Analysis of Bioactive Aroma Compounds in Essential Oils from Algerian Plants: Implications for Potential Antioxidant Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples
2.3. Sample Preparation
2.4. HS-SPME-GC-O-MS Conditions
2.5. Optimization of HS-SPME-GC-O-MS Conditions
2.6. Sensory Analysis
2.7. Qualitative Analysis
2.8. Semi-Quantitative Analysis
2.9. Odor Activity Values (OAVs)
2.10. Antioxidant Activity
2.10.1. Generator of Hydroxyl (OH·) Radicals
2.10.2. Diphenylpicrylhydrazyl (DPPH)
2.10.3. Oxygen Radical Absorbance Capacity (ORAC)
2.11. Statistics
3. Results and Discussion
3.1. Qualitative and Semi-Quantitative Analysis
No | Compound | Ret. Index (RI) | Concentration (μg/g) | |||
---|---|---|---|---|---|---|
Calc. | Adams (** NIST) | AC | AHA | SJ | ||
1 | 1,2,5,5-tetramethyl-1,3-cyclopentadiene | 839 | 835** | 2.42 ± 0.07 | ||
2 | santolina triene | 918 | 906 | 8.11 ± 0.49 | ||
3 | tricyclene | 931 | 921 | 3.93 ± 0.04 | 7.37 ± 0.73 | |
4 | alpha-pinene | 946 | 932 | 110.21 ± 0.54 | 20.65 ± 0.82 | 119.18 ± 4.09 |
5 | camphene | 966 | 946 | 4.60 ± 0.55 | 59.20 ± 2.07 | |
6 | beta-thujene | 986 | 966 ** | 5.23 ± 1.21 | ||
7 | beta-pinene | 989 | 974 | 71.46 ± 1.39 | 16.96 ± 0.35 | 8.66 ± 0.13 |
8 | beta-myrcene | 1014 | 988 (994 **) | 56.66 ± 2.70 | 28.63 ± 1.71 | |
9 | (1S)-beta-pinene | 1007 | 989 ** | 126.55 ± 4.21 | ||
10 | 4-carene | 973 | 993 ** | 205.55 ± 3.33 | ||
11 | mesitylene | 1005 | 994 | 26.32 ± 1.28 | ||
12 | psi-limonene | 1027 | 1010 ** | 7.75 ± 0.90 | ||
13 | 1,2,4-trimethylbenzene | 1017 | 1021 | 14.78 ± 1.62 | ||
14 | eucalyptol | 1055 | 1035 ** | 138.59 ± 0.16 | 18.64 ± 0.76 | |
15 | limonene | 1055 | 1044 ** | 288.88 ± 11.17 | ||
16 | 1,5-dimethyl-1,5-cyclooctadiene | 1059 | 1047 ** | 23.42 ± 1.24 | ||
17 | trans-beta-ocimene | 1066 | 1052 ** | 71.13 ± 2.61 | ||
18 | gamma-terpinene | 1053 | 1054 | 112.49 ± 1.08 | 16.46 ± 1.95 | |
19 | beta-terpinene | 1076 | 1056 ** | 20.26 ± 1.03 | 10.13 ± 0.16 | |
20 | alpha-ocimene | 1077 | 1057 ** | 34.27 ± 0.98 | ||
21 | terpinolene | 1110 | 1086 (1090 **) | 2.39 ± 0.26 | 4.97 ± 1.37 | |
22 | isoterpinolene | 1095 | 1090 ** | 1.41 ± 0.25 | ||
23 | 2-isopropyl-5-methyl-2-hexenal | 1089 | 1100 ** | 52.27 ± 8.91 | 53.83 ± 1.98 | |
24 | perillene | 1120 | 1102 | 3.34 ± 0.16 | <LOD | |
25 | cis-p-menth-2-en-1-ol | 1088 | 1106 ** | 22.32 ± 3.89 | ||
26 | filifolone | 1123 | 1107 ** | 2.40 ± 0.96 | ||
27 | p-xylene | 1102 | 1110 ** | 29.71 ± 2.97 | ||
28 | 3,4-dimethylbenzyl alcohol | 1109 | 1113 ** | 20.89 ± 2.26 | ||
29 | (E,E)-allo-ocimene | 1103 | 1121 ** | 8.86 ± 1.21 | ||
30 | allo-ocimene | 1106 | 1128 (1113 **) | 24.44 ± 1.91 | ||
31 | 3,4-dimethyl-2,4,6-octatriene | 1125 | 1131 ** | 6.00 ± 0.17 | ||
32 | cosmene | 1136 | 1130 ** | 1.35 ± 0.31 | ||
33 | (E)-2,6-dimethyl-1,3,5,7-octatetraene | 1140 | 1134 ** | 1.26 ± 0.38 | ||
34 | trans-pinocarveol | 1163 | 1135 (1155 **) | 9.72 ± 0.11 | ||
35 | camphor | 1167 | 1141 (1161 **) | 1.64 ± 0.15 | 391.27 ± 4.43 | 388.82 ± 13.09 |
36 | (E)-2-nonenal | 1175 | 1157 (1166 **) | 1.73 ± 0.14 | ||
37 | 3-thujanone | 1148 | 1158 ** | 15.17 ± 1.99 | 309.04 ± 2.76 | 3.47 ± 0.01 |
38 | p-mentha-1,5-dien-8-ol | 1186 | 1166 | 1.81 ± 0.58 | ||
39 | albene | 1179 | 1167 ** | 1.90 ± 0.24 | ||
40 | 3-thujen-2-one | 1191 | 1171 | 4.97 ± 0.63 | ||
41 | alpha-terpineol | 1210 | 1186 (1190 **) | 2.59 ± 0.77 | 45.19 ± 1.71 | |
