The Effect of the Periodic Drying Method on the Drying Time of Hazelnuts and Energy Utilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Drying Experiments
2.2. Energy Utilization
2.3. Food Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Drying Experiments
3.2. Energy Utilization
3.3. Protein and Oil Analyses in Hazelnut
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | cross-sectional area, m2 | tp | time spent in periodic drying, h |
cp | specific heat capacity, kJ/kg°C | T | temperature, °C |
E | energy flow rate, kW | Ts | hazelnut surface temperetur, °C |
Ec | total energy flow rate expended for continuous drying, kWh | Ta | average temperature, °C |
Ep | total energy flow rate expended for periodic drying, kWh | To | oven temperature, °C |
Ed | total energy flow rate expended for continuous or periodic drying, kWh | Te | environment temperature, °C |
air mass flow rate, kg/s | v | air velocity, m/s | |
M | moisture content (g water/g dry matter) | SEC | specific energy consumption kWh/kg water |
mdm | mass of the dry weight, g | Greek Symbols | |
mt | mass of the samples at a specific time, g | ρ | density, kg/m3 |
mw | mass of loss water, kg | ɳs | energy utilization |
tc | time spent in continuous drying, h |
References
- Turan, A.; İslam, B. Çakıldak fındık çeşidinde kurutma ortamları ve muhafaza süresine bağlı olarak meydana gelen değişimler. Ordu Üniv. Bilim Teknol. Derg. 2016, 16, 272–285. [Google Scholar]
- Özdemir, F.; Topuz, A.; Doğan, Ü.; Karkacier, M. Fındık çeşitlerinin bazı fiziksel ve kimyasal özellikleri. Gıda 1998, 23, 37–41. [Google Scholar]
- Yildiz, T.; Tekgüler, A. The effects of different maturity times of fruit ripening and limb connection heights on the percentages of fruit removal in mechanical harvesting of hazelnut (Cv. Yomra). J. Agric. Sci. 2014, 20, 38–47. [Google Scholar] [CrossRef]
- Gürel, A.E.; Ceylan, İ.; Aktaş, M. Meyve ve sebzelerin kurutma parametrelerinin incelenmesi. Gazi Univ. J. Sci. Part C Des. Technol. 2016, 4, 267–273. [Google Scholar]
- Topdemir, A. Mikroçoğaltımla üretilmiş fesleğenin (Ocimum basilicum L.) tepsili Kurutucuda kuruma karakteristiğinin belirlenmesi. Fırat Üniv. Müh. Bilim. Derg. 2019, 31, 545–550. [Google Scholar] [CrossRef]
- Danso-Boateng, E. Effect of drying methods on nutrient quality of basil (Ocimum viride) leaves cultivated in Ghana. Int. Food Res. J. 2013, 20, 1569–1573. [Google Scholar]
- Günaydın, S.; Sağlam, C.; Çetin, N. Tarımsal ürünlerin kurutulmasında kullanılan kurutma yöntemleri. Erciyes Tarım Hayvan Bilim. Derg. 2022, 5, 30–45. [Google Scholar] [CrossRef]
- Hassanpouraghdam, M.B.; Hassani, A.; Vojodi, L.; Farsad-Akhtar, N. Drying method affects essential oil content and composition of basil (Ocimum basilicum L.). J. Essent. Oil Bear. Plants 2010, 13, 759–766. [Google Scholar] [CrossRef]
- Aksüt, B.; Dinçer, E.; Saraçoğlu, O.; Polatcı, H. Kurutma yöntemi ve sıcaklık değerlerinin mor reyhanın kuruma kinetiği ve renk kalitesi üzerine etkisi. Anadolu Tarım Bilim. Derg. 2023, 38, 187–198. [Google Scholar] [CrossRef]
