Assessing the Effects of Cold Atmospheric Plasma on the Natural Microbiota and Quality of Pork during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Cold Atmospheric Plasma (CAP) Treatment
2.3. Meat Sample Standardisation
2.4. Microbiological Analysis
2.5. Determination of Meat Quality
2.5.1. Analysis of Tenderness
2.5.2. Analysis of pH
2.5.3. Analysis of TBARS
2.5.4. Cooking Loss
2.5.5. Drip Loss
2.5.6. Analysis of Colour
2.6. Statistical Analysis
3. Results and Discussions
3.1. Impact of CAP Treatment on Spoilage Microbiota in Pork during Storage
3.2. Impact of CAP Treatment on Meat Quality in Pork during Storage
3.2.1. pH
3.2.2. Cooking Loss
3.2.3. Water-Holding Capacity
3.2.4. Water Retention in Meat during Storage
3.2.5. Tenderness
3.2.6. Colour Parameters
3.2.7. Lipid Oxidation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parlasca, M.C.; Qaim, M. Meat Consumption and Sustainability. Annu. Rev. Resour. Econ. 2022, 14, 17–41. [Google Scholar] [CrossRef]
- Libera, J.; Iłowiecka, K.; Stasiak, D. Consumption of Processed Red Meat and Its Impact on Human Health: A Review. Int. J. Food Sci. Technol. 2021, 56, 6115–6123. [Google Scholar] [CrossRef]
- Hernández-García, E.; Vargas, M.; Torres-Giner, S. Quality and Shelf-Life Stability of Pork Meat Fillets Packaged in Multilayer Polylactide Films. Foods 2022, 11, 426. [Google Scholar] [CrossRef]
- Sofos, J.N. Safety of Food and Beverages: Meat and Meat Products. In Encyclopedia of Food Safety; Elsevier: Amsterdam, The Netherlands, 2014; pp. 268–279. [Google Scholar]
- Sohaib, M.; Anjum, F.M.; Arshad, M.S.; Rahman, U.U. Postharvest Intervention Technologies for Safety Enhancement of Meat and Meat Based Products; A Critical Review. J. Food Sci. Technol. 2016, 53, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, H.B.; Annapure, U.S.; Deshmukh, R.R. Non-Thermal Technologies for Food Processing. Front. Nutr. 2021, 8, 7090. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wang, J.; Liu, C.; Chen, G.; Sang, X.; Zhang, J. Effects of High Voltage Atmospheric Cold Plasma Treatment on the Number of Microorganisms and the Quality of Trachinotus Ovatus during Refrigerator Storage. Foods 2022, 11, 2706. [Google Scholar] [CrossRef]
- Peťková, M.; Švubová, R.; Kyzek, S.; Medvecká, V.; Slováková, Ľ.; Ševčovičová, A.; Gálová, E. The Effects of Cold Atmospheric Pressure Plasma on Germination Parameters, Enzyme Activities and Induction of DNA Damage in Barley. Int. J. Mol. Sci. 2021, 22, 2833. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Liu, X.; Li, J.; Ding, T.; Zhang, H.; Zhang, X.; Bai, Y. Influences of Cold Atmospheric Plasma on Microbial Safety, Physicochemical and Sensorial Qualities of Meat Products. J. Food Sci. Technol. 2018, 55, 846–857. [Google Scholar] [CrossRef]
- Misra, N.N.; Jo, C. Applications of Cold Plasma Technology for Microbiological Safety in Meat Industry. Trends Food Sci. Technol. 2017, 64, 74–86. [Google Scholar] [CrossRef]
- Ekonomou, S.I.; Saad, S.; Varadi, A.; Stratakos, A.C. Drug Delivery Using Cold Plasma. In Emerging Drug Delivery and Biomedical Engineering Technologies; CRC Press: Boca Raton, FL, USA, 2023; pp. 171–179. [Google Scholar]