42 | L-alpha-terpineol | 1211 | 1192 ** | 4.78 ± 0.58 | ||
43 | eucarvone | 1219 | 1199 ** | 2.29 ± 0.14 | 16.39 ± 3.49 | |
44 | trans-dihydrocarvone | 1206 | 1200 | 11.49 ± 1.55 | ||
45 | 2-pinen-4-one | 1234 | 1204 (1214 **) | 24.45 ± 1.04 | ||
46 | isobornyl formate | 1258 | 1223 (1244 **) | 1.90 ± 0.81 | ||
47 | (Z)-2-(3,3-dimethylcyclohexylidene)ethanol | 1229 | 1225 ** | 26.98 ± 5.28 | ||
48 | cis-carveol | 1254 | 1226 (1241 **) | 2.13 ± 0.29 | ||
49 | cis-3-hexenyl-alpha-methylbutyrate | 1246 | 1229 | 10.56 ± 1.46 | ||
50 | 2-pentylcyclopentanone | 1247 | 1230 ** | 8.31 ± 0.36 | 1.92 ± 0.17 | |
51 | 6,6-dimethylcycloocta-2,4-dienone | 1240 | 1230 ** | 1.99 ± 0.21 | 19.13 ± 0.71 | |
52 | bornyl formate | 1227 | 1235 | 1.98 ± 0.03 | 23.88 ± 0.44 | 42.87 ± 0.99 |
53 | (E)-2-hexenyl pentanoate | 1262 | 1243 ** | 6.23 ± 0.56 | ||
54 | 1-phenyl-but-3-en-1-ol | 1229 | 1244 ** | 4.69 ± 1.66 | ||
55 | benzaldehyde, 4-(1-methylethyl)- | 1271 | 1251 ** | 1.64 ± 0.71 | ||
56 | 2-pinen-4-on | 1251 | 1245 ** | 1.81 ± 0.25 | 13.43 ± 0.70 | 1.85 ± 0.28 |
57 | trans-2-hexenyl isovalerate | 1260 | 1245 ** | 2.08 ± 0.93 | ||
58 | cis-chrysanthenol acetate | 1290 | 1261 (1277 **) | 21.70 ± 1.49 | ||
59 | trans-carveol | 1255 | 1261 ** | 6.10 ± 0.68 | ||
60 | alpha,alpha,4-trimethyl-3-cyclohexene-1-methanethiol | 1244 | 1264 ** | 7.16 ± 0.09 | ||
61 | isobornyl acetate | 1257 | 1268 ** | 1.83 ± 0.31 | ||
62 | D-carvone | 1279 | 1270 ** | 11.60 ± 1.78 | ||
63 | hexyl n-valerate | 1258 | 1272 ** | 1.96 ± 0.10 | ||
64 | 2-isopropyl-5-methyl-3-cyclohexen-1-one | 1284 | 1275 ** | 3.26 ± 0.57 | ||
65 | (Z)-3-hexenyl valerate | 1253 | 1279 (1236 **) | 2.01 ± 0.35 | ||
66 | cumin aldehyde | 1270 | 1226 (1250 **) | 1.69 ± 0.32 | ||
67 | bornyl acetate | 1304 | 1284 | 2.41 ± 0.83 | ||
68 | cuminol | 1273 | 1284 ** | 22.97 ± 0.34 | ||
69 | trans-bornyl acetate | 1298 | 1289 ** | 7.68 ± 0.65 | ||
70 | carvacrol | 1311 | 1298 | 36.91 ± 3.85 | ||
71 | 2-ethyl-4,5-dimethyl-phenol | 1323 | 1305 ** | 3.04 ± 0.72 | ||
72 | 2-hydroxypiperitone | 1329 | 1309 ** | 3.05 ± 0.67 | ||
73 | (E)-hex-3-enyl (E)-2-methylbut-2-enoate | 1336 | 1319 ** | 4.79 ± 0.36 | ||
74 | 2,4-decadienal | 1327 | 1320 ** | 4.81 ± 0.32 | ||
75 | myrtenyl acetate | 1318 | 1324 | 2.42 ± 0.84 | ||
76 | (Z)-hex-3-enyl (E)-2-methylbut-2-enoate | 1343 | 1325 ** | 6.60 ± 0.94 | ||
77 | hexyl (E)-2-methylbut-2-enoate | 1347 | 1331 ** | 4.02 ± 0.30 | ||
78 | p-thymol | 1322 | 1332 ** | 2.45 ± 0.62 | ||
79 | (-)-dihydrocarvyl acetate | 1316 | 1335 ** | 42.91 ± 3.67 | ||
80 | 1,5,5-trimethyl-6-methylene-cyclohexene | 1355 | 1338 ** | 4.06 ± 0.27 | 5.71 ± 1.53 | |
81 | alpha-cubebene | 1357 | 1345 | 45.46 ± 5.17 | ||
82 | 3-allylguaiacol | 1365 | 1362 ** | 2.53 ± 0.03 | ||
83 | cis-chrysanthenyl propionate | 1368 | 1355 ** | 8.25 ± 1.84 | ||
84 | eugenol | 1389 | 1373 ** | 7.26 ± 0.06 | 10.28 ± 0.02 | |
85 | alpha-ylangene | 1398 | 1373 (1406 **) | 23.27 ± 2.08 | ||
86 | alpha-copaene | 1403 | 1374 (1423 **) | 44.61 ± 5.89 | 31.68 ± 1.74 | |
87 | alloaromadendrene | 1376 | 1386 ** | 12.37 ± 1.66 | ||
88 | beta-cubebene | 1362 | 1387 (1371 **) | 5.21 ± 0.63 | 5.81 ± 0.44 | |
89 | (-)-beta-bourbonene | 1407 | 1388 | 8.12 ± 1.09 | ||
90 | 3-allyl-6-methoxyphenol | 1382 | 1392 ** | 5.49 ± 1.50 | ||
91 | cyperene | 1419 | 1398 (1399 **) | 6.25 ± 0.97 | ||
92 | longifolene | 1410 | 1407 | 34.41 ± 0.76 | ||
