An Alarming Decline in the Nutritional Quality of Foods: The Biggest Challenge for Future Generations’ Health
Abstract
:1. Introduction
2. Nutrients’ Depletion Tendency of Foods
3. Causes of Declining Nutrient Density
3.1. Alteration in Food Composition
3.2. Growing High-Yielding Varieties
3.3. Climate Change and Elevated Carbon Dioxide (eCO2)
3.4. Excessive Use of Agrochemicals
3.5. Changes in Agricultural Practices
3.6. Postharvest Handling and Storage
3.7. Decline in Nutrient Concentration in Arable Land
3.8. Lack of Knowledge about Nutrient-Rich Crops
4. Management Strategy for Maintaining the Nutritional Density of Foods
4.1. Reviving Traditional foods for Sustainable Nutritional Security
4.2. Integrated Approaches for Soil Nutrient Management
4.3. Adopting Organic Farming
4.4. Improving Soil Ecosystem and Biodiversity
4.5. Using Biofortified Crops
4.6. Using Improved Handling Practices and Value addition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The epidemiology of global micronutrient deficiencies. Annu. Nutr. Metab. 2015, 66, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Amoroso, L. The second international conference on nutrition: Implications for hidden hunger. World Rev. Nutr. Diet. 2016, 115, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Food and Agriculture Organization of the United Nations; FAOSTAT. Food Balance Sheets: Rome, Italy, 2018. [Google Scholar]
- Bhutta, Z.A.; Das, J.K.; Rizvi, A.; Gaffey, M.F.; Walker, N.; Horton, S.; Webb, P.; Lartey, A.; Black, R.E. Evidence-based interventions for improvement of maternal and child nutrition: What can be done and at what cost? The lancet nutrition interventions review group, and the maternal and child nutrition study group. Lancet 2013, 382, 452–477. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2019, 383, 1958–1972. [Google Scholar]
- Drewnowski, A. Concept of a nutritious food: Toward a nutrient density score. Am. J. Clin. Nutr. 2005, 82, 721–732. [Google Scholar] [CrossRef]
- Davis, D.R. Declining fruit and vegetable nutrient content: What is the evidence. Hortic. Sci. 2009, 44, 15–19. [Google Scholar]
- Drewnowski, A. Defining nutrient density: Development and validation of the nutrient rich foods index. J. Am. Coll. Nutr. 2009, 28, 421S–426S. [Google Scholar] [CrossRef]
- Mayer, A.M.B.; Trenchard, L.; Rayns, F. Historical changes in the mineral content of fruit and vegetables in the UK from 1940 to 2019: A concern for human nutrition and agriculture. Int. J. Food Sci. Nutr. 2022, 73, 315–326. [Google Scholar] [CrossRef]
- Global Panel on Agriculture and Food Systems for Nutrition. Food Systems and Diets: Facing the Challenges of the 21st Century; Global Panel on Agriculture and Food Systems for Nutrition: London, UK, 2016; pp. 1–133. [Google Scholar]
- Mayer, A.B. A food systems approach to increase dietary zinc intake in Bangladesh based on an analysis of diet, rice production and processing. In Combating Micronutrient Deficiency: Food-Based Approaches; Thompson, B., Amoroso, L., Eds.; CAB International and FAO: Rome, Italy, 2011; p. 256. [Google Scholar]
- Nair, M.K.; Augustine, L.F.; Konapur, A. Food-based interventions to modify diet quality and diversity to address multiple micronutrient deficiency. Front. Public Health 2015, 3, 277. [Google Scholar] [CrossRef]
- Second International Conference on Nutrition: Nutrition-Sensitive Agriculture; Food and Agriculture Organization: Rome, Italy, 2014; pp. 1–23.
- Bhardwaj, R.L.; Parashar, A.; Vyas, L. Diminishing Physical Working Capacity and Interest Level in Agricultural Activities of Tribal Farmers—A Biggest Challenge; Academia Letters: San Francisco, CA, USA, 2021; Article 2460. [Google Scholar] [CrossRef]
- Nandal, U.; Bhardwaj, R.L. Role of underutilized fruit in nutritional and economical security of tribal’s—A review. Cri. Rev. Fd. Sci. Nut. 2013, 54, 880–890. [Google Scholar] [CrossRef]
- Ruzzi, M.; Aroca, R. Plant growth-promoting rhizobacteria act as bio-stimulants in horticulture. Sci. Hortic. 2015, 196, 124–134. [Google Scholar] [CrossRef]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Boyce, A.N. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef]
- Thomas, D. A study of the mineral depletion of foods available to us as a nation over the period 1940 to 1991. Nutr. Health 2003, 17, 85–115. [Google Scholar] [CrossRef] [PubMed]
- Baseline Survey on Changing Pattern in Farming and Food with Respect to Time in Tribal Areas of Sirohi Districts of Rajasthan; Agricultural Research Substation: Sumerpur-Pali, India, 2021; pp. 1–13.
- Davis, D.R.; Epp, M.D.; Riordan, H.D. Changes in USDA food composition data for 43 garden crops, 1950–1999. J. Am. Coll. Nutr. 2004, 23, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.S.; Zhao, F.J.; Fairweather-Tait, S.J.; Poulton, P.R.; Dunham, S.J.; McGrath, S.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 2008, 22, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.B. Historical changes in the mineral content of fruit and vegetables. Br. Food J. 1997, 99, 207–211. [Google Scholar] [CrossRef]
- Jack, A. Nutrition under siege. One Peac. World J. 1998, 34, 7–9. [Google Scholar]
- Alae-Carew, C.; Nicoleau, S.; Bird, F.A.; Hawkins, P.; Tuomisto, H.L.; Haines, A.; Dangour, A.D.; Scheelbeek, P.F.D. The impact of environmental changes on the yield and nutritional quality of fruits, nuts and seeds: A systematic review. Environ. Res. Lett. 2020, 15, 1–13. [Google Scholar] [CrossRef]
- Jack, A. America’s Vanishing Nutrients: Decline in Fruit and Vegetable Quality, Poses Serious Health and Environmental Risks; America’s Vanishing Nutrients: Becket, MA, USA, 2005; pp. 1–16. [Google Scholar]
- Ficco, D.B.M.; Riefolo, C.; Nicastro, G.; De Simone, V.; Di Gesu, A.M.; Beleggia, R.; Platani, C.; Cattivelli, L.; De Vita, P. Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crops Res. 2009, 111, 235–242. [Google Scholar] [CrossRef]
- Bruggraber, S.F.A.; Chapman, T.P.E.; Thane, C.W.; Olson, A.; Jugdaohsingh, R.; Powell, J.J. A re-analysis of iron content of plant based foods in the United Kingdom. Br. J. Nutr. 2013, 108, 2221–2228, Corrigendum (2013) in Br. J. Nutr. 2013, 109, 2115–2116. [Google Scholar] [CrossRef]
- Marles, R.J. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. J. Food Compos. Anal. 2017, 56, 93–103. [Google Scholar] [CrossRef]
- Martinez-Ballesta, M.C.; Dominguez-Perles, R.; Moreno, D.A.; Muries, B.; Alcaraz-Lopez, C.; Bastias, E.; Garcia-Viguera, C.; Carvajal, M. Minerals in plant food: Effect of agricultural practices and role in human health: A review. Agron. Sustain. Dev. 2010, 30, 295–309. [Google Scholar] [CrossRef]
- Welch, R.M.; House, W.A. Factors affecting the bioavailability of mineral nutrients in plant foods. In Crops as Sources of Nutrients for Humans; Allaway, W., Johnson, V.A., Nesheim, R.O., Rendig, V.V., Eds.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Reeve, J.R.; Hoadland, L.; Villalba, J.J.; Carr, P.M.; Atucha, A.; Cambardella, C. Organic farming, soil health, and food quality: Considering possible links. Adv. Agron. 2016, 137, 319–366. [Google Scholar] [CrossRef]
- Mukherjee, A.; Omondi, E.C.; Hepperly, P.R.; Seidel, R.; Heller, W.P. Impacts of organic and conventional management on the nutritional level of vegetables. Sustainability 2020, 12, 8965. [Google Scholar] [CrossRef]
- Ikemura, Y.; Shukla, M.K. Soil quality in organic and conventional farms of New Mexico, USA. J. Org. Syst. 2009, 4, 34–47. [Google Scholar]
- Araujo, A.S.; Leite, L.F.; Santos, V.B.; Carneiro, R.F. Soil microbial activity in conventional and organic agricultural systems. Sustainability 2009, 1, 268–276. [Google Scholar] [CrossRef]
- Lori, M.; Symnaczik, S.; Mader, P.; De Deyn, G.; Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLoS ONE 2017, 12, e0180442. [Google Scholar] [CrossRef]
- Mitchell, A.E.; Hong, Y.J.; Koh, E.; Barrett, D.M.; Bryant, D.E.; Denison, R.F. Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. J. Agric. Food Chem. 2007, 55, 6154–6159. [Google Scholar] [CrossRef]
- Bhurosy, T.; Jeewon, R. Changes in eating habits and food traditions of Indo-Mauritians. Indian J. Tradit. Knowl. 2016, 15, 355–362. [Google Scholar]
- Adhikari, L.; Hussain, A.; Rasul, G. Tapping the potential of neglected and underutilized food crops for sustainable nutrition security in the mountains of Pakistan and Nepal. Sustainability 2017, 9, 291. [Google Scholar] [CrossRef]
- Nandal, U.; Bhardwaj, R.L. Medicinal, nutritional and economic security of tribals from underutilized fruits in Aravali region of district Sirohi (Rajasthan). Indian J. Tradit. Knowl. 2015, 14, 423–432. [Google Scholar]
- Baseline Survey about Utilization and Future Prospects of Millets, Underutilized Fruits Available in Tribal Areas of Sirohi, Pali and Udaipur Districts of Rajasthan; Agricultural Research Substation: Sumerpur-Pali, India, 2021; pp. 1–27.
