Improved Cordycepin Production by Cordyceps Militaris Using Corn Steep Liquor Hydrolysate as an Alternative Protein Nitrogen Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Corn Steep Liquor Hydrolysate (CSLH)
2.3. Strain and Culture Conditions
2.3.1. Microorganisms
2.3.2. Preparation of Spore Suspensions
2.3.3. Submerged Fermentation of C. militaris
2.4. Analytical Methods
2.4.1. Determination of Mycelium Dry Weight
2.4.2. Determination of Cordycepin and Adenosine by HPLC
2.4.3. Amino Acid Analysis
2.4.4. The Glucose and Protein Assay
2.5. Statistical Analysis
3. Results
3.1. Microbial Strain Selection for Cordycepin Production
3.2. Effect of Different Nitrogen Sources on Cordycepin Production
3.3. Effect of CSLH Concentrations on Mycelium Growth and Cordycepin Production
3.4. Effect of CSLH Addition on Substrate Metabolism
3.4.1. Effect of CSLH Addition on Sugar Utilization
3.4.2. Effect of CSLH on Amino Acid Utilization of C. militaris
3.4.3. Effect of CSLH on Some Metabolite in C. militaris Fermentation Broth
4. Discussion
4.1. Improvement in Cordycepin Production for Different C. militaris Using CSL and CSLH
4.2. Advantages of CSLH
4.3. Comparison to Other Studies
4.4. Schematic Illustration of the Biosynthetic Pathway of Cordycepin Affected by CSLH
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabie, A.M. Potent Inhibitory Activities of the Adenosine Analogue Cordycepin on SARS-CoV-2 Replication. ACS Omega 2022, 7, 2960–2969. [Google Scholar] [CrossRef]
- Bi, Y.E.; Zhou, Y.; Wang, M.; Li, L.; Lee, R.J.; Xie, J.; Teng, L. Targeted delivery of cordycepin to liver cancer cells using transferrin-conjugated liposomes. Anticancer Res. 2017, 37, 5207–5214. [Google Scholar] [PubMed]
- Jaiswal, J.; Srivastav, A.K.; Rajput, P.K.; Yadav, U.C.S.; Kumar, U. Integrating Synthesis, Physicochemical Characterization, and In Silico Studies of Cordycepin-Loaded Bovine Serum Albumin Nanoparticles. J. Agric. Food Chem. 2023, 71, 12225–12236. [Google Scholar] [CrossRef]
- Wu, S.J.; Wu, Q.P.; Wang, J.; Li, Y.F.; Chen, B.; Zhu, Z.J.; Huang, R.; Chen, M.F.; Huang, A.H.; Xie, Y.Z.; et al. Novel Selenium Peptides Obtained from Selenium-Enriched Cordyceps militaris Alleviate Neuroinflammation and Gut Microbiota Dysbacteriosis in LPS-Injured Mice. J. Agric. Food Chem. 2022, 70, 3194–3206. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.J.; Huang, A.H.; Chen, M.F.; Wang, J.; Li, Z.Y.; Sun, Z.X.; Ye, Y.H.; Nan, J.W.; Yu, S.B.; Chen, M.T.; et al. Impacts of selenium enrichment on nutritive value and obesity prevention of Cordyceps militaris: A nutritional, secondary metabolite, and network pharmacological analysis. Food Chem. X 2023, 19, 100788. [Google Scholar] [CrossRef]
