mena, A.; Ochoa-Martínez, L.A.; González-Herrera, S.M.; Rutiaga-Quiñones, O.M.; González-Laredo, R.F.; Olmedilla-Alonso, B. Natural pigments of plant origin: Classification, extraction and application in foods. Food Chem. 2023, 398, 133908. [Google Scholar] [CrossRef]
- Sevindik Baç, H.; Yemiş, O.; Özkan, M. Thermal stabilities of lycopene and β-carotene in tomato pulp and pink grapefruit juice. J. Food Eng. 2023, 337, 111217. [Google Scholar] [CrossRef]
- Mayookha, V.P.; Pandiselvam, R.; Kothakota, A.; Padma Ishwarya, S.; Chandra Khanashyam, A.; Kutlu, N.; Rifna, E.J.; Kumar, M.; Panesar, P.S.; Abd El-Maksoud, A.A. Ozone and cold plasma: Emerging oxidation technologies for inactivation of enzymes in fruits, vegetables, and fruit juices. Food Control 2023, 144, 109399. [Google Scholar] [CrossRef]
- Yu, Y.; Xiao, G.; Xu, Y.; Wu, J.; Wen, J. Effects of Dimethyl Dicarbonate (DMDC) on the Fermentation of Litchi Juice by Lactobacillus Casei as an Alternative of Heat Treatment. J. Food Sci. 2014, 79, M947–M954. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, J.; Xiao, G.; Xu, Y.; Tang, D.; Chen, Y.; Zhang, Y. Combined Effect of Dimethyl Dicarbonate (DMDC) and Nisin on Indigenous Microorganisms of Litchi Juice and its Microbial shelf life. J. Food Sci. 2013, 78, M1236–M1241. [Google Scholar] [CrossRef]
- Perricone, M.; Gallo, M.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Chapter 5—Yeasts. In The Microbiological Quality of Food; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; Woodhead Publishing: Thorston, UK, 2017; pp. 121–131. [Google Scholar]
- Lan, T.; Bao, S.; Wang, J.; Ge, Q.; Zhang, H.; Yang, W.; Sun, X.; Ma, T. Shelf life of non-industrial fresh mango juice: Microbial safety, nutritional and sensory characteristics. Food Biosci. 2021, 42, 101060. [Google Scholar] [CrossRef]
- Cortes, C.; Esteve, M.J.; Frigola, A. Effect of refrigerated storage on ascorbic acid content of orange juice treated by pulsed electric fields and thermal pasteurization. Eur. Food Res. Technol. 2007, 227, 629–635. [Google Scholar] [CrossRef]
- Porto, M.R.A.; Okina, V.S.; Pimentel, T.C.; Prudencio, S. Physicochemical stability, antioxidant activity, and acceptance of beet and orange mixed juice during refrigerated storage. Beverages 2017, 3, 36. [Google Scholar] [CrossRef]
- Mgaya-Kilima, B.; Remberg, S.F.; Chove, B.E.; Wicklund, T. Physiochemical and antioxidant properties of roselle-mango juice blends; effects of packaging material, storage temperature and time. J. Food Sci. Nutr. 2015, 3, 100–109. [Google Scholar] [CrossRef]
- Moon, K.; Kwon, E.-B.; Lee, B.; Kim, C.Y. Recent Trends in Controlling the Enzymatic Browning of Fruit and Vegetable Products. Molecules 2020, 25, 2754. [Google Scholar] [CrossRef]
- Hu, Y.-H.; Wang, C.-Y.; Chen, B.-Y. Effects of high-pressure processing and thermal pasteurization on quality and microbiological safety of jabuticaba (Myrciaria cauliflora) juice during cold storage. J. Food Sci. Technol. 2020, 57, 3334–3344. [Google Scholar] [CrossRef]