- Subramaniam, M.D.; Vellingiri, B.; Sang, I.L.; In, H.K. An outline of meat consumption in the Indian population—A pilot review. Korean J. Food Sci. Anim. Resour. 2014, 34, 507–515. [Google Scholar]
- Myers, S.S.; Smith, M.R.; Guth, S.; Golden, C.D.; Vaitla, B.; Mueller, N.D.; Dangour, A.D.; Huybers, P. Climate change and global food systems: Potential impacts on food security and undernutrition. Annu. Rev. Public Health 2017, 38, 259–277. [Google Scholar] [CrossRef]
- Guo, S.; Chen, Y.; Chen, X.; Chen, Y.; Yang, L.; Wang, L.; Qin, Y.; Li, M.; Chen, F.; Mi, G.; et al. Grain mineral accumulation changes in Chinese maize cultivars released in different decades and the responses to nitrogen fertilizer. Front. Plant Sci. 2020, 10, 1662. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Historical variation in the mineral composition of edible horticultural products. J. Hortic. Sci. Biotechnol. 2005, 80, 660–667. [Google Scholar] [CrossRef]
- Murphy, K.M.; Reeves, P.G.; Jones, S.S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica 2008, 163, 381–390. [Google Scholar] [CrossRef]
- Roth, E.; Berna, A.Z.; Beullens, K.; Schenk, A.; Lammertyn, J.; Nicolai, B. Comparison of taste and aroma of integrated and organic apple fruit. Commun. Agric. Appl. Biol. Sci. 2005, 70, 225–229. [Google Scholar]
- Morris, C.; Sands, D. The breeder’s dilemma-yield or nutrition? Nat. Biotechnol. 2006, 24, 1078–1080. [Google Scholar] [CrossRef]
- Halweil, B. Still No Free Lunch: Nutrient Levels in U.S. Food Supply Eroded by Pursuit of High Yields. Critical Issue Report, the Organic Center. June 2007. Available online: http://www.organic-center.org/science.nutri.php?action=view&;report_id=115 (accessed on 18 May 2022).
- Loladze, I. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 2014, 3, e02245. [Google Scholar] [CrossRef]
- Farnham, M.W.; Grusak, M.A.; Keinath, A.P. Mineral concentration of broccoli florets in relation to year of cultivar release. Crop Sci. 2011, 51, 2721–2727. [Google Scholar] [CrossRef]
- European Environment Agency. Atmospheric greenhouse gas concentrations. 2020. Available online: https://www.eea.europa.eu/data-and-maps/indicators/atmospheric-greenhouse-gasconcentrations-6/assessment-1 (accessed on 15 May 2020).
- Smith, M.; Myers, S.S. Rising carbon dioxide is decreasing nutrition in crops and endangering health among the less wealthy. Climanosco Research Articles 2. 15 October 2019. Available online: https://doi.org/10.37207/CRA.2.5 (accessed on 20 May 2022).
- Soares, J.C.; Santos, C.S.; Carvalho, S.M.P.; Pintado, M.M.; Vasconcelos, M.W. Preserving the nutritional quality of crop plants under a changing climate: Importance and strategies. Plant Soil 2019, 443, 1–26. [Google Scholar] [CrossRef]
- Jin, J.; Armstrong, R.; Tang, C. Impact of elevated CO2 on grain nutrient concentration varies with crops and soils—A long-term FACE study. Sci. Total Environ. 2019, 651, 2641–2647. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Hilger, T.; Piepho, H.P.; Jordan, I.; Cadisch, G. Do we need more droughts for better nutrition? The effect of precipitation on nutrient concentration in east African food crops. Sci. Total Environ. 2019, 658, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Jobe, T.O.; Rahimzadeh Karvansara, P.; Zenzen, I.; Kopriva, S. Ensuring nutritious food under elevated CO2 conditions: A case for improved C4 crops. Front. Plant Sci. 2020, 11, 1267. [Google Scholar] [CrossRef] [PubMed]
- Fanzo, J.; Cogill, B.; Mattei, F. Technical Brief: Metrics of sustainable diets and food systems, Bioversity International, Rome, Italy. 2018, pp. 1–8. Available online: http://www.bioversityinternational.org/elibrary/publications/detail/metrics-of-sustainable-diets-and-food-systems/ (accessed on 10 May 2022).