- Motevali, A.; Minaei, S.; Khoshtaghaza, M.H.; Amirnejat, H. Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy 2011, 36, 6433–6441. [Google Scholar] [CrossRef]
- Turan, A. Effect of drying methods on nut quality of hazelnuts (Corylus avellana L.). J. Food Sci. Technol. 2018, 55, 4554–4565. [Google Scholar] [CrossRef]
- Kandemir, L. Hazelnut Drying with LED Technology. Master’s Thesis, Ordu University, Institute of Science, Ordu, Türkiye, 2019. [Google Scholar]
- Balık, H.I.; Kayalak Balık, S.; Karakaya, O.; Ozturk, B. How does harvest time affect the major fatty acids and bioactive compounds in hazelnut cultivars (Corylus avellana L.)? Grasas Aceites 2024, 75, e541. [Google Scholar] [CrossRef]
- Dincer, İ.; Ezzat, M. Geothermal energy production. In Comprehensive Energy Systems; Dincer, I., Ed.; Elsevier: Oxford, UK, 2018; pp. 252–303. [Google Scholar]
- Gremmen, B.; van Haperen, P.; Lamerichs, J. Total Food-Sustainability of the Agri-Food Chain. In A Socio-Economic Perspective on Co Product Exploitation; Waldron, K.W., Moates, G.K., Fraulds, C.B., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2009; pp. 3–13. [Google Scholar]
- Tippayawong, T.; Tantakitti, C.; Thavornun, S. Energy efficiency of improvements in longan drying practice. Energy 2008, 33, 1137–1143. [Google Scholar] [CrossRef]
- Atuonwu, J.C.; Jin, X.; van Straten, G.; van Deventer Antonius, H.C.; Van Boxtel, J.B. Reducing energy consumption in food drying: Opportunities in desiccant adsorption and other dehumidification strategies. Procedia Food Sci. 2011, 1, 1799–1805. [Google Scholar] [CrossRef]
- Di Cesare, L.F.; Forni, E.; Viscardi, D.; Nani, R.C. Changes in the chemical composition of basil caused by different drying procedures. J. Agric. Food Chem. 2003, 51, 3575–3581. [Google Scholar] [CrossRef] [PubMed]
- Gürlek, G.; Akdemir, Ö.; Güngör, A. Usage of heat pump dryer in food drying process and apple drying application. Pamukkale Univ. J. Eng. Sci. 2015, 21, 398–403. [Google Scholar] [CrossRef]
- Metiner, E.E.; Bıyıklı, İ.; Yücel, N.; Türkoğlu, T.; Dirim, S. Farklı kurutma yöntemleriyle meyve kabuğu tozu elde edilmesi: Fiziksel özellikler, toz ürün özelliği ve kurutma yöntemlerinin enerji verimliliği yönünden incelenmesi. Fırat Üniv. Fen Bilim. Derg. 2023, 35, 29–37. [Google Scholar]
- Dolgun, G.K.; Aktaş, M.; Dolgun, E.C. Infrared convective drying of walnut with energy-exergy perspective. J. Food Eng. 2021, 306, 110638. [Google Scholar] [CrossRef]
- Ishwarya, S.P.; Anandharamakrishnan, C.; Stapley, A.G. Spray-freeze-drying: A novel process for the drying of foods and bioproducts. Trends Food Sci. Technol. 2015, 41, 161–181. [Google Scholar] [CrossRef]
- Akgün, M.; Şenyurt, Ö.; Kandemir, L. Sıcak beyaz (sarı) renkli led ile kurutmanın fındığın (Corylus avellana L.) kuruma karakteristiklerine etkisi. Ordu Üniv. Bilim Teknol. Derg. 2017, 7, 266–274. [Google Scholar]