93 | caryophyllene | 1428 | 1408 | 43.67 ± 6.64 | 57.51 ± 7.74 | |
94 | beta-ylangene | 1399 | 1419 | 20.19 ± 0.98 | ||
95 | alpha-farnesene | 1439 | 1422 ** | 3.10 ± 0.06 | 21.98 ± 1.21 | |
96 | 1,4-dimethylnapthalene | 1404 | 1424 ** | 9.36 ± 0.87 | 37.09 ± 3.78 | 7.63 ± 1.66 |
97 | 2,6-dimethylnaphthalene | 1408 | 1426 ** | 43.18 ± 9.20 | ||
98 | beta-copaene | 1432 | 1430 | 15.22 ± 2.14 | 4.08 ± 0.75 | |
99 | beta-gurjunene | 1445 | 1431 | 2.61 ± 0.11 | ||
100 | calarene | 1431 | 1432 ** | 29.35 ± 2.62 | ||
101 | trans-bergamotene | 1443 | 1432 | 15.55 ± 1.93 | ||
102 | aromandendrene | 1437 | 1436 ** | 14.49 ± 2.77 | 7.93 ± 0.41 | |
103 | cis-beta-farnesene | 1438 | 1440 | 7.53 ± 1.31 | ||
104 | alpha-neoclovene | 1438 | 1452 | 17.34 ± 3.38 | ||
105 | humulene | 1447 | 1452 | 12.7 ± 1.09 | 9.86 ± 0.56 | |
106 | beta-farnesene | 1436 | 1454 | 11.12 ± 1.50 | ||
107 | alloaromadendrene | 1450 | 1455 ** | 9.15 ± 0.44 | 2.88 ± 0.19 | |
108 | 2-epi-(E)-beta-caryophyllene | 1449 | 1463 ** | 185.37 ± 0.14 | ||
109 | cis-muurola-4(15),5-diene | 1446 | 1465 | 1.93 ± 0.40 | ||
110 | gamma-muurolene | 1430 | 1478 (1456 **) | 213.86 ± 9.78 | ||
111 | curcumene | 1517 | 1479 (1510) ** | 190.40 ± 11.99 | ||
112 | alpha-amorphene | 1503 | 1483 | 50.38 ± 4.84 | ||
113 | germacrene D | 1510 | 1484 (1490 **) | 48.05 ± 0.33 | 2.42 ± 0.79 | |
114 | isopropyl cinnamate | 1505 | 1485 ** | 6.61 ± 1.03 | ||
115 | beta-selinene | 1520 | 1489 | 25.36 ± 2.81 | 8.00 ± 0.28 | |
116 | zingiberene | 1519 | 1493 | 23.49 ± 1.19 | ||
117 | gamma-amorphene | 1511 | 1495 | 8.37 ± 0.10 | ||
118 | alpha-muurolene | 1518 | 1500 | 13.46 ± 0.55 | ||
119 | bicyclogermacrene | 1523 | 1500 | 23.31 ± 2.64 | ||
120 | beta-bisabolene | 1517 | 1505 | 13.01 ± 0.48 | ||
121 | 2-isopropyl-5-methyl-9-methylenebicyclo[4.4.0]dec-1-ene | 1528 | 1510 ** | 66.07 ± 3.21 | ||
122 | gamma-cadinene | 1523 | 1513 | 13.66 ± 0.60 | 5.02 ± 0.06 | 15.76 ± 0.33 |
123 | viridiflorene | 1503 | 1520 ** | 4.74 ± 0.53 | ||
124 | 4-ethylbenzoic acid, but-3-yn-2-yl ester | 1525 | 1521 ** | 7.02 ± 0.41 | ||
125 | sigma-cadinene | 1529 | 1524 ** | 3.11 ± 0.90 | 15.77 ± 0.54 | |
126 | zonarene | 1526 | 1528 | 15.23 ± 2.31 | ||
127 | nerolidol isomer 1 | 1544 | 1531 | 3.17 ± 0.21 | ||
128 | cubenene | 1535 | 1532 ** | 6.04 ± 0.21 | 5.20± 0.27 | |
129 | italicene ether | 1537 | 1536 | 2.53 ± 0.26 | ||
130 | alpha-cadinene | 1533 | 1537 | 5.16 ± 0.10 | ||
131 | alpha-calacorene | 1539 | 1544 | 2.56 ± 0.08 | 3.24 ± 0.21 | |
132 | nerolidol isomer 2 | 1546 | 1561 | 6.87 ± 1.42 | ||
133 | cis-3-hexenyl benzoate | 1551 | 1565 | 4.82 ± 1.32 | ||
134 | caryophyllene oxide | 1545 | 1582 (1549 **) | 4.97 ± 0.08 | ||
135 | neryl (S)-2-methylbutanoate | 1608 | 1582 | 28.90 ± 1.72 | ||
136 | caryophyllene oxide isomer 2 | 1614 | 1596 ** | <LOD | 4.10 ± 0.12 | |
137 | isoaromadendrene epoxide | 1617 | 1594 ** | 9.94 ± 0.78 | 16.43 ± 0.07 | |
138 | alpha-humulene epoxide II | 1638 | 1608 (1620 **) | 1.20 ± 0.02 | ||
139 | globulol | 1624 | 1610 ** | 7.14 ± 1.00 | ||
140 | isospathulenol | 1601 | 1621 ** | 5.85 ± 1.13 | ||
141 | trans-carvyl (E)-2-methyl-2-butenoate | 1622 | 1631 | 11.18 ± 0.21 | ||
142 | tau-cadinol | 1667 | 1638 (1660 **) | 2.28 ± 0.03 | ||
143 | isoaromadendrene epoxide | 1644 | 1639 | 3.38 ± 0.69 | ||
144 | alpha-eudesmol | 1656 | 1643 ** | 2.48 ± 0.33 | ||
145 | 7-methyl-1,8-naphthyridin-2-amine | 1626 | 1644 ** | 3.60 ± 0.20 | ||