- Myers, S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leake, A.; Bloom, A.; Carlisle, E.; Dietterich, L.; Fitzgerald, G.; Hasegawa, T. Increasing CO2 threatens human nutrition. Nature 2014, 510, 139–142. [Google Scholar] [CrossRef]
- Zhu, C.; Kobayashi, K.; Loladze, I.; Zhu, J.; Jiang, Q.; Xu, X. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 2018, 4, 1012. [Google Scholar] [CrossRef]
- Ebi, K.L.; Anderson, C.L.; Hess, J.J.; Kim, S.-H.; Loladze, I.; Neumann, R.B.; Singh, D.; Ziska, L.; Wood, R. Nutritional quality of crops in a high CO2 world: An agenda for research and technology development. Environ. Res. Lett. 2021, 16, 064045. [Google Scholar] [CrossRef]
- Loladze, I.; Nolan, J.M.; Ziska, L.H.; Knobbe, A.R. Rising atmospheric CO2 lowers concentrations of plant carotenoids essential to human health: A meta-analysis. Mol. Nutr. Food Res. 2019, 63, e1801047. [Google Scholar] [CrossRef]
- Weyant, C.; Brandeau, M.L.; Burke, M.; Lobell, D.B.; Bendavid, E.; Basu, S. Anticipated burden and mitigation of carbon-dioxide-induced nutritional deficiencies and related diseases: A simulation modeling study. PLoS Med. 2018, 15, e1002586. [Google Scholar] [CrossRef]
- Dong, J.; Gruda, N.; Lam, S.K.; Li, X.; Duan, Z. Effects of elevated CO2 on nutritional quality of vegetables: A Review. Front Plant Sci. 2018, 9, 924. [Google Scholar] [CrossRef]
- Ujiie, K.; Ishimaru, K.; Hirotsu, N.; Nagasaka, S.; Miyakoshi, Y.; Ota, M. How elevated CO2 affects our nutrition in rice, and how we can deal with it. PLoS ONE 2019, 14, e0212840. [Google Scholar] [CrossRef] [PubMed]
- Beach, R.H. Combing the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: A modeling study. Lancet Planet. Heath 2019, 3, e307–e317. [Google Scholar] [CrossRef] [PubMed]
- Fernando, N.; Panozzo, J.; Tausz, M.; Norton, R.; Fitzgerald, G.; Seneweera, S. Rising atmospheric CO2 concentration affects mineral nutrient and protein concentration of wheat grain. Food Chem. 2012, 133, 1307–1311. [Google Scholar] [CrossRef]
- Parcell, S. Sulfur in human nutrition and applications in medicine. Altern. Med. Rev. 2002, 7, 22–44. [Google Scholar] [PubMed]
- Livingstone, C. Zinc: Physiology, deficiency, and parenteral nutrition. Nutr. Clin. Pract. 2015, 30, 371–382. [Google Scholar] [CrossRef]
- Luo, Y.; Su, B.; Currie, W.S.; Dukes, J.S.; Finzi, A.; Hartwig, U. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 2004, 54, 731–739. [Google Scholar] [CrossRef]
- Bloom, A.J.; Burger, M.; Rubio Asensio, J.S.; Cousins, A.B. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 2010, 328, 899–903. [Google Scholar] [CrossRef]
- Perez-Lopez, U.; Sgherri, C.; Miranda-Apodaca, J.; Micaelli, F.; Lacuesta, M.; Mena-Petite, A.; Quartacci, M.F.; Munoz-Rueda, A. Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2. Plant Physiol. Biochem. 2018, 123, 233–241. [Google Scholar] [CrossRef]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of agrochemicals on soil microbiota and management: A review. Land 2020, 9, 34. [Google Scholar] [CrossRef]
- Mekonnen, Y.; Agonafir, T. Lung function and respiratory symptoms of pesticide sprayers in state farms of Ethiopia. Ethiop. Med. J. 2004, 42, 261–266. [Google Scholar]
- Beane-Freeman, L.E.; Bonner, M.R.; Blair, A.; Hoppin, J.A.; Sandler, D.P.; Lubin, J.H. Cancer incidence among male pesticide applicators in the agricultural health study cohort exposed to diazinon. Am. J. Epidemiol. 2005, 162, 1070–1079. [Google Scholar] [CrossRef] [PubMed]
- Alif, S.M.; Dharmage, S.C.; Benke, G.; Dennekamp, M.; Burgess, J.A.; Perret, J.L. Occupational exposures to pesticides are associated with fixed airflow obstruction in middle-age. Thorax 2017, 72, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Buralli, R.J.; Ribeiro, H.; Mauad, T.; Amato-Lourenco, L.F.; Salge, J.M.; Diaz-Quijano, F.A. Respiratory condition of family farmers exposed to pesticides in the state of Rio de Janeiro, Brazil. Int. J. Environ. Res. Public. Health 2018, 15, 1203. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, G. An overview of agrochemicals and their effects on environment in Nepal. Appl. Ecol. Environ. Sci. 2014, 2, 66–73. [Google Scholar] [CrossRef]
- Rahman, K.M.; Debnath, S.C. Agrochemical use, environmental and health hazards in Bangladesh. IRJIMS 2015, 1, 75–79. [Google Scholar]
- Thuy, T.T. Effects of DDT on environment and human health. J. Educ. Soc. Sci. 2015, 2, 108–114. [Google Scholar]
- Bever Fred. Shellfish Industry, Scientists Wrestle with Potentially Deadly Toxic Algae Bloom. NPR’s, The Salt. Available online: https://www.npr.org/sections/thesalt/2018/01/04/575345282/shellfish-industry-scientists-wrestle-with-potentially-deadly-toxic-algae-bloom (accessed on 23 June 2018).
- Nordgren, T.M.; Chandrashekhar, C. Agriculture occupational exposures and factors affecting health effects. Curr. Allergy. Asthma. Rep. 2019, 18, 65. [Google Scholar] [CrossRef]
- Singh, R.; Singh, G.S. Traditional agriculture: A climate-smart approach for sustainable food production. Energ. Ecol. Environ. 2017, 2, 296–316. [Google Scholar] [CrossRef]
- Bhardwaj, R.L.; Sharma, Y.K.; Vyas, L. Postharvest Handling of Horticultural Crops; Jaya Publishing House: New Delhi, India, 2021; pp. 1–600. ISBN 978939030964. [Google Scholar]
- Benbrook, C.M. Elevating Antioxidant Levels in Food Through Organic Farming and Food Processing. The Organic Center, June 2005. Available online: http://www.organic-center.org/science.antiox.php?action=view&;report_id=3 (accessed on 12 May 2022).
- Meena, K.K.; Sorty, A.M.; Bitla, U.M.; Choudhary, K.; Gupta, P.; Pareek, A.; Singh, D.P.; Prabha, R.; Sahu, P.K.; Gupta, V.K. Abiotic stress responses and microbe-mediated mitigation in plants: The Omics strategies. Front. Plant Sci. 2017, 8, 172. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation as a reason for inadequate human nutrition. Food Secur. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Hepperly, P.R.; Seidel, R. Soil regeneration increases crop nutrients, antioxidants and adaptive responses. MOJ Food Process. Technol. 2018, 6, 196–203. [Google Scholar] [CrossRef]
- Gruda, N. Do soilless culture systems have an influence on product quality of vegetables? J. Appl. Bot. Food Qual. 2009, 82, 141–147. [Google Scholar]
- Farias, J.; Nunes, S.; Sausen, D.; Nune, S.M.; Neis, F.; Garlet, L.; Nunes, P.; Dressler, V.; Schetinger, M.; Rossato, L. Agricultural contamination: Effect of copper excess on physiological parameters of potato genotypes and food chain security. J. Appl. Bot. Food Qual. 2018, 91, 49–59. [Google Scholar]
- Kaiser, C.; Kilburn, M.R.; Clode, P.L.; Fuchslueger, L.; Koranda, M.; Cliff, J.B.; Solaiman, Z.M.; Murphy, D.V. Exploring the transfer of recent plant photosynthates to soil microbes: Mycorrhizal pathway vs direct root exudation. New Phytol. 2015, 205, 1537–1551. [Google Scholar] [CrossRef]
- Rickman, J.C.; Christine, M.; Bruhn, C.M.; Barret, D.M. Nutritional comparison of fresh, frozen, and canned fruits and vegetables II. Vitamin A and carotenoids, vitamin E, minerals and fiber. J. Sci. Food Agric. 2007, 87, 1185–1196. [Google Scholar] [CrossRef]
- Howard, L.; Wong, A.; Perry, A.; Klein, B. β-carotene and ascorbic acid retention in fresh and processed vegetables. J. Food Sci. 1999, 64, 929–936. [Google Scholar] [CrossRef]
- Nagarajan, N.; Hotchkiss, J. In vitro inhibition of N-nitrosomorpholine formation by fresh and processed tomatoes. J. Food Sci. 1999, 64, 964–967. [Google Scholar] [CrossRef]
- Bouzari, A.; Holstege, D.; Barrett, D. Mineral, fiber, and total phenolic retention in eight fruits and vegetables: A comparison of refrigerated and frozen storage. J. Agric. Food Chem. 2015, 63, 951–956. [Google Scholar] [CrossRef]
- Lyne, J.W.; Barak, P. Are Depleted Soils Causing a Reduction in the Mineral Content of Food Crops? Originally Presented in Poster Form at the 2000 Annual Meetings of the ASA/CSSA/SSSA, 5–9 November 2000, Minneapolis, MN. Available online: http://soils.wisc.edu/facstaff/barak/poster_gallery/minneapolis2000a/ (accessed on 10 May 2022).