- Chiu, C.P.; Liu, S.C.; Tang, C.H.; Chan, Y.; El-Shazly, M.; Lee, C.L.; Du, Y.C.; Wu, T.Y.; Chang, F.R.; Wu, Y.C. Anti-inflammatory Cerebrosides from Cultivated Cordyceps militaris. J. Agric. Food Chem. 2016, 64, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Kengkittipat, W.; Kaewmalun, S.; Khongkow, M.; Iempridee, T.; Jantimaporn, A.; Bunwatcharaphansakun, P.; Yostawonkul, J.; Yata, T.; Phoolcharoen, W.; Namdee, K. Improvement of the multi-performance biocharacteristics of cordycepin using BiloNiosome-core/chitosan-shell hybrid nanocarriers. Colloid Surf. B-Biointerfaces 2021, 197, 111369. [Google Scholar] [CrossRef]
- Verma, A.K. Cordycepin: A bioactive metabolite of C ordyceps militaris and polyadenylation inhibitor with therapeutic potential against COVID-19. J. Biomol. Struct. Dyn. 2022, 40, 3745–3752. [Google Scholar] [CrossRef]
- Qin, P.; Li, X.; Yang, H.; Wang, Z.Y.; Lu, D. Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing. Molecules 2019, 24, 2231. [Google Scholar] [CrossRef]
- Ashraf, S.A.; Elkhalifa, A.E.O.; Siddiqui, A.J.; Patel, M.; Awadelkareem, A.M.; Snoussi, M.; Ashraf, M.S.; Adnan, M.; Hadi, S. Cordycepin for health and wellbeing: A potent bioactive metabolite of an entomopathogenic medicinal fungus Cordyceps with its nutraceutical and therapeutic potential. Molecules 2020, 25, 2735. [Google Scholar] [CrossRef]
- Kunhorm, P.; Chaicharoenaudomrung, N.; Noisa, P. Enrichment of cordycepin for cosmeceutical applications: Culture systems and strategies. Appl. Microbiol. Biotechnol. 2019, 103, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Kontogiannatos, D.; Koutrotsios, G.; Xekalaki, S.; Zervakis, G.I. Biomass and Cordycepin Production by the Medicinal Mushroom Cordyceps militaris—A Review of Various Aspects and Recent Trends towards the Exploitation of a Valuable Fungus. J. Fungi 2021, 7, 986. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, G.; Chai, Z.; Gong, Q.; Guo, J. Synthesis of cordycepin: Current scenario and future perspectives. Fungal Genet. Biol. 2020, 143, 103431. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.Y.; Jung, J.Y.; Yang, J.K. Effect of Light-Emitting Diodes on Cordycepin Production in Submerged Culture of Paecilomyces japonica. Fungal Genet. Biol. 2020, 48, 548–561. [Google Scholar] [CrossRef]
- Shrestha, B.; Zhang, W.; Zhang, Y.; Liu, X. The medicinal fungus Cordyceps militaris: Research and development. Mycol. Prog. 2012, 11, 599–614. [Google Scholar] [CrossRef]
- Ha, S.Y.; Jung, J.Y.; Park, J.H.; Lee, D.H.; Choi, J.W.; Yang, J.K. Effect of light-emitting diodes on cordycepin production in submerged Cordyceps militaris cultures. J. Mushroom 2020, 18, 10–19. [Google Scholar]
- Zhou, K.; Yu, J.; Ma, Y.; Cai, L.; Zheng, L.; Gong, W.; Liu, Q.A. Corn Steep Liquor: Green Biological Resources for Bioindustry. Appl. Biochem. Biotechnol. 2022, 194, 3280–3295. [Google Scholar] [CrossRef]