146 | di-epi-1,10-cubenol | 1655 | 1645 | 1.19 ± 0.04 | ||
147 | cubenol | 1660 | 1651 ** | 2.47 ± 0.79 | ||
148 | alpha-cadinol | 1665 | 1652 | 1.58 ± 0.29 | ||
149 | aromadendrene oxide-(2) | 1647 | 1678 ** | 4.19 ± 0.52 | 2.25 ± 0.94 | |
150 | eudesm-7(11)-en-4-ol | 1680 | 1681 | 2.60 ± 0.95 | ||
151 | alpha-bisabolol | 1706 | 1686 | 11.54 ± 0.30 | ||
152 | 8-cedren-13-ol | 1671 | 1688 | 3.83 ± 0.20 | ||
153 | eudesm-7(11)-en-4-ol | 1684 | 1700 | 3.82 ± 0.08 |
3.2. Aroma Bioactive Fingerprint Evaluation
3.3. Antioxidant Activity
3.3.1. Generator of Hydroxyl Radicals
3.3.2. Diphenylpicrylhydrazyl (DPPH)
3.3.3. Oxygen Radical Absorbance Capacity (ORAC)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pezo, D.; Salafranca, J.; Nerín, C. Design of a Method for Generation of Gas-Phase Hydroxyl Radicals, and Use of HPLC with Fluorescence Detection to Assess the Antioxidant Capacity of Natural Essential Oils. Anal. Bioanal. Chem. 2006, 385, 1241–1246. [Google Scholar] [CrossRef]
- Bera, D.; Lahiri, D.; Nag, A. Studies on a Natural Antioxidant for Stabilization of Edible Oil and Comparison with Synthetic Antioxidants. J. Food Eng. 2006, 74, 542–545. [Google Scholar] [CrossRef]
- Cheah, P.B.; Abu Hasim, N.H. Natural Antioxidant Extract from Galangal (Alpinia Galanga) for Minced Beef. J. Sci. Food Agric. 2000, 80, 1565–1571. [Google Scholar] [CrossRef]
- De Ladrón Guevara, R.G.; González, M.; García-Meseguer, M.J.; Nieto, J.M.; Amo, M.; Varón, R. Effect of Adding Natural Antioxidants on Colour Stability of Paprika. J. Sci. Food Agric. 2002, 82, 1061–1069. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Santos, M.J.M.C.; Silva, L.K.R.; Pereira, L.C.L.; Santos, I.A.; da Silva Lannes, S.C.; da Silva, M.V. Natural Antioxidants Used in Meat Products: A Brief Review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef]
- Gutiérrez-Del-río, I.; López-Ibáñez, S.; Magadán-Corpas, P.; Fernández-Calleja, L.; Pérez-Valero, Á.; Tuñón-Granda, M.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Terpenoids and Polyphenols as Natural Antioxidant Agents in Food Preservation. Antioxidants 2021, 10, 1264. [Google Scholar] [CrossRef]
- Miller, K.S.; Krochta, J.M. Oxygen and Aroma Barrier Properties of Edible Films: A Review. Trends Food Sci. Technol. 1997, 8, 228–237. [Google Scholar] [CrossRef]
- Nerín, C.; Tovar, L.; Salafranca, J. Behaviour of a New Antioxidant Active Film versus Oxidizable Model Compounds. J. Food Eng. 2008, 84, 313–320. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.Z.; Yuan, W.Q.; Hu, J.Z.; Lv, Z.L. Application of GC × GC Coupled with TOF–MS for the Trace Analysis of Chemical Components and Exploration the Characteristic Aroma Profile of Essential Oils Obtained from Two Tree Peony Species (Paeonia Rockii and Paeonia Ostii). Eur. Food Res. Technol. 2021, 247, 2591–2608. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the Volatile Composition of Essential Oils of Some Lamiaceae Spices and the Antimicrobial and Antioxidant Activities of the Entire Oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.H. Synergistic Antioxidant and Antibacterial Advantages of Essential Oils for Food Packaging Applications. Biomolecules 2021, 11, 1267. [Google Scholar] [CrossRef]