- Thomas, D. Mineral depletion in foods over the period 1940 to 1991. Nutr. Practitioner. 2001, 3, 27–29. [Google Scholar]
- Bunemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Tan, Z.X.; Lal, R.; Wiebe, K.D. Global soil nutrient depletion and yield reduction. J. Sustain. Agric. 2005, 26, 123–146. [Google Scholar] [CrossRef]
- Gaikwad, K.B.; Rani, S.; Kumar, M.; Gupta, V.; Babu, P.H.; Bainsla, N.K.; Yadav, R. Enhancing the nutritional quality of major food crops through conventional and genomics-assisted breeding. Front. Nutr. 2020, 7, 533453. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.V. Micronutrient Deficiencies in Crops and Soils in India. In Micronutrient Deficiencies in Global Crop Production; Alloway, B.J., Ed.; Springer: Dordrecht, Switzerland, 2008; pp. 93–125. [Google Scholar]
- Briat, J.F.; Gojon, A.; Plassard, C.; Rouached, H.; Lemaire, G. Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. Euro. J. Agron. 2020, 116, 126069. [Google Scholar] [CrossRef]
- Uphoff, N.; Chi, F.; Dazzo, F.B.; Rodriguez, R.D. Soil Fertility as a Contingent Rather Than Inherent Characteristic: Considering the Contributions of Crop-Symbiotic Soil Macrobiotic in Principles of Sustainable Soil Management in Agro-Ecosystems; Lal., R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 141–166. [Google Scholar]
- Thaler, E.A.; Larsen, I.J.; Qian, Y. The extent of soil loss across the US corn belt. Proc. Nat. Acad. Sci. USA 2021, 118, e1922375118. [Google Scholar] [CrossRef] [PubMed]
- Baumhardt, R.L.; Stewart, B.A.; Sainju, U.M. North American soil degradation: Processes, practices, and mitigating strategies. Sustainability 2015, 7, 2936–2960. [Google Scholar] [CrossRef]
- Scholes, R.; Montanarella, L.; Brainich, A.; Barger, N.; ten Brink, B.; Cantele, M. (Eds.) IPBES-Summary for Policymakers of the Thematic Assessment Report on Land Degradation and Restoration of the Intergovernmental Science Policy Platform on Biodiversity and Ecosystem Services; Inter-Governmental Science-Policy Platform on Biodiversity and Ecosystem Services Secretariat: Bonn, Germany, 2018. [Google Scholar]
- Nandal, U.; Bhardwaj, R.L. Underutilized fruits of south western Rajasthan used in medicinal, nutritional and economic security of tribals: A case study. Indian J. Arid. Hortic. 2014, 9, 63–70. [Google Scholar]
- Chivenge, P.; Mabhaudhi, T.; Modi, A.T.; Mafongoya, P. The potential role of neglected and underutilized crop species as future crops under water scarce conditions in sub-Saharan Africa. Int. J. Environ. Res. Public Health 2015, 12, 5685–5711. [Google Scholar] [CrossRef]
- Johns, T.; Sthapit, B.R. Bio-cultural diversity in the sustainability of developing-country food systems. Food Nutr. Bull. 2004, 25, 143–155. [Google Scholar] [CrossRef]
- De Fries, R.; Chhatre, A.; Davis, K.F.; Dutta, A.; Fanzo, J.; Ghosh-Jerath, S.; Myers, S.; Rao, N.D.; Smith, M.R. Impact of historical changes in coarse cereals consumption in India on micronutrient intake and anemia prevalence. Food Nutr. Bull. 2018, 39, 377–392. [Google Scholar] [CrossRef]
- Verma, V.C.; Verma, V.C.; Singh, A.; Agrawal, S. Ethno-botanical study of small millets from India: Prodigious grain for nutritional and industrial aspects. Int. J. Chem. Stud. 2018, 6, 2155–2162. [Google Scholar]
- Rao, N.D.; Min, J.; DeFries, R.; Ghosh-Jerath, S.; Valin, H.; Fanzo, J. Healthy, affordable and climate-friendly diets in India. Glob. Environ. Chang. 2018, 49, 154–165. [Google Scholar] [CrossRef]
- Ushakumari, S.R.; Latha, S.; Malleshi, N.G. The functional properties of popped, flaked, extruded and roller dried foxtail millet (Setariaitalica). Int. J. Food Sci. Technol. 2004, 39, 907–915. [Google Scholar] [CrossRef]
- Vadivoo, A.S.; Joseph, R.; Ganesan, N.M. Genetic variability and diversity for protein and calcium contents in finger millet (Eleusine coracana L.) in relation to grain colour. Plant Foods Hum. Nutr. 1998, 52, 353–364. [Google Scholar] [CrossRef]
- Thilagavathy, S.; Muthuselvi, S. Development and evaluation of millets incorporated chappathi on glycemic response in type II diabetics. Indian J. Nutr. Diet 2010, 47, 42–50. [Google Scholar]
- Antony, U.; Sripriya, G.; Chandra, T.S. Effect of fermentation on the primary nutrients in finger millet (Eleusine coracana). J. Agric. Food Chem. 1996, 44, 2616–2618. [Google Scholar] [CrossRef]
- Lairon, D. Nutritional quality and safety of organic food. A review. Agron. Sustain. Dev. 2010, 30, 33–41. [Google Scholar] [CrossRef]
- Gopalan, C.; Rama Sastri, B.V.; Balasubramanian, S.C. Nutritive Value of Indian Foods; National Institute of Nutrition, Indian Council of Medical Research: Hyderabad, India, 2009; pp. 1–199. [Google Scholar]
- Trichopoulou, A.; Soukara, S.; Vasilopoulou, E. Traditional foods: A science and society perspective. Trends Food Sci. Technol. 2007, 18, 420–427. [Google Scholar] [CrossRef]
- Sarkar, P.; Lohith Kumar, D.H.; Dhumal, C.; Shubham, S.; Panigrahi, S.S.; Choudhary, R. Traditional and ayurvedic foods of Indian origin. J. Ethn. Foods 2015, 2, 97–109. [Google Scholar] [CrossRef]
- Mayes, S.; Massawe, F.J.; Alderson, P.G.; Roberts, J.A.; Azam-Ali, S.N.; Hermann, M. The potential for underutilized crops to improve security of food production. J. Exp. Bot. 2012, 63, 1075–1079. [Google Scholar] [CrossRef]
- Handschuch, C.; Wollni, M. Improved production systems for traditional food crops: The case of finger millet in Western Kenya. Food Secur. 2016, 8, 783–797. [Google Scholar] [CrossRef]
- Osei, A.; Pandey, P.; Spiro, D.; Nielson, J.; Shrestha, R.; Talukder, Z.; Quinn, V.; Haselow, N. Household food insecurity and nutritional status of children aged 6 to 23 months in Kailali district of Nepal. Food Nut. Bull. 2010, 31, 483–494. [Google Scholar] [CrossRef]
- Longvah, T.; Ananthan, R.; Bhaskarachary, K.; Venkaiah, K. Indian Food Composition Tables; National Institute of Nutrition, Indian Council of Medical Research, Ministry of Health and Family Welfare, Government of India: Hyderabad, Telangana, 2017; pp. 1–501. [Google Scholar]