- Edwinoliver, N.G.; Thirunavukarasu, K.; Purushothaman, S.; Rose, C.; Gowthaman, M.K.; Kamini, N.R. Corn steep liquor as a nutrition adjunct for the production of Aspergillus niger lipase and hydrolysis of oils thereof. J. Agric. Food Chem. 2009, 57, 10658–10663. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, C.; Yang, S.T. Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae. Process Biochem. 2015, 50, 173–179. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Di, Z.; Han, C.; Liu, Z. The Strategies for Increasing Cordycepin Production of Cordyceps Militaris by Liquid Fermentation. Fungal Genom. Biol. 2016, 6, 134. [Google Scholar] [CrossRef]
- Li, H.Y.; Huo, C.H.; Li, Q.; Wang, H.; Wang, J.H.; Wang, L. GSH promoting synthesis of cordyceps militaris cordycepin in liquid fermentation system. J. Fungi 2021, 40, 1498–1510. [Google Scholar]
- Wongsa, B.; Raethong, N.; Chumnanpuen, P.; Wong-Ekkabut, J.; Laoteng, K.; Vongsangnak, W. Alternative metabolic routes in channeling xylose to cordycepin production of Cordyceps militaris identified by comparative transcriptome analysis. Genomics 2020, 112, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Suparmin, A.; Kato, T.; Dohra, H.; Park, E.Y. Insight into cordycepin biosynthesis of Cordyceps militaris: Comparison between a liquid surface culture and a submerged culture through transcriptomic analysis. PLoS ONE 2017, 12, e0187052. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Zheng, X.; Chang, Y.; Li, D.; Sun, X.; Liu, X. Zein-derived peptides as nanocarriers to increase the water solubility and stability of lutein. Food Funct. 2018, 9, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Wang, W.; Zhong, J.J. Enhancement of cordycepin production in submerged cultures of Cordyceps militaris by addition of ferrous sulfate. Biochem. Eng. J. 2012, 60, 30–35. [Google Scholar] [CrossRef]
- Tang, J.; Qian, Z.; Wu, H. Enhancing cordycepin production in liquid static cultivation of Cordyceps militaris by adding vegetable oils as the secondary carbon source. Bioresour. Technol. 2018, 268, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Jin, J.Y.; Zhang, B.; Liu, Z.Q.; Zheng, Y.G. Improvement of cordycepin production by an isolated Paecilomyces hepiali mutant from combinatorial mutation breeding and medium screening. Bioprocess Biosyst. Eng. 2021, 44, 2387–2398. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.T.; He, Y.; Fu, M.X.; Gan, R.Y.; Hu, Y.C.; Peng, L.X.; Zhao, G.; Zou, L. Structural characteristics and biological activities of a pectic-polysaccharide from okra affected by ultrasound assisted metal-free Fenton reaction. Food Hydrocoll. 2022, 122, 107085. [Google Scholar] [CrossRef]
- Zhu, L.N.; Lu, Y.; Sun, Z.; Han, J.; Tan, Z.J. The application of an aqueous two-phase system combined with ultrasonic cell disruption extraction and HPLC in the simultaneous separation and analysis of solanine and Solanum nigrum polysaccharide from Solanum nigrum unripe fruit. Food Chem. 2019, 304, 125383. [Google Scholar] [CrossRef]