- Márquez-Villacorta, L.; Pretell-Vásquez, C.; Hayayumi-Valdivia, M. Optimization of Edible Coating with Essential Oils in Blueberries. Cienc. E Agrotecnologia 2022, 46, e006022. [Google Scholar] [CrossRef]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential Oils as Additives in Active Food Packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Shahzad, S.; Hussain, A.; Pradhan, R.A.; Arshad, M.; Ullah, A. Current Trends in the Utilization of Essential Oils for Polysaccharide-and Protein-Derived Food Packaging Materials. Polymers 2022, 14, 1146. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.S.; Trafiałek, J.; Kolanowski, W. Edible Packaging: A Technological Update for the Sustainable Future of the Food Industry. Appl. Sci. 2023, 13, 8234. [Google Scholar] [CrossRef]
- Abidi, A.; Sebai, E.; Dhibi, M.; Alimi, D.; Rekik, M.; B’chir, F.; Maizels, R.M.; Akkari, H. Chemical Analyses and Anthelmintic Effects of Artemisia Campestris Essential Oil. Vet. Parasitol. 2018, 263, 59–65. [Google Scholar] [CrossRef]
- Bertella, A.; Benlahcen, K.; Abouamama, S.; Pinto, D.C.G.A.; Maamar, K.; Kihal, M.; Silva, A.M.S. Artemisia Herba-Alba Asso. Essential Oil Antibacterial Activity and Acute Toxicity. Ind. Crops Prod. 2018, 116, 137–143. [Google Scholar] [CrossRef]
- Bendif, H.; Boudjeniba, M.; Djamel Miara, M.; Biqiku, L.; Bramucci, M.; Caprioli, G.; Lupidi, G.; Quassinti, L.; Sagratini, G.; Vitali, L.A.; et al. Rosmarinus Eriocalyx: An Alternative to Rosmarinus Officinalis as a Source of Antioxidant Compounds. Food Chem. 2017, 218, 78–88. [Google Scholar] [CrossRef]
- Strojnik, L.; Grebenc, T.; Ogrinc, N. Species and Geographic Variability in Truffle Aromas. Food Chem. Toxicol. 2020, 142, 111434. [Google Scholar] [CrossRef]
- Turner, L.; Lignou, S.; Gawthrop, F.; Wagstaff, C. Investigating the Factors That Influence the Aroma Profile of Apium Graveolens: A Review. Food Chem. 2021, 345, 128673. [Google Scholar] [CrossRef] [PubMed]
- Villière, A.; Symoneaux, R.; Roche, A.; Eslami, A.; Perrot, N.; Le Fur, Y.; Prost, C.; Courcoux, P.; Vigneau, E.; Thomas-Danguin, T.; et al. Comprehensive Sensory and Chemical Data on the Flavor of 16 Red Wines from Two Varieties: Sensory Descriptive Analysis, HS-SPME-GC-MS Volatile Compounds Quantitative Analysis, and Odor-Active Compounds Identification by HS-SPME-GC-MS-O. Data Brief 2019, 24, 103725. [Google Scholar] [CrossRef]
- Jiang, K.; Xu, K.; Wang, J.; Meng, F.; Wang, B. Based on HS-SPME-GC-MS Combined with GC-O-MS to Analyze the Changes of Aroma Compounds in the Aging Process of Citri Reticulatae Pericarpium. Food Biosci. 2023, 54, 102798. [Google Scholar] [CrossRef]
- Gong, X.; Han, Y.; Zhu, J.C.; Hong, L.; Zhu, D.; Liu, J.H.; Zhang, X.; Niu, Y.W.; Xiao, Z.B. Identification of the Aroma-Active Compounds in Longjing Tea Characterized by Odor Activity Value, Gas Chromatography-Olfactometry, and Aroma Recombination. Int. J. Food Prop. 2017, 20, S1107–S1121. [Google Scholar] [CrossRef]
- The Institute of Food Science & Technology. IFST Guidelines for Ethical and Professional Practices for the Sensory Analysis of Foods; Institute of Food Science and Technology: London, UK, 2021. [Google Scholar]
- Acree, T.; Arn, H. Flavornet and Human Odor Space. 2004. Available online: https://www.flavornet.org/flavornet.html (accessed on 4 December 2023).
- El-Sayed, A.M. The Pherobase: Database of Pheromones and Semiochemicals. 2023. Available online: https://www.pherobase.com/kovats/kovats-calculator (accessed on 4 December 2023).