- Akgün, M.; Kandemir, L.; Öztürk, B. Effect of led drying on drying behavior of Prunus domestica L. fruit. Indian J. Pharm. Educ. Res. 2018, 52, 115–118. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Ma, W.; Shen, L.; Liu, C.; Liu, C.; Zheng, X.; Li, S. Utilization efficiency of microwave energy for granular food in continuous drying: From propagation properties to technology parameters. Dry. Technol. 2022, 40, 1881–1900. [Google Scholar] [CrossRef]
- Tüfekçi, S.; Özkal, S.G. The optimization of hybrid (Microwave–Conventional) drying of sweet potato using response surface methodology (RSM). Foods 2023, 12, 3003. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Cai, Y.; Lu, Y.; Shi, C.; Han, X.; Liu, L.; Yin, X.; Lan, X.; Guo, X. Effect of microwave treatments combined with hot-air drying on phytochemical profiles and antioxidant activities in lily bulbs (Lilium lancifolium). Foods 2023, 12, 2344. [Google Scholar] [CrossRef]
- Wu, X.-f.; Zhang, M.; Bhandari, B. A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militaris. Innov. Food Sci. Emerg. Technol. 2019, 54, 34–42. [Google Scholar] [CrossRef]
- Demirpolat, A.B. Investigation of mass transfer with different models in a solar energy food-drying system. Energies 2019, 12, 3447. [Google Scholar] [CrossRef]
- Motevali, A.; Minaei, S.; Khoshtagaza, M.H. Evaluation of energy consumption in different drying methods. Energy Convers. Manag. 2011, 52, 1192–1199. [Google Scholar] [CrossRef]
- Motevali, A.; Minaei, S.; Banakar, A.; Ghobadian, B.; Khoshtaghaza, M.H. Comparison of energy parameters in various dryers. Energy Convers. Manag. 2014, 87, 711–725. [Google Scholar] [CrossRef]
- Nwakuba, N.R.; Asoegwu, S.N.; Nwaigwe, K.N. Energy consumption requirements of agricultural dryers: An overview. Agric. Eng. Int. CIGR J. 2016, 18, 119–132. [Google Scholar]
- Unver, U. Efficiency analysis of induction air heater and investigation of distribution of energy losses. Teh. Vjesn. 2016, 23, 1259–1267. [Google Scholar] [CrossRef]
- Stephenus, F.N.; Benjamin, M.A.Z.; Anuar, A.; Awang, M.A. Effect of temperatures on drying kinetics, extraction yield, phenolics, flavonoids, and antioxidant activity of Phaleria macrocarpa (scheff.) boerl. (mahkota dewa) fruits. Foods 2023, 12, 2859. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, M.; Sathe, S.K. Chemical composition of selected edible nut seeds. J. Agric. Food Chem. 2006, 54, 4705–4714. [Google Scholar] [CrossRef] [PubMed]
- Firestone, D. American Oil Chemists’ Society. Official Methods and Recommended Practices; AOCS Press: Champaign, IL, USA, 1997. [Google Scholar]
- Turan, A.; İslam, A. Determination of drying method for reducing oil oxidation of Tombul (cv) hazelnut. J. Food 2019, 44, 563–575. [Google Scholar] [CrossRef]
- Sali, K. Determination of Quality Changes in Cakildak, Palaz and Tombul Hazelnut Cultivars Dried Different Conditions during the Storage. Master’s Thesis, Ordu University, Institute of Science, Ordu, Türkiye, 2022. [Google Scholar]
Oven Working Time (Work) (h) | Idle Waiting Time (Wait) (h) | |||
---|---|---|---|---|
0.5 | 1.0 | 1.5 | 2.0 | |
0.5 | case 1 | case 2 | case 3 | case 4 |
1.0 | case 5 | case 6 | case 7 | case 8 |
1.5 | case 9 | case 10 | case 11 | case 12 |
2.0 | case 13 | case 14 | case 15 | case 16 |