- Li, F.L.; Ma, Y.M.; Hua, W.Y.; Liu, Y.X.; Li, L.; Lu, Z.K.; Jiang, X.K.; Liu, C.; Liu, J.X. Cordyceps militaris Polysaccharide Exerted Anticancer Effect via Activating the Endogenous Apoptosis Pathway. Pharmacogn. Mag. 2022, 18, 669–674. [Google Scholar]
- Rizvi, N.B.; Aleem, S.; Khan, M.R.; Ashraf, S.; Busquets, R. Quantitative Estimation of Protein in Sprouts of Vigna radiate (Mung Beans), Lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry Methods. Molecules 2022, 27, 814. [Google Scholar] [CrossRef]
- Mao, X.B.; Zhong, J.J. Significant effect of NH4+ on cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Enzyme Microb. Technol. 2006, 38, 343–350. [Google Scholar] [CrossRef]
- Mao, X.B.; Eksriwong, T.; Chauvatcharin, S.; Zhong, J.J. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem. 2005, 40, 1667–1672. [Google Scholar] [CrossRef]
- Lee, S.K.; Lee, J.H.; Kim, H.R.; Chun, Y.; Lee, J.H.; Yoo, H.Y.; Park, C.; Kim, S.W. Improved cordycepin production by Cordyceps militaris KYL05 using casein hydrolysate in submerged conditions. Biomolecules 2019, 9, 461. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.X.; Wei, T.; Xue, L.N.; Zheng, Q.W.; Ye, Z.W.; Zou, Y.; Yang, Y.; Yun, F.; Guo, L.Q.; Lin, J.F. Transcriptome analysis reveals the flexibility of cordycepin network in Cordyceps militaris activated by l-alanine addition. Front. Microbiol. 2020, 11, 577. [Google Scholar] [CrossRef] [PubMed]
- Amado, I.R.; Vázquez, J.A.; Pastrana, L.; Teixeira, J.A. Microbial production of hyaluronic acid from agro-industrial by-products: Molasses and corn steep liquor. Biochem. Eng. J. 2017, 117, 181–187. [Google Scholar] [CrossRef]
- Maleki-Kakelar, M.; Azarhoosh, M.J.; Golmohammadi Senji, S.; Aghaeinejad-Meybodi, A. Urease production using corn steep liquor as a low-cost nutrient source by Sporosarcina pasteurii: Biocementation and process optimization via artificial intelligence approaches. Environ. Sci. Pollut. Res. 2022, 29, 13767–13781. [Google Scholar] [CrossRef] [PubMed]
- Shih, L.; Tsai, K.L.; Hsieh, C. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochem. Eng. J. 2007, 33, 193–201. [Google Scholar] [CrossRef]
- Byanju, B.; Sen, S.; Mansell, T.; Lamsal, B.P. Evaluation of corn steep liquor as fermentation media for recombinant Lactococcus lactis producing antifreeze proteins. J. Sci. Food Agric. 2023, 103, 2512–2521. [Google Scholar] [CrossRef]
- Luo, Q.Y.; Cao, H.F.; Liu, S.K.; Wu, M.; Li, S.S.; Zhang, Z.Q.; Chen, A.J.; Shen, G.H.; Wu, H.J.; Li, M.L.; et al. Novel liquid fermentation medium of Cordyceps militaris and optimization of hydrothermal reflux extraction of cordycepin. J. Asian Nat. Prod. Res. 2020, 22, 167–178. [Google Scholar] [CrossRef]
Main Nutrients | CSL | CSLH |
---|---|---|
Total protein (%, w/v) | 21.35 ± 0.89 | 21.57 ± 1.25 |
Soluble protein (%, w/v) | 10.45± 0.52 | 15.99 ±1.34 |