- Averbeck, M.; Schieberle, P.H. Characterisation of the Key Aroma Compounds in a Freshly Reconstituted Orange Juice from Concentrate. Eur. Food Res. Technol. 2009, 229, 611–622. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Pino, J.A.; Mesa, J. Contribution of Volatile Compounds to Mango (Mangifera Indica L.) Aroma. Flavour. Fragr. J. 2006, 21, 207–213. [Google Scholar] [CrossRef]
- Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W. The Volatile Constituents in the Peel and Pulp of a Green Thai Mango, Khieo Sawoei Cultivar (Mangifera Indica L.). Food Sci. Technol. Res. 2001, 7, 72–77. [Google Scholar] [CrossRef]
- Van Gemert, L.J. Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter: Zeist, The Netherlands, 2011. [Google Scholar]
- Giungato, P.; Di Gilio, A.; Palmisani, J.; Marzocca, A.; Mazzone, A.; Brattoli, M.; Giua, R.; de Gennaro, G. Synergistic Approaches for Odor Active Compounds Monitoring and Identification: State of the Art, Integration, Limits and Potentialities of Analytical and Sensorial Techniques. TrAC Trends Anal. Chem. 2018, 107, 116–129. [Google Scholar] [CrossRef]
- Akrami, F.; Rodríguez-Lafuente, A.; Bentayeb, K.; Pezo, D.; Ghalebi, S.R.; Nerín, C. Antioxidant and Antimicrobial Active Paper Based on Zataria (Zataria multiflora) and Two Cumin Cultivars (Cuminum cyminum). LWT Food Sci. Technol. 2015, 60, 929–933. [Google Scholar] [CrossRef]
- Bentayeb, K.; Vera, P.; Rubio, C.; Nerin, C. Adaptation of the ORAC Assay to the Common Laboratory Equipment and Subsequent Application to Antioxidant Plastic Films. Anal. Bioanal. Chem. 2009, 394, 903–910. [Google Scholar] [CrossRef]
- Lee, S.; Badieyan, S.; Bevan, D.R.; Herde, M.; Gatz, C.; Tholl, D. Herbivore-Induced and Floral Homoterpene Volatiles Are Biosynthesized by a Single P450 Enzyme (CYP82G1) in Arabidopsis. Proc. Natl. Acad. Sci. USA 2010, 107, 21205–21210. [Google Scholar] [CrossRef]
- Gonzalez-Burgos, E.; Gomez-Serranillos, M.P. Terpene Compounds in Nature: A Review of Their Potential Antioxidant Activity. Curr. Med. Chem. 2012, 19, 5319–5341. [Google Scholar] [CrossRef] [PubMed]
- Al-Wahaibi, L.H.N.; Mahmood, A.; Khan, M.; Alkhathlan, H.Z. Comparative Study on the Essential Oils of Artemisia Judaica and A. Herba-Alba from Saudi Arabia. Arab. J. Chem. 2020, 13, 2053–2065. [Google Scholar] [CrossRef]
- Benyoucef, F.; El Amine Dib, M.; Arrar, Z.; Costa, J.; Muselli, A. Synergistic Antioxidant Activity and Chemical Composition of Essential Oils from Thymus Fontanesii, Artemisia Herba-Alba and Rosmarinus Officinalis. J. Appl. Biotechnol. Rep. 2018, 5, 151–156. [Google Scholar] [CrossRef]
- Bendif, H.; Miara, M.D.; Kalboussi, Z.; Grauzdytė, D.; Povilaitis, D.; Venskutonis, P.R.; Maggi, F. Supercritical CO2 Extraction of Rosmarinus Eriocalyx Growing in Algeria: Chemical Composition and Antioxidant Activity of Extracts and Their Solid Plant Materials. Ind. Crops Prod. 2018, 111, 768–774. [Google Scholar] [CrossRef]
- Diablo Analytical Essential Oil Components by GCMS—Version 4 by Robert Adams. Available online: https://diabloanalytical.com/ms-software/essentialoilcomponentsbygcms/ (accessed on 4 December 2023).
- U.S. Secretary of Commerce on behalf of the United States of America NIST Chemistry Webbook. Available online: https://webbook.nist.gov/chemistry/ (accessed on 4 December 2023).