- Mungai, L.M.; Snapp, S.; Messina, J.P.; Chikowo, R.; Smith, A.; Anders, E.; Richardson, R.B.; Li, G. Smallholder farms and the potential for sustainable intensification. Front. Plant Sci. 2016, 7, 1720. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Bardo, L.; Alaoui, A.; Ferreira, C.; Basch, G.; Schwilch, G.; Geissen, V.; Sukkel, W.; Lemesle, J.; Garcia-Orenes, F.; Morugan-Coronado, A. Assessment of promising agricultural management practices. Sci. Total Environ. 2019, 649, 610–619. [Google Scholar]
- Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Bhardwaj, R.L.; Vyas, L. Development of region specific horticulture based integrated farming system models with crop diversification for sustainable livelihoods and nutritional security of tribal of Sirohi district of Rajasthan: A Case Study. Adv. Soc. Res. 2015, 1, 17–29. [Google Scholar]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Meta-analysis of phosphorus loss from no-till soils. J. Environ. Qual. 2017, 46, 1028–1037. [Google Scholar] [CrossRef]
- Bavoravo, M.; Imamverdiyev, N.; Ponkina, E. Farm-level economics of innovative tillage technologies: The case of no-till in the Altai Krai in Russian Siberia. Environ. Sci. Pollut. R. 2018, 25, 1016–1032. [Google Scholar] [CrossRef]
- Elias, D.; Wang, L.; Jacinthe, P.A. A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management. Environ. Monit. Assess. 2018, 190, 79. [Google Scholar] [CrossRef]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 5. [Google Scholar] [CrossRef]
- Lal, R. Sequestering carbon in soils of agro-ecosystems. Food Policy 2011, 36, S33–S39. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Xue, Y.; Xia, H.; Christie, P.; Zhang, Z.; Li, L.; Tang, C. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: A critical review. Ann. Bot. 2016, 117, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Johansson, E.; Hussain, A.; Kuktaite, R.; Andersson, S.C.; Olsson, M.E. Contribution of organically grown crops to human health. Int. J. Environ. Res. Public Health. 2014, 11, 3870–3893. [Google Scholar] [CrossRef] [PubMed]
- Hughner, R.S.; McDonagh, P.; Prothero, A.; Schultz, C.J.; Stanton, J. Who are organic food consumers? A compilation and review of why people purchase organic food. J. Consum. Behav. 2007, 6, 94–110. [Google Scholar] [CrossRef]
- Dubey, R.K. Organic farming beneficial to biodiversity conservation, rural livelihood and nutritional security. Indian J. Appl. Res. 2013, 3, 18–21. [Google Scholar] [CrossRef]
- Watson, C.A.; Atkinson, D.; Gosling, P.; Jackson, L.R.; Rayns, F.W. Managing soil fertility in organic farming systems. Soil Use Manag. 2002, 18, 239–247. [Google Scholar] [CrossRef]
- Das, S.; Chatterjee, A.; Pal, T.K. Organic farming in India: A vision towards a healthy nation. Food Qual. Saf. 2020, 4, 69–76. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Bikle, A. Soil health and nutrient density: Beyond organic vs. conventional farming. Front. Sustain. Food Syst. 2021, 5, 699147. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, C.T.; Sciarappa, W.; Want, C.Y.; Camp, M.J. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J. Agric. Food Chem. 2008, 56, 5788–5794. [Google Scholar] [CrossRef]
- Faller, A.L.K.; Fialho, E. Polyphenol content and antioxidant capacity in organic and conventional plant foods. J. Food Comp. Anal. 2010, 23, 561–568. [Google Scholar] [CrossRef]
- Benbrook, C. The impacts of yield on nutritional quality: Lessons from organic farming. HortScience 2009, 44, 12–14. [Google Scholar] [CrossRef]
- Popa, M.E.; Mitelut, A.C.; Popa, E.E.; Stan, A.; Popa, V.I. Organic foods contribution to nutritional quality and value. Trends Food Sci. Technol. 2019, 84, 15–18. [Google Scholar] [CrossRef]
- Rembialkowska, E. Quality of plant products from organic agriculture. J. Sci. Food Agric. 2007, 87, 2757–2762. [Google Scholar] [CrossRef]
- Reganold, J.P.; Andrews, P.K.; Reeve, J.R.; Carpenter-Boggs, L.; Schadt, C.W.; Alldredge, J.R. Fruit and soil quality of organic and conventional strawberry agro ecosystems. PLoS ONE 2010, 5, e12346. [Google Scholar] [CrossRef]
- Vallverdu-Queralt, A.; Medina-Remon, A.; Casals-Ribes, I.; Lamuela Raventos, R.M. Is there any difference between the phenolic content of organic and conventional tomato juices? Food Chem. 2012, 130, 222–227. [Google Scholar] [CrossRef]
- Herencia, J.F.; Ruiz-Porras, J.C.; Melero, S.; Garcia-Galavis, P.A.; Morillo, E.; Maqueda, C. Comparison between organic and mineral fertilization for soil fertility levels, crop macronutrient concentrations, and yield. Agron. J. 2007, 99, 973–983. [Google Scholar] [CrossRef]
- Brandt, K.; Leifert, C.; Sanderson, R.; Seal, C.J. Agro-ecosystem management and nutritional quality of plant foods: The case of organic fruits and vegetables. Crit. Rev. Plant Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Lopez-Bucio, J.; Pelagio-Flores, R.; Herrera-Estrella, A. Trichoderma as bio-stimulant: Exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 2015, 196, 109–123. [Google Scholar] [CrossRef]
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Grandjean, P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef]
- Schuphan, W. Nutritional value of crops as influenced by organic and inorganic fertilizer treatments. Qual. Plant. 1974, 23, 333–358. [Google Scholar] [CrossRef]
- Vogtmann, H.; Temperli, A.T.; Kunsch, U.; Eichenberger, M.; Ott, P. Accumulation of nitrates in leafy vegetables grown under contrasting agricultural systems. Biol. Agric. Hortic. 1984, 2, 51–68. [Google Scholar] [CrossRef]
- Worthington, V. Nutritional quality of organic versus conventional fruits, vegetables and grains. J. Alternat. Complement. Med. 2001, 7, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Levite, D.; Adrian, M.; Tamm, L. Preliminary results of resveratrol in wine of organic and conventional vineyards. In Proceedings of the 6th International Congress on Organic Viticulture, Basel, Switzerland, 25–26 August 2000; pp. 256–257. [Google Scholar]
- Magkos, F.; Arvaniti, F.; Zampelas, A. Organic food: Nutritious food or food for thought? A review of the evidence. Int. J. Food Sci. Nutr. 2003, 54, 357–371. [Google Scholar] [CrossRef]
- Tarozzi, A.; Hrelia, S.; Angeloni, C.; Morroni, F.; Biagi, P.; Guardigli, M.; Cantelli-Forti, G.; Hrelia, P. Antioxidant effectiveness of organically and non-organically grown red oranges in cell culture systems. Eur. J. Nutr. 2006, 45, 152–158. [Google Scholar] [CrossRef]