Total sugar (%, w/v) | 2.67 ± 0.23 | 2.93 ± 0.18 |
Reducing sugar (%, w/v) | 0.62 ± 0.04 | 0.65 ± 0.03 |
Strains | Cordycepin (mg/L) | Dry Cell Weight (g/L) | YP/x (mg/g) | QP (mg/g∙h) |
---|---|---|---|---|
GDMCC5.270 | 269.21 ± 12.52 | 9.88 ± 0.27 | 27.25 | 0.142 |
CICC14014 | 197.15 ± 27.26 | 9.97 ± 0.29 | 19.77 | 0.103 |
IMASC9-3 | 257.80 ± 34.44 | 10.30 ± 0.11 | 25.70 | 0.134 |
QFCM-1 | 186.6 ± 28.37 | 9.43 ± 0.52 | 19.79 | 0.103 |
ACCC5224 | 189.32 ± 14.77 | 8.51 ± 0.14 | 22.30 | 0.116 |
Different Nitrogen Sources | Cordycepin (mg/L) | Dry Cell Weight (g/L) | YP/x (mg/g) | QP (mg/g∙h) |
---|---|---|---|---|
Yeast extract | 54.03 ± 1.46 | 6.39 ± 0.14 | 8.46 | 0.044 |
Beef paste | 87.33 ± 1.46 | 6.93 ± 0.31 | 12.60 | 0.066 |
(NH4)2SO4 | 33.56 ± 1.19 | 2.66 ± 0.28 | 12.62 | 0.066 |
Peptone | 95.01 ± 4.36 | 7.11 ± 0.33 | 13.36 | 0.070 |
Yeast extract + CSLH | 184.33 ± 11.93 | 9.17 ± 0.22 | 20.10 | 0.105 |
Beef paste + CSLH | 114.75 ± 10.23 | 9.23 ± 0.20 | 12.43 | 0.065 |
(NH4)2SO4 + CSLH | 54.58 ± 10.23 | 8.99 ± 0.11 | 6.07 | 0.032 |
Peptone + CSLH | 277.29 ± 7.29 | 10.72 ± 0.17 | 25.87 | 0.135 |
(a) | ||||||
---|---|---|---|---|---|---|
Amino Acid | Amino Acid Concentration (g-Amino Acid/100 g-Nitrogen Source) | Increase Proportion (%) | ||||
CSL | CSLH | |||||
Aspartic acid | 1.34 | 1.66 | 23.94 | |||
Threonine | 0.68 | 0.87 | 28.30 | |||
Serine | 0.72 | 0.94 | 31.34 | |||
Glutamate | 3.04 | 3.78 | 24.24 | |||
Glycine | 1.24 | 1.61 | 30.01 | |||
Alanine | 3.58 | 4.42 | 23.47 | |||
Cysteine | 0.09 | 0.14 | 68.54 | |||
Valine | 1.41 | 1.70 | 20.83 | |||
Methionine | 0.36 | 0.73 | 105.94 | |||
Isoleucine | 0.87 | 1.11 | 27.73 | |||
Leucine | 2.36 | 2.80 | 18.61 | |||
Tyrosine | 0.41 | 0.50 | 20.68 | |||
Phenylalanine | 1.12 | 1.25 | 11.25 | |||
Lysine | 0.73 | 0.80 | 10.17 | |||
Histidine | 0.69 | 0.61 | −11.80 | |||
Arginine | 0.64 | 0.84 | 31.70 | |||
Proline | 2.40 | 2.76 | 15.22 | |||
Total | 21.65 | 26.52 | 22.49 | |||
(b) | ||||||
Amino Acid | Amino Acid Concentration of fermentation broth (g-Amino Acid/100 g-Substrate) | |||||
Peptone | Peptone + CSLH | |||||
Before Fermentation | After Fermentation | Amino acid availability (%) | Before Fermentation | After Fermentation | Amino acid availability (%) | |
Aspartic acid | 1.61 | 3.00 | −86.72 | 1.65 | 1.96 | −19.12 |
Threonine | 0.60 | 0.65 | −8.67 | 0.72 | 0.62 | 14.09 |
Serine | 0.89 | 1.08 | −21.09 | 0.854 | 0.73 | 14.22 |
Glutamate | 2.91 | 3.01 | −3.46 | 2.84 | 1.73 | 39.10 |
Glycine | 5.54 | 6.38 | −15.07 | 3.59 | 2.83 | 21.21 |
Alanine | 2.52 | 2.40 | 4.75 | 2.31 | 1.16 | 49.60 |
Cysteine | 0.012 | 0.013 | 11.7 | 0.03 | 0.048 | −38.71 |
Valine | 0.87 | 0.82 | 6.11 | 1.01 | 0.59 | 41.83 |
Methionine | 0.03 | 0.16 | −478.15 | 0.25 | 0.22 | 11.97 |
Isoleucine | 0.50 | 0.39 | 22.61 | 0.59 | 0.3 | 49.79 |
Leucine | 1.13 | 0.79 | 29.69 | 1.38 | 0.6 | 57.01 |