Drying Period | Vair = 0.5 m/s | Vair = 1 m/s | Vair = 1.5 m/s | |||
---|---|---|---|---|---|---|
Work (h) | Wait (h) | Work (h) | Wait (h) | Work (h) | Wait (h) | |
Case 1 | 720 | 690 | 720 | 570 | 660 | 630 |
Case 2 | 630 | 1200 | 600 | 1140 | 540 | 1020 |
Case 3 | 510 | 1560 | 510 | 1440 | 450 | 1260 |
Case 4 | 450 | 1750 | 450 | 1680 | 420 | 1560 |
Case 5 | 960 | 450 | 840 | 390 | 900 | 480 |
Case 6 | 900 | 840 | 840 | 780 | 750 | 630 |
Case 7 | 840 | 1170 | 810 | 1170 | 660 | 900 |
Case 8 | 720 | 1320 | 780 | 1260 | 660 | 120 |
Case 9 | 990 | 300 | 960 | 300 | 900 | 300 |
Case 10 | 900 | 540 | 900 | 540 | 810 | 600 |
Case 11 | 840 | 810 | 810 | 720 | 720 | 810 |
Case 12 | 810 | 960 | 810 | 960 | 720 | 960 |
Case 13 | 1080 | 240 | 960 | 270 | 930 | 210 |
Case 14 | 1080 | 480 | 960 | 420 | 840 | 360 |
Case 15 | 960 | 630 | 900 | 630 | 780 | 540 |
Case 16 | 960 | 810 | 840 | 720 | 720 | 600 |
Continuous work | 1200 | 0 | 1170 | 0 | 1080 | 0 |
Voven = 0.5 m/s | %ɳe | |||
---|---|---|---|---|
0.5 h Wait | 1.0 h Wait | 1.5 h Wait | 2.0 h Wait | |
0.5 h work | 35.5 | 43.6 | 54.3 | 59.7 |
1.0 h work | 14 | 19.1 | 24.8 | 35.5 |
1.5 h work | 11.3 | 19.1 | 24.8 | 27.4 |
2.0 h work | 3.3 | 3.3 | 14 | 14 |
Voven = 1 m/s | %ɳe | |||
---|---|---|---|---|
0.5 h Wait | 1.0 h Wait | 1.5 h Wait | 2.0 h Wait | |
0.5 h work | 38.5 | 48.7 | 56.4 | 61.5 |
1.0 h work | 28.2 | 28.2 | 30.8 | 33.3 |
1.5 h work | 17.9 | 23.1 | 30.8 | 30.8 |
2.0 h work | 17.9 | 17.9 | 23.1 | 28.2 |
Voven = 1.5 m/s | %ɳe | |||
---|---|---|---|---|
0.5 h Wait | 1.0 h Wait | 1.5 h Wait | 2.0 h Wait | |
0.5 h work | 38.9 | 50 | 58.3 | 61.1 |
1.0 h work | 16.7 | 30.6 | 38.9 | 38.9 |
1.5 h work | 16.7 | 25 | 33.3 | 33.3 |
2.0 h work | 11.1 | 22.2 | 27.8 | 33.3 |
Drying Periods | %Oil Ratio | %Protein |
---|---|---|
Case 1 | 65.72 | 15.1 |
Case 2 | 64.68 | 15.8 |
Case 3 | 64.70 | 1.5 |
Case 4 | 65.98 | 16.6 |
Case 5 | 67.71 | 16.2 |
Case 6 | 64.80 | 17.3 |
Case 7 | 63.02 | 17.8 |
Case 8 | 65.84 | 16.1 |
Case 9 | 65.18 | 16.0 |
Case 10 | 61.46 | 15.4 |
Case 11 | 67.25 | 15.9 |
Case 12 | 64.39 | 16.7 |
Case 13 | 65.49 | 15.8 |
Case 14 | 63.92 | 16.7 |
Case 15 | 62.89 | 15.2 |
Case 16 | 66.93 | 14.8 |
Continuous work | 65.38 | 14.2 |
Sun drying | 62.48 | 17.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akgün, M.; Kontaş, E. The Effect of the Periodic Drying Method on the Drying Time of Hazelnuts and Energy Utilization. Foods 2024, 13, 901. https://doi.org/10.3390/foods13060901
Akgün M, Kontaş E. The Effect of the Periodic Drying Method on the Drying Time of Hazelnuts and Energy Utilization. Foods. 2024; 13(6):901. https://doi.org/10.3390/foods13060901
Chicago/Turabian StyleAkgün, Mithat, and Emrullah Kontaş. 2024. "The Effect of the Periodic Drying Method on the Drying Time of Hazelnuts and Energy Utilization" Foods 13, no. 6: 901. https://doi.org/10.3390/foods13060901
APA StyleAkgün, M., & Kontaş, E. (2024). The Effect of the Periodic Drying Method on the Drying Time of Hazelnuts and Energy Utilization. Foods, 13(6), 901. https://doi.org/10.3390/foods13060901