- Petkovsek, M.M.; Slatnar, A.; Stampar, F.; Veberic, R. The influence of organic/integrated production on the content of phenolic compounds in apple leaves and fruits in four different varieties over a 2-year period. J. Sci. Food Agric. 2010, 90, 2366–2378. [Google Scholar] [CrossRef]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef]
- Vinha, A.F.; Barreira, S.V.; Costa, A.S.; Alves, R.C.; Oliveira, M.B. Organic versus conventional tomatoes: Influence on physicochemical parameters, bioactive compounds and sensorial attributes. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2014, 67, 139–144. [Google Scholar] [CrossRef]
- Rossi, F.; Godani, F.; Bertuzzi, T.; Trevisan, M.; Ferrari, F.; Gatti, S. Health-promoting substances and heavy metal content in tomatoes grown with different farming techniques. Eur. J. Nutr. 2008, 47, 266–272. [Google Scholar] [CrossRef]
- Reche, J.; Hernandez, F.; Almansa, M.; Carbonell-Barrachina, A.; Legua, P.; Amoros, A. Effects of organic and conventional farming on the physicochemical and functional properties of jujube fruit. LWT 2019, 99, 438–444. [Google Scholar] [CrossRef]
- Da Silva Borges, L.; De Souza Vieira, M.C.; Vianello, F.; Goto, R.; Lima, G.P.P. Antioxidant compounds of organically and conventionally fertilized Jambu (Acmella oleracea). Biol. Agric. Hortic. 2016, 32, 149–158. [Google Scholar] [CrossRef]
- Baraski, M.; Srednicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- Hunter, D.; Foster, M.; McArthur, O.; Ojha, R.; Petocz, P.; Samman, S. Evaluation of the micronutrient composition of plant foods produced by organic and conventional agricultural methods. Crit. Rev. Food Sci. Nutr. 2011, 51, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Wall, D.H.; Nielsen, U.N.; Six, J. Soil biodiversity and human health. Nature 2015, 528, 69–76. [Google Scholar] [CrossRef]
- Anjum, M.A.; Sajjad, M.R.; Akhtar, N.; Qureshi, M.A.; Iqbal, A.; Jami, A.R.; Hasan, M. Response of cotton to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. J. Agric. Res. 2007, 45, 135. [Google Scholar]
- Bhardwaj, R.L. Effects of nine different propagation media on seed germination and the initial performance of papaya (Carica papaya L.) seedlings. J. Hortic. Sci. Biotechnol. 2013, 88, 531–535. [Google Scholar] [CrossRef]
- Singh, B.; Trivedi, P. Microbiome and the future for food and nutrient security. Microb. Biotechnol. 2017, 10, 50–53. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Di Mattia, E.; El-Nakhel, C.; Cardarelli, M. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a bio-stimulant to promote growth, yield and nutrient uptake of vegetable crops. J. Sci. Food Agric. 2015, 95, 1706–1715. [Google Scholar] [CrossRef]
- Bona, E.; Lingua, G.; Todeschini, V. Effect of bio-inoculants on the quality of crops. In Bio-Formulations: For Sustainable Agriculture; Arora, N.K., Mehnaz, S., Balestrini, R., Eds.; Springer: New Delhi, India, 2016; pp. 93–124. [Google Scholar]
- Martinez-Hidalgo, P.; Maymon, M.; Pule-Meulenberg, F.; Hirsch, A.M. Engineering root micro-biomes for healthier crops and soils using beneficial, environmentally safe bacteria. Can. J. Microbiol. 2019, 65, 91–104. [Google Scholar] [CrossRef]
- Yildirim, E.; Turan, M.; Ekinci, M. Growth and mineral content of cabbage seedlings in response to nitrogen fixing rhizobacteria treatment. Rom. Biotech. Lett. 2015, 20, 10929–10935. [Google Scholar]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef]
- Ochoa-Velasco, C.E.; Valadez-Blanco, R.; Salas-Coronado, R. Effect of nitrogen fertilization and Bacillus licheniformis bio-fertilizer addition on the antioxidants compounds and antioxidant activity of greenhouse cultivated tomato fruits (Solanum lycopersicum L. var. Sheva). Sci. Hor. 2016, 201, 338–345. [Google Scholar] [CrossRef]
- Flores-Felix, J.D.; Silva, L.R.; Rivera, L.P. Plants probiotics as a tool to produce highly functional fruits: The case of Phyllo bacterium and vitamin C in strawberries. PLoS ONE 2015, 10, e0122281. [Google Scholar] [CrossRef] [PubMed]
- Bona, E.; Lingua, G.; Manassero, P. AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 2015, 25, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Zhu, T.B.; Teng, M.J. Effects of interaction between vermi-compost and probiotics on soil property, yield and quality of tomato. Yingyong ShengtaiXuebao 2016, 27, 484–490. [Google Scholar]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M. Arbuscular mycorrhizal fungi act as bio-stimulants in horticultural crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Gabriele, M.; Gerardi, C.; Longo, V.; Lucejko, J.; Degano, I.; Pucci, L.; Domenici, V. The impact of mycorrhizal fungi on Sangiovese red wine production: Phenolic compounds and antioxidant properties. LWT Food Sci. Technol. 2016, 72, 310–316. [Google Scholar] [CrossRef]
- Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial services of arbuscular mycorrhizal fungi—From ecology to application. Front. Plant Sci. 2018, 9, 14. [Google Scholar] [CrossRef]
- Douds, D.; Nagahashi, G.; Hepperly, P. Production of inoculum of indigenous AM fungi and options for diluents of compost for on-farm production of AM fungi. Bioresour. Technol. 2010, 101, 2326–2330. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Hart, M.; Ehret, D.L.; Krumbein, A.; Leung, C.; Murch, S.; Turi, C.; Franken, P. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 2015, 25, 359–376. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V. Bio-forties crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Hirschi, K.D. Nutrient bio-fortification of food crops. Annu. Rev. Nutr. 2009, 29, 401–421. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Casal, M.N.; Pena-Rosas, J.P.; Pachon, H.; De-Regil, L.M.; Tablante, E.C.; Flores-Urrutia, M.C. Staple Crops Bio-Fortified with Increased Micronutrient Content: Effects on Vitamin and Mineral Status, as well as Health and Cognitive Function in the General Population. Cochrane Database Syst. Rev. 2016, 8. [Google Scholar] [CrossRef]