Tyrosine | 0.48 | 0.49 | −3.16 | 0.52 | 0.36 | 29.54 |
Phenylalanine | 0.97 | 0.75 | 22.54 | 0.812 | 0.65 | 20.21 |
Lysine | 1.09 | 1.11 | −2.43 | 0.95 | 0.69 | 26.61 |
Histidine | 0.55 | 0.41 | 26.46 | 0.32 | 0.30 | 5.54 |
Arginine | 1.95 | 1.21 | 37.99 | 15 | 0.57 | 62.18 |
Proline | 2.24 | 2.26 | −0.91 | 2.14 | 1.58 | 26.08 |
Total | 23.87 | 24.9 | −4.32 | 21.45 | 14.93 | 30.4 |
Metabolite Composition | Samples of Control Nitrogen Sources | Samples with Mixed CSL Nitrogen Sources Addition | Samples with Mixed CSLH Nitrogen Sources Addition |
---|---|---|---|
Cordycepin (g/L) | 70.97 ± 5.70 | 152.20 ± 4.03 | 343.03 ± 15.94 |
Adenosine (g/L) | 3.88 ± 0.01 | 5.92 ± 0.10 | 25.11 ± 1.42 |
Polysaccharide (g/L) | 0.36 ± 0.01 | 0.70 ± 0.02 | 0.88 ± 0.01 |
Soluble protein (g/L) | 0.77 ± 0.02 | 0.91 ± 0.03 | 1.21 ± 0.12 |
Strain | Culture Time (Day) | Carbon Source (g/L) | Nitrogen Source (g/L) | Cordycepin Production (mg/L) | Cordycepin Productivity (mg/L·day) | Ref. |
---|---|---|---|---|---|---|
Cordyceps militaris | 17 | Glucose, 40 g/L | Yeast extract and peptone 1:1, 10 g/L | 245.8 | 14.46 | Mao and Zhong, 2006 [32] |
Cordyceps militaris | 6 | Glucose, 20 g/L | casein hydrolysate, 20 g/L | 445.0 | 74.17 | Lee et al., 2019 [34] |
Cordyceps militaris | 20 | Glucose 40 g/L | peptone (10 g/L) | 596.59 | 29.83 | Fan et al., 2012 [25] |
Cordyceps militaris | 18 | Glucose, 42.0 g/L; | Peptone (15.8 g/L) | 345.4 | 19.2 | Mao et al., 2005 [33] |
Cordyceps militaris | 11 | Sucrose, 30 g/L; | silkworm chrysalis powder, 20 g/L; yeast extract, 10 g/L; | 42.53 | 3.87 | Luo et al., 2020 [40] |
Cordyceps militaris | 12 | Glucose, 40 g/L | Corn steep powder (CSP), 10 g/L; | 135.0 | 11.2 | Shih, Tsai, and Hsieh, 2007 [38] |
Cordyceps militaris | 8 | Glucose, 10 g/L | Peptone 3.5 g/L, CSLH 1.5 g/L. | 343.03 | 42.88 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Liu, X.; Jiao, Y.; Zheng, X. Improved Cordycepin Production by Cordyceps Militaris Using Corn Steep Liquor Hydrolysate as an Alternative Protein Nitrogen Source. Foods 2024, 13, 813. https://doi.org/10.3390/foods13050813
Chang Y, Liu X, Jiao Y, Zheng X. Improved Cordycepin Production by Cordyceps Militaris Using Corn Steep Liquor Hydrolysate as an Alternative Protein Nitrogen Source. Foods. 2024; 13(5):813. https://doi.org/10.3390/foods13050813
Chicago/Turabian StyleChang, Ying, Xiaolan Liu, Yan Jiao, and Xiqun Zheng. 2024. "Improved Cordycepin Production by Cordyceps Militaris Using Corn Steep Liquor Hydrolysate as an Alternative Protein Nitrogen Source" Foods 13, no. 5: 813. https://doi.org/10.3390/foods13050813
APA StyleChang, Y., Liu, X., Jiao, Y., & Zheng, X. (2024). Improved Cordycepin Production by Cordyceps Militaris Using Corn Steep Liquor Hydrolysate as an Alternative Protein Nitrogen Source. Foods, 13(5), 813. https://doi.org/10.3390/foods13050813