- Coa, V.V.; Lubes, V.; Polster, J.; de Araújo Silva, M.M.; Lubes, G. Relationship between Structure and Odor. In Food Aroma Evolution: During Food Processing, Cooking, and Aging; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Boukhalkhal, S.; Gourine, N.; Pinto, D.C.G.A.; Silva, A.M.S.; Yousfi, M. Variability of the Chemical Composition and the Antioxidant Activity of the Essential Oils of Two Subspecies of Artemisia Campestris L. Growing in Algeria. J. Food Meas. Charact. 2018, 12, 1829–1842. [Google Scholar] [CrossRef]
- Pezo, D.; Salafranca, J.; Nerín, C. Determination of the Antioxidant Capacity of Active Food Packagings by in Situ Gas-Phase Hydroxyl Radical Generation and High-Performance Liquid Chromatography-Fluorescence Detection. J. Chromatogr. A 2008, 1178, 126–133. [Google Scholar] [CrossRef]
- Rafiq, R.; Hayek, S.A.; Anyanwu, U.; Hardy, B.I.; Giddings, V.L.; Ibrahim, S.A.; Tahergorabi, R.; Kang, H.W. Antibacterial and Antioxidant Activities of Essential Oils from Artemisia Herba-Alba Asso., Pelargonium Capitatum × Radens and Laurus Nobilis l. Foods 2016, 5, 28. [Google Scholar] [CrossRef]
- Akrout, A.; Chemli, R.; Chref, I.; Hammami, M. Analysis of the Essential Oil of Artemisia Campestris L. Flavour. Fragr. J. 2001, 16, 337–339. [Google Scholar] [CrossRef]
- Selmi, S.; Rtibi, K.; Grami, D.; Hajri, A.; Hosni, K.; Marzouki, L.; Sebai, H. Antioxidant Properties of Artemisia Herba-Alba and Eucalyptus Camaldulensis Essentials Oils on Malathion-Induced Reproductive Damage in Rat. RSC Adv. 2016, 6, 110661–110673. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Kacaniova, M.; Dincheva, I.; Radoukova, T.; Semerdjieva, I.B.; Astatkie, T.; Schlegel, V. Essential Oil Composition, Antioxidant and Antimicrobial Activity of the Galbuli of Six Juniper Species. Ind. Crops Prod. 2018, 124, 449–458. [Google Scholar] [CrossRef]
- Thielmann, J.; Muranyi, P.; Kazman, P. Screening Essential Oils for Their Antimicrobial Activities against the Foodborne Pathogenic Bacteria Escherichia Coli and Staphylococcus Aureus. Heliyon 2019, 5, e01860. [Google Scholar] [CrossRef] [PubMed]
- Walch, S.G.; Tinzoh, L.N.; Zimmermann, B.F.; Stühlinger, W.; Lachenmeier, D.W. Antioxidant Capacity and Polyphenolic Composition as Quality Indicators for Aqueous Infusions of Salvia Officinalis l. (Sage Tea). Front. Pharmacol. 2011, 2, 79. [Google Scholar] [CrossRef] [PubMed]
- UNIZAR- Zaragoza University. Code of Good Research Practices of Zaragoza University. 2018. Available online: https://www.unizar.es/sites/default/files/gobierno/investigacion/code_of_good_research_practices_unizar.pdf (accessed on 4 December 2023).
No | Standard | LOD (µg/g) | Surrogate for Compounds * |
---|---|---|---|
1 | linalool | 0.047 | 1, 2, 3, 6, 7, 9, 10, 11, 24, 26, 27, 38, 39, 41, 46, 47, 48 |
2 | 1-phenyl-2-butanone | 0.046 | 4, 16, 18, 37, 40, 51 |
3 | o-xylene | 0.348 | 5 |
4 | decanol | 0.025 | 12, 15, 50 |
5 | nonanal | 0.363 | 13, 19, 35 |
6 | diethyl-methyl pyrazine | 0.086 | 17 |
7 | cumin aldehyde | 0.049 | 28, 32 |
8 | coumarin | 0.485 | 33 |
9 | geraniol | 0.126 | 31, 43 |
10 | caryophyllene oxide | 0.019 | 42, 44 |
11 | pentadecene | 0.023 | 52 |
12 | 5-methylfurfural | 0.978 | 8 |
13 | methyl benzoate | 0.032 | 14 |
14 | benzaldehyde | 0.174 | 21, 49 |
15 | (E,Z)-2,4-nonadienal | 0.098 | 22 |
16 | carvacrol | 0.032 | 25, 30, 34 |
17 | menthol | 0.115 | 20, 23 |
18 | valeric acid | 0.096 | 29 |
19 | eugenol | 0.901 | 36 |
20 | methyl eugenol | 0.193 | 45 |
No | Compound | Ret. Index (RI) Calc. | Aroma | OAV | ||
---|---|---|---|---|---|---|
AHA | AC | SJ | ||||
1 | epoxylinalool | 751 | sweet, woody | 7.83 | ||
2 | ethyl isobutyrate | 782 | sweet | 470 | ||
3 | methylbutanone | 844 | camphor | 0.025 | ||
4 | isopropyl butanoate | 848 | pungent, fruit | 2.56 | ||
5 | o-xylene | 869 | geranium | 7.00 | ||
6 | octadienone | 966 | fruit, fat, mushroom | 0.16 | ||
7 | octanone | 976 | herb, butter, resin | 9.40 | ||
8 | 5-methylfurfural | 991 | almond, caramel, burnt sugar | 0.88 | ||
9 | 2,4-heptadienal | 1019 | fried | 0.50 | ||
10 | (E)-beta-ocimene | 1030 | sweet, herb | 1.38 | ||
11 | beta-phellandrene | 1052 | mint, turpentine | 1.18 | 1.18 | |