Microorganism | Zero-Order Model | First-Order Model | ||
---|---|---|---|---|
Rate Constant (k0) | Coefficient of Determination (R2) | Rate Constant (k1) | Coefficient of Determination (R2) | |
Total viable count | 1529.80 | 0.50 | 0.04 | 0.99 |
Yeast and mold | 361.52 | 0.64 | 0.03 | 0.98 |
E. coli | 756.73 | 0.50 | 0.03 | 0.98 |
Sample Analysis | DMDC Concentration (ppm) | |||||
---|---|---|---|---|---|---|
0 | 50 | 100 | 150 | 200 | 250 | |
pH ns | 3.00 ± 0.01 | 3.00 ± 0.03 | 3.00 ± 0 01 | 3.01 ± 0.01 | 3.00 ± 0.01 | 3.00 ± 0.32 |
°Brix ns | 8.13 ± 0.18 | 8.25 ± 0.35 | 8.13 ± 0 18 | 8.25 ± 0.35 | 8.25 ± 0.35 | 8.13 ± 0.18 |
Color values | ||||||
L* ns | 52.07 ± 0.21 | 52.01 ± 0.18 | 52.01 ± 0.19 | 52.22 ± 0.15 | 52.30 ± 0.21 | 52.50 ± 0.01 |
a* ns | −1.44 ± 0.04 | −1.38 ± 0.06 | −1.39 ± 0.08 | −1.52 ± 0.04 | −1.43 ± 0.06 | −1.46 ± 0.01 |
b* ns | 39.18 ± 0.62 | 39.39 ± 0.18 | 39.41 ± 0.12 | 39.30 ± 0.23 | 39.66 ± 0.01 | 39.83 ± 0.11 |
Ascorbic acid ns | 50.32 ± 0.01 | 49.19 ± 0.01 | 50.99 ± 0.09 | 49.86 ± 0.06 | 49.41 ± 0.35 | 48.51 ± 0.60 |
TPC ns | 645.79 ± 0.20 | 644.32 ± 0.40 | 647.62 ± 0.01 | 644.69 ± 0.56 | 644.69 ± 0.84 | 642.86 ± 0.91 |
TFC ns | 882.18 ± 0.05 | 879.38 ± 0.20 | 877.14 ± 0.43 | 880.50 ± 0.76 | 880.50 ± 0.83 | 879.94 ± 0.11 |
DPPH ns | 108.83 ± 0.24 | 114.67 ± 0.21 | 108 ± 0.16 | 107.17 ± 0.34 | 107.17 ± 0.39 | 105.92 ± 0.54 |
FRAP ns | 180.28 ± 0.37 | 181.11 ± 0.29 | 180 ± 0.18 | 177.78 ± 0.56 | 180.56 ± 0.09 | 178.33 ± 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiekh, K.A.; Noieaid, A.; Gadpoca, P.; Sermwiwatwong, S.; Jafari, S.; Kijpatanasilp, I.; Worobo, R.W.; Assatarakul, K. Potency of Dimethyl Dicarbonate on the Microbial Inhibition Growth Kinetics, and Quality of Passion Fruit (Passiflora edulis) Juice during Refrigerated Storage. Foods 2024, 13, 719. https://doi.org/10.3390/foods13050719
Shiekh KA, Noieaid A, Gadpoca P, Sermwiwatwong S, Jafari S, Kijpatanasilp I, Worobo RW, Assatarakul K. Potency of Dimethyl Dicarbonate on the Microbial Inhibition Growth Kinetics, and Quality of Passion Fruit (Passiflora edulis) Juice during Refrigerated Storage. Foods. 2024; 13(5):719. https://doi.org/10.3390/foods13050719
Chicago/Turabian StyleShiekh, Khursheed Ahmad, Akaranaj Noieaid, Poke Gadpoca, Supassorn Sermwiwatwong, Saeid Jafari, Isaya Kijpatanasilp, Randy W. Worobo, and Kitipong Assatarakul. 2024. "Potency of Dimethyl Dicarbonate on the Microbial Inhibition Growth Kinetics, and Quality of Passion Fruit (Passiflora edulis) Juice during Refrigerated Storage" Foods 13, no. 5: 719. https://doi.org/10.3390/foods13050719
APA StyleShiekh, K. A., Noieaid, A., Gadpoca, P., Sermwiwatwong, S., Jafari, S., Kijpatanasilp, I., Worobo, R. W., & Assatarakul, K. (2024). Potency of Dimethyl Dicarbonate on the Microbial Inhibition Growth Kinetics, and Quality of Passion Fruit (Passiflora edulis) Juice during Refrigerated Storage. Foods, 13(5), 719. https://doi.org/10.3390/foods13050719