- Bouis, H.E.; Saltzman, A. Improving nutrition through bio-fortification: A review of evidence from HarvestPlus, 2003 through 2016 Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Talsma, E.F.; Brouwer, I.D.; Verhoef, H.; Mbera, G.N.; Mwangi, A.M.; Demir, A.Y. Biofortifird yellow cassava and vitamin A status of Kenyan children: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 258–267. [Google Scholar] [CrossRef]
- Vasconcelos, M.W.; Gruissem, W.; Bhullar, N.K. Iron bio-fortification in the 21st century: Setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Curr. OpinBiotechnol. 2017, 44, 8–15. [Google Scholar] [CrossRef]
- Wesseler, J.; Zilberman, D. The economic power of the golden rice opposition. Environ. Dev. Econ. 2014, 19, 724–742. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Sahrawat, K.L.; Rai, K.N.; Blair, M.W.; Andersson, M.S.; Pfeiffer, W. Nutritionally enhanced staple food crops. Plant Breed Rev. 2012, 36, 169–291. [Google Scholar]
- De Souza, G.A.; De Carvalho, J.G.; Rutzke, M.; Albrecht, J.C.; Guilherme, L.R.G.; Li, L. Evaluation of germplasm effect on Fe, Zn and Se content in wheat seedlings. Plant Sci. 2013, 210, 206–213. [Google Scholar] [CrossRef]
- De Steur, H.; Blancquaert, D.; Strobbe, S.; Lambert, W.; Gellynck, X.; Van Der Straeten, D. Status and market potential of transgenic bio-fortified crops. Nat. Biotechnol. 2015, 33, 25–29. [Google Scholar] [CrossRef]
- Hefferon, K.L. Nutritionally enhanced food crops; progress and perspectives. Int. J. Mol. Sci. 2015, 16, 3895–3914. [Google Scholar] [CrossRef]
- Saltzman, A.; Birol, E.; Oparinde, A.; Andersson, M.S.; Asare-Marfo, D.; Diressie, M.T.; Gonzalez, C.; Lividini, K.; Moursi, M.; Zeller, M. Availability, production, and consumption of crops bio-fortified by plant breeding: Current evidence and future potential. Ann. N. Y. Acad. Sci. 2017, 1390, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; Kalayci, M.; Kaya, Y.; Torun, A.; Aydin, N.; Wang, Y.; Arisoy, Z.; Erdem, H.; Yazici, A.; Gokmen, O. Bio-fortification and localization of zinc in wheat grain. J. Agric. Food Chem. 2010, 58, 9092–9102. [Google Scholar] [CrossRef] [PubMed]
- Pena-Rosas, J.P. Fortification of rice with vitamins and minerals for addressing micronutrient malnutrition. Cochrane Database Syst. Rev. 2019, 10, CD009902. [Google Scholar] [CrossRef]
- Mahajan, P.V.; Caleb, O.J.; Singh, Z.; Watkins, C.B.; Geyer, M. Post-harvest treatments of fresh produce. Philos. Trans. R. Soc. 2014, A372, 20130309. [Google Scholar] [CrossRef] [PubMed]
Fruits | Calcium | Iron | Vitamin A (IU) | Vitamin C | Vegetables | Calcium | Iron | Vitamin A (IU) | Vitamin C |
---|---|---|---|---|---|---|---|---|---|
Apples (mg) | None | 40.00 | 41.10 | Up 42.50 | Broccoli (mg) | 53.40 | 20.00 | 38.30 | 17.50 |
Apricots (mg) | 17.70 | Up 8.00 | 3.30 | None | Cabbage (mg) | 4.10 | Up 47.50 | Up 2.30 | 31.90 |
Banana (mg) | 25.00 | 55.70 | 57.40 | 9.00 | Carrots (mg) | 27.00 | 28.60 | Up 155.70 | Up 16.30 |
Cherries (mg) | 31.80 | 2.50 | Up 94.60 | 30.00 | Cauliflower (mg) | 12.00 | 60.00 | 68.30 | 40.50 |
Grapefruits (mg) | 25.00 | 85.00 | 87.50 | 12.40 | Collard greens (mg) | 28.60 | 81.00 | 41.20 | 61.60 |
Lemons (mg) | 57.40 | 14.30 | 3.30 | 31.20 | Daikon (mg) | 22.90 | 33.30 | 100.00 | 31.30 |
Orange (mg) | 2.40 | 75.00 | Up 2.50 | Up 6.40 | Kale (mg) | 24.60 | 22.70 | None | 4.00 |
Peaches (mg) | 44.40 | 78.00 | 59.80 | 5.70 | Mustard greens (mg) | 43.70 | 51.30 | 24.30 | 27.80 |
Pineapples (mg) | 58.80 | 26.00 | 55.00 | 9.40 | Onion (mg) | 25.90 | 56.00 | 100.00 | 36.00 |
Strawberries (mg) | 33.30 | 62.00 | 67.10 | 3.90 | Parsley (mg) | 32.00 | None | 38.80 | 22.70 |
Tangerines (mg) | 65.00 | 75.00 | Up 119.0 | 7.00 | Turnip greens (mg) | 22.80 | 38.90 | None | 56.80 |
Watermelons (mg) | Up 14.30 | 66.00 | 38.00 | Up 37.10 | Watercress (mg) | 20.50 | 88.20 | 4.10 | 45.60 |
Net Change | 28.90 | 16.40 | 16.40 | 1.90 | Net Change | 26.50 | 36.10 | 21.40 | 29.90 |
Food Groups/Foods | Percent Share in Diet of Tribal Farmers (N = 1500) | ||||
---|---|---|---|---|---|
Before 1960 | 1960 to 1980 | 1981–2000 | 2001 to 2020 | %Change | |
Minor millets * | 13.0 | 6.0 | 2.5 | 0.2 | −98.46 |
Sorghum | 13.2 | 9.5 | 5.8 | 1.0 | −92.42 |
Pearl millet | 19.3 | 15.0 | 10.0 | 5.3 | −72.54 |
Maize | 36.5 | 38.0 | 20.3 | 10.2 | −72.05 |
Barley | 4.5 | 6.7 | 7.2 | 4.0 | −11.11 |
Wheat | 1.0 | 4.5 | 30.0 | 56.0 | 5500.00 |
Rice | 0.0 | 1.0 | 1.8 | 7.5 | 650.00 |
Pulses | 5.5 | 4.5 | 3.0 | 2.0 | −63.64 |
Meats | 3.0 | 3.5 | 4.0 | 4.8 | 60.00 |
Dairy products | 1.5 | 2.5 | 3.3 | 3.0 | 100.00 |
Sugar/gur and oils | 0.5 | 1.0 | 1.3 | 2.0 | 300.00 |
Traditional fruits and vegetables | 5.5 | 7.5 | 6.5 | 3.0 | −45.45 |
Modern fruits and vegetables | 0.0 | 0.3 | 2.0 | 3.5 | 1066.67 |
Traditional wine and English wine consumption trend in tribals | |||||
Traditional wine | 100.0 | 99.5 | 70.5 | 34.2 | −65.80 |
Modern wine | 0.0 | 0.5 | 29.5 | 65.8 | 6480.00 |
S.N | Nutrients | Traditional Food (Millets) * | Modern Foods (Cereals) ** | % Change | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pearl Millet | Sorghum | Ragi | Foxtail Millet | Proso Millet | Barnyard Millet | Kodo Millet | Little Millet | Desi Maize | Barley | Oat | Mean | Rice | Wheat | Mean | |||
1 | Protein (g) | 11.6 | 10.4 | 7.3 | 12.3 | 7.7 | 6.2 | 8.3 | 10.13 | 11.1 | 11.5 | 16.9 | 10.31 | 7.94 | 12.1 | 10.02 | −2.83 |
2 | Fat (g) | 5.0 | 1.9 | 1.3 | 4.3 | 4.7 | 2.2 | 1.4 | 4.7 | 3.6 | 1.30 | 6.9 | 3.39 | 0.52 | 1.7 | 1.11 | −67.27 |
3 | CHO (g) | 67.5 | 68.2 | 72.6 | 60.9 | 70.4 | 65.5 | 65.9 | 65.55 | 64.77 | 61.29 | 62.0 | 65.87 | 78.24 | 64.72 | 71.48 | +8.51 |
4 | Energy (Cal.) | 361.0 | 349.0 | 328.0 | 331.0 | 341.0 | 397.0 | 309.0 | 329.0 | 342.0 | 336.0 | 389.0 | 346.5 | 345.0 | 346.0 | 345.5 | −0.30 |
5 | Folic acid (mg) | 45.5 | 20.0 | 18.3 | 15.0 | 9.0 | - | 23.1 | 36.20 | 20.0 | 31.58 | 56.0 | 27.47 | 9.32 | 36.6 | 22.96 | −16.41 |
6 | Thiamin (mg) | 0.33 | 0.37 | 0.42 | 0.59 | 0.21 | 0.33 | 0.33 | 0.26 | 0.42 | 0.36 | 0.76 | 0.40 | 0.05 | 0.49 | 0.27 | −32.19 |
7 | Riboflavin (mg) | 0.25 | 0.13 | 0.19 | 0.11 | 0.01 | 0.10 | 0.09 | 0.05 | 0.10 | 0.18 | 0.14 | 0.12 | 0.05 | 0.17 | 0.11 | −10.37 |
8 | Zinc (g) | 3.1 | 1.6 | 2.3 | 2.4 | 3.7 | 3.0 | 0.7 | 1.82 | 2.8 | 1.50 | 4.0 | 2.45 | 1.21 | 2.2 | 1.70 | −30.33 |
9 | Calcium (mg) | 42.0 | 25.0 | 344.0 | 31.0 | 17.0 | 20.0 | 27.0 | 17.0 | 10.0 | 26.0 | 54.0 | 55.73 | 10.0 | 48.0 | 29 | −47.96 |