12 | 3,3,6-trimethyl-1,5-heptadien-4-ol | 1086 | herb | NA ** | ||
13 | 3-nonenal | 1102 | cucumber | 4500 | ||
14 | methyl benzoate | 1115 | prune, lettuce, herb, sweet | 61.54 | ||
15 | perillene * | 1120 | wood | NA | NA | |
16 | 4-mercapto-4-methyl-2-pentanol | 1120 | flower, lemon | 1250 | ||
17 | (E)-rose oxide | 1133 | flower | 92.00 | ||
18 | methylcyclopentapyrazine | 1133 | roast | NA | ||
19 | (E)-2-nonenal | 1166 | cucumber, fat, green | 4500 | ||
20 | menthol | 1173 | peppermint | 0.12 | ||
21 | ethylbenzaldehyde | 1173 | sweet | 13.08 | ||
22 | (E,Z)-2,4-nonadienal | 1202 | geranium, pungent | 5000 | ||
23 | epoxy-p-menthene | 1206 | mint, dill | NA | ||
24 | linalyl formate | 1216 | citrus, coriander | NA | ||
25 | (E)-carveol | 1218 | caraway, solvent | 0.13 | ||
26 | isobornyl formate | 1223 | green, earth, camphor | NA | ||
27 | ethyl octenoate | 1224 | must, oil, fruit, pungent | NA | NA | |
28 | cumin aldehyde | 1226 | acid, sharp | 0.82 | ||
29 | isobutyric acid | 1238 | rancid, butter, cheese | 0.012 | ||
30 | DL-carvone | 1267 | mint, basil, fennel | 4.78 | ||
31 | geranial | 1280 | lemon, mint | 4.06 | ||
32 | cuminic alcohol | 1287 | wood, herb | NA | ||
33 | methyl quinoxaline | 1297 | roast, nut, fruit | 0.00048 | ||
34 | dihydrocarvyl acetate | 1357 | mint, camphor, medicine | NA | ||
35 | 2-undecenal | 1370 | sweet | 461 | ||
36 | beta-elemene | 1388 | herb, wax, fresh | NA | ||
37 | eugenol * | 1389 | clove, honey | 1713 | 1210 | 150 |
38 | ethyl decanoate | 1399 | grape | 0.09 | ||
39 | beta-farnesene | 1422 | wood, citrus, sweet | 0.54 | ||
40 | ethyl salicylate | 1438 | wintergreen, mint | NA | ||
41 | linalyl butyrate | 1447 | pear, sweet | NA | ||
42 | isogeraniol | 1462 | rose | 107.50 | ||
43 | butyl octanoate | 1463 | fruit | NA | ||
44 | methyl eugenol | 1477 | clove, spice | 0.23 | ||
45 | citronellyl isobutyrate | 1488 | fruit, rose | NA | ||
46 | alpha-farnesene | 1505 | wood, sweet | 0.54 | ||
47 | methyl laurate | 1510 | fat, coconut | NA | ||
48 | isopropyl benzoate | 1555 | sweet, fruit | NA | ||
49 | caryophyllene oxide * | 1614 | herb, sweet, spice | 0.046 | 10 | |
50 | tridecanol | 1625 | must | NA | ||
51 | oxo-beta-ionone | 1644 | wood | NA | ||
52 | 7-heptadecene | 1667 | alkane | NA |
Method | Generator of OH· Radicals | DPPH | ORAC | |
---|---|---|---|---|
Sample | Percentage of Hydroxylation | IC50 (mg/g) | AOX | |
(μmol Trolox/g of Essential Oil) | (g Trolox/g of Essential Oil) * | |||
Artemisia herba-alba | 29.62 ± 3.14 | 41.73 ± 4.14 | 309.08 ± 7.19 | 0.077 ± 0.002 |
Artemisia campestris | 50.99 ± 3.31 | 53.44 ± 6.37 | 158.10 ± 4.69 | 0.039 ± 0.001 |
Salvia jordanii | 81.58 ± 5.09 | 108.31 ± 8.01 | 337.49 ± 9.87 | 0.084 ± 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertella, A.; Gavril, G.-L.; Wrona, M.; Pezo, D.; Sidaoui, A.; Benlahcen, K.; Kihal, M.; Olewnik-Kruszkowska, E.; Salafranca, J.; Nerín, C. Analysis of Bioactive Aroma Compounds in Essential Oils from Algerian Plants: Implications for Potential Antioxidant Applications. Foods 2024, 13, 749. https://doi.org/10.3390/foods13050749
Bertella A, Gavril G-L, Wrona M, Pezo D, Sidaoui A, Benlahcen K, Kihal M, Olewnik-Kruszkowska E, Salafranca J, Nerín C. Analysis of Bioactive Aroma Compounds in Essential Oils from Algerian Plants: Implications for Potential Antioxidant Applications. Foods. 2024; 13(5):749. https://doi.org/10.3390/foods13050749
Chicago/Turabian StyleBertella, Anis, Georgiana-Luminita Gavril, Magdalena Wrona, Davinson Pezo, Abouamama Sidaoui, Kheira Benlahcen, Mebrouk Kihal, Ewa Olewnik-Kruszkowska, Jesús Salafranca, and Cristina Nerín. 2024. "Analysis of Bioactive Aroma Compounds in Essential Oils from Algerian Plants: Implications for Potential Antioxidant Applications" Foods 13, no. 5: 749. https://doi.org/10.3390/foods13050749
APA StyleBertella, A., Gavril, G. -L., Wrona, M., Pezo, D., Sidaoui, A., Benlahcen, K., Kihal, M., Olewnik-Kruszkowska, E., Salafranca, J., & Nerín, C. (2024). Analysis of Bioactive Aroma Compounds in Essential Oils from Algerian Plants: Implications for Potential Antioxidant Applications. Foods, 13(5), 749. https://doi.org/10.3390/foods13050749