10 | Iron (mg) | 8.0 | 4.1 | 4.62 | 2.8 | 9.3 | 5.0 | 0.5 | 9.3 | 2.3 | 1.67 | 5.0 | 4.78 | 0.7 | 4.9 | 2.8 | −41.43 |
11 | Phosphorus (mg) | 289.0 | 274.0 | 268.0 | 110.0 | - | - | - | 157.0 | 279.0 | 178.0 | - | 222.1 | 96.16 | 315.0 | 205.6 | −7.46 |
12 | Fiber (g) | 1.2 | 1.6 | 3.6 | 8.0 | 7.6 | 9.8 | 9.0 | 7.6 | 2.7 | 3.9 | 11.6 | 6.05 | 0.82 | 1.2 | 1.01 | −83.32 |
13 | Total phenol | 67.71 | 23.25 | 135.0 | 106.0 | 0.10 | 26.7 | 368.0 | 14.24 | 32.92 | 23.47 | - | 79.74 | 3.14 | 14.33 | 8.735 | −89.05 |
S.N | Nutrients | Traditional Fruits ** | Modern Fruits * | % Change | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Karonda | Phalsa | Bael | Khirni | Timru | Sitaphal | Ker | Tamarind | Ber | Mean | Apple | Orange | Guava | Mango | Banana | Papaya | Grape | Mean | |||
1 | Protein (g) | 1.15 | 1.30 | 1.80 | 0.50 | 6.0 | 1.60 | 14.24 | 3.10 | 1.34 | 3.45 | 0.20 | 0.70 | 0.90 | 0.60 | 1.20 | 0.60 | 0.50 | 0.67 | −96.55 |
2 | Fat (g) | 1.67 | 0.90 | 0.30 | 2.40 | - | 0.40 | 2.00 | 0.10 | 0.35 | 1.02 | 0.50 | 0.20 | 0.30 | 0.40 | 0.30 | 0.10 | 0.30 | 0.30 | −98.99 |
3 | CHO (g) | 2.87 | 14.7 | 31.8 | 27.7 | 26.8 | 23.5 | 18.20 | 67.4 | 9.40 | 24.71 | 13.4 | 10.9 | 11.2 | 16.9 | 27.2 | 7.20 | 16.5 | 14.76 | −75.29 |
4 | Energy (Cal.) | 34.0 | 72.0 | 137 | 134.0 | 112.0 | 104.0 | 107.0 | 283.0 | 204.0 | 131.9 | 59.0 | 48.0 | 51.0 | 74.0 | 116.0 | 32.0 | 71.0 | 64.43 | +31.89 |
5 | Ascorbic acid (mg) | 135.0 | 22.0 | 8.0 | 16.0 | 1.0 | 37.0 | 50.0 | 3.62 | 60.93 | 37.06 | 3.57 | 30.0 | 212.0 | 16.0 | 7.00 | 57.0 | 1.0 | 46.65 | −62.94 |
6 | Carotenes (μg) | 55.89 | 419.0 | 55.0 | 495.0 | 361.0 | - | - | 188.0 | 76.80 | 235.8 | 229.0 | 1104 | 996.0 | 2743.0 | 78.0 | 666.0 | 216 | 861.71 | +135.81 |
7 | Thiamin (mg) | 0.01 | - | 0.13 | 0.07 | - | 0.07 | - | 0.34 | 0.01 | 0.11 | 0.93 | 0.07 | 0.03 | 0.08 | 0.05 | 0.04 | 0.04 | 0.18 | −99.90 |
8 | Riboflavin (mg) | 0.02 | - | 0.03 | 0.08 | - | 0.17 | - | 0.07 | 0.02 | 0.07 | 0.01 | 0.02 | 0.03 | 0.09 | 0.08 | 0.25 | 0.03 | 0.07 | −99.94 |
9 | Niacin (mg) | 0.25 | 0.30 | 1.10 | 0.70 | - | 1.30 | - | 1.56 | 0.33 | 0.79 | 0.25 | 0.28 | 0.40 | 0.90 | 0.50 | 0.20 | 0.12 | 0.38 | −99.21 |
10 | Minerals (g) | - | 1.10 | 1.70 | 0.80 | 0.80 | 0.90 | - | 2.9. | - | 1.37 | 0.30 | 0.30 | 0.70 | 0.40 | 0.80 | 0.50 | 0.6 | 0.51 | −98.63 |
11 | Calcium (mg) | 10.81 | 129.0 | 85.0 | 83.0 | 60.0 | 17.0 | 55.0 | 170.0 | 46.55 | 72.93 | 10.0 | 26.0 | 10.0 | 14.0 | 17.0 | 17.0 | 20 | 16.29 | −27.07 |
12 | Phosphorus (mg) | 32.62 | 39.0 | 50.0 | 17.0 | 20.0 | 47.0 | 57.0 | 110.0 | 32.38 | 45.00 | 14.0 | 20.0 | 28.0 | 16.0 | 36.0 | 13.0 | 30 | 22.43 | −55.00 |
13 | Iron (mg) | 0.87 | 3.10 | 0.60 | 0.90 | 0.50 | 4.31 | 0.76 | 17.0 | 0.40 | 3.16 | 0.66 | 0.32 | 0.27 | 1.30 | 0.36 | 0.50 | 0.52 | 0.56 | −96.84 |
14 | Fiber (g) | 1.38 | 1.20 | 2.90 | 3.0 | 0.80 | 3.10 | 4.24 | 5.60 | 1.02 | 2.58 | 1.0 | 0.30 | 5.20 | 0.70 | 0.40 | 0.80 | 2.9 | 1.61 | −97.42 |
S.N | Nutrients | Traditional Vegetables * | Modern Vegetables ** | % Change | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster Bean | Bathua Leaf | Kinkoda | Kachri | Khimp | Khejri Pod | Spinach | Snap Melon | Amaranthus Leaf | Mean | Tomato | Potato | Brinjal | Mean | |||
1 | Protein (g) | 3.20 | 2.50 | 5.44 | 0.28 | 3.13 | 23.1 | 2.14 | 0.37 | 3.29 | 4.83 | 0.76 | 1.35 | 1.77 | 1.29 | −73.21 |
2 | Fat (g) | 0.40 | 0.44 | 3.10 | 1.28 | 1.84 | 0.52 | 0.64 | 1.12 | 0.65 | 1.11 | 0.25 | 0.22 | 0.39 | 0.29 | −74.17 |
3 | CHO (g) | 10.80 | 2.56 | 7.70 | 7.45 | 9.83 | 14.15 | 2.05 | 15.6 | 2.28 | 8.05 | 3.20 | 12.9 | 3.49 | 6.53 | −18.85 |
4 | Energy (Cal.) | 16.0 | 27.71 | 288.0 | 43.0 | 68.0 | 82.0 | 24.37 | 74.0 | 30.58 | 72.63 | 18.87 | 53.76 | 27.23 | 33.29 | −54.17 |
5 | Ascorbic acid (mg) | 17.92 | 41.03 | - | 29.81 | 39.0 | - | 30.28 | 18.6 | 83.54 | 37.17 | 25.27 | 26.41 | 1.58 | 17.75 | −52.24 |
6 | Carotenes (μg) | 1192.0 | 3469.0 | - | - | - | - | 9553.0 | - | 20.47 | 3558.62 | 5826.0 | 224.0 | 186.0 | 2078.67 | −41.59 |
7 | Thiamin (mg) | 0.05 | 0.06 | 0.05 | - | - | - | 0.16 | - | 0.01 | 0.07 | 0.04 | 0.05 | 0.07 | 0.05 | −19.19 |
8 | Riboflavin (mg) | 0.03 | 0.51 | 0.10 | - | - | - | 0.10 | - | 0.19 | 0.19 | 0.02 | 0.01 | 0.13 | 0.05 | −71.33 |
9 | Niacin (mg) | 0.71 | 0.54 | 0.06 | - | - | - | 0.33 | - | 0.71 | 0.47 | 0.51 | 1.36 | 0.74 | 0.87 | +85.11 |
10 | Calcium (mg) | 130.0 | 211.0 | 33.7 | 0.09 | 414.0 | 0.41 | 82.29 | 0.76 | 330.0 | 133.58 | 8.90 | 8.53 | 22.17 | 13.20 | −90.12 |
11 | Phosphorus (mg) | 57.0 | 37.55 | 42.0 | 0.003 | 317.0 | 0.05 | 32.59 | 0.09 | 73.22 | 62.17 | 15.45 | 43.42 | 39.95 | 32.94 | −47.01 |
12 | Iron (mg) | 1.08 | 2.66 | 5.04 | 0.18 | 3.48 | 0.48 | 2.95 | 0.84 | 4.64 | 2.37 | 0.22 | 0.57 | 0.49 | 0.43 | −82.01 |
13 | Fiber (g) | 3.20 | 1.68 | 3.0 | 1.21 | 23.18 | 6.7 | 0.86 | 1.34 | 1.20 | 4.71 | 0.30 | 0.54 | 0.68 | 0.51 | −89.24 |
Vegetable | Nutrition in Organic Vegetables in Relation to Conventional (%) | |||
---|---|---|---|---|
Vitamin C | Iron | Magnesium | Phosphorus | |
Lettuce | +17 | +17 | +29 | +14 |
Spinach | +52 | +25 | −13 | +14 |
Carrot | −6 | +12 | +69 | +13 |
Potato | +22 | +21 | +5 | 0 |
Cabbage | +43 | +41 | +40 | +22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhardwaj, R.L.; Parashar, A.; Parewa, H.P.; Vyas, L. An Alarming Decline in the Nutritional Quality of Foods: The Biggest Challenge for Future Generations’ Health. Foods 2024, 13, 877. https://doi.org/10.3390/foods13060877
Bhardwaj RL, Parashar A, Parewa HP, Vyas L. An Alarming Decline in the Nutritional Quality of Foods: The Biggest Challenge for Future Generations’ Health. Foods. 2024; 13(6):877. https://doi.org/10.3390/foods13060877
Chicago/Turabian StyleBhardwaj, Raju Lal, Aabha Parashar, Hanuman Prasad Parewa, and Latika Vyas. 2024. "An Alarming Decline in the Nutritional Quality of Foods: The Biggest Challenge for Future Generations’ Health" Foods 13, no. 6: 877. https://doi.org/10.3390/foods13060877
APA StyleBhardwaj, R. L., Parashar, A., Parewa, H. P., & Vyas, L. (2024). An Alarming Decline in the Nutritional Quality of Foods: The Biggest Challenge for Future Generations’ Health. Foods, 13(6), 877. https://doi.org/10.3390/foods13060877