- Nicol, M.J.; Brubaker, T.R.; Honish, B.J.; Simmons, A.N.; Kazemi, A.; Geissel, M.A.; Whalen, C.T.; Siedlecki, C.A.; Bilén, S.G.; Knecht, S.D.; et al. Antibacterial Effects of Low-Temperature Plasma Generated by Atmospheric-Pressure Plasma Jet Are Mediated by Reactive Oxygen Species. Sci. Rep. 2020, 10, 3066. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wang, J.; Zhuang, H.; Yan, W.; Zhao, J.; Zhang, J. Effect of In-Package High Voltage Dielectric Barrier Discharge on Microbiological, Color and Oxidation Properties of Pork in Modified Atmosphere Packaging during Storage. Meat Sci. 2019, 149, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Ulbin-Figlewicz, N.; Brychcy, E.; Jarmoluk, A. Effect of Low-Pressure Cold Plasma on Surface Microflora of Meat and Quality Attributes. J. Food Sci. Technol. 2015, 52, 1228–1232. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Puligundla, P.; Mok, C. Corona Discharge Plasma Jet for Inactivation of Escherichia Coli O157:H7 and Listeria Monocytogenes on Inoculated Pork and Its Impact on Meat Quality Attributes. Ann. Microbiol. 2016, 66, 685–694. [Google Scholar] [CrossRef]
- Kim, H.-J.; Jang, A. Evaluation of the Microbiological Status of Raw Pork Meat in Korea: Modification of the Microbial Guideline Levels for Meat. Food Sci. Biotechnol. 2018, 27, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Kim, H.J.; Yong, H.I.; Park, S.; Kim, K.; Choe, W.; Jo, C. Flexible Thin-Layer Dielectric Barrier Discharge Plasma Treatment of Pork Butt and Beef Loin: Effects on Pathogen Inactivation and Meat-Quality Attributes. Food Microbiol. 2015, 46, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Vukić, M.; Vujadinović, D.; Smiljanić, M.; Gojković–Cvjetković, V. Atmospheric Cold Plasma Technology for Meat Industry: A Bibliometric Review. Theory Pract. Meat Process. 2022, 7, 177–184. [Google Scholar] [CrossRef]
- Faucitano, L.; Ielo, M.C.; Ster, C.; Lo Fiego, D.P.; Methot, S.; Saucier, L. Shelf Life of Pork from Five Different Quality Classes. Meat Sci. 2010, 84, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Ekonomou, S.I.; Leech, D.J.; Lightfoot, S.; Huson, D.; Stratakos, A.C. Development of Novel Antimicrobial Coatings Incorporating Linalool and Eugenol to Improve the Microbiological Quality and Safety of Raw Chicken. LWT 2023, 182, 114839. [Google Scholar] [CrossRef]
- Choe, J.-H.; Choi, M.-H.; Rhee, M.-S.; Kim, B.-C. Estimation of Sensory Pork Loin Tenderness Using Warner-Bratzler Shear Force and Texture Profile Analysis Measurements. Asian-Australas. J. Anim. Sci. 2015, 29, 1029–1036. [Google Scholar] [CrossRef]
- Pomponio, L.; Ruiz-Carrascal, J. Oxidative Deterioration of Pork during Superchilling Storage. J. Sci. Food Agric. 2017, 97, 5211–5215. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Naeem, H.H.S.; Ebaid, E.M.S.M.; Khalel, K.H.M.; Imre, K.; Morar, A.; Herman, V.; EL-Nawawi, F.A.M. Decontamination of Chicken Meat Using Dielectric Barrier Discharge Cold Plasma Technology: The Effect on Microbial Quality, Physicochemical Properties, Topographical Structure, and Sensory Attributes. LWT 2022, 165, 113739. [Google Scholar] [CrossRef]
- Jankowiak, H.; Cebulska, A.; Bocian, M. The Relationship between Acidification (PH) and Meat Quality Traits of Polish White Breed Pigs. Eur. Food Res. Technol. 2021, 247, 2813–2820. [Google Scholar] [CrossRef]
- Sammanee, P.; Ngamsanga, P.; Jainonthee, C.; Chupia, V.; Sawangrat, C.; Kerdjana, W.; Lampang, K.N.; Meeyam, T.; Pichpol, D. Decontamination of Pathogenic and Spoilage Bacteria on Pork and Chicken Meat by Liquid Plasma Immersion. Foods 2022, 11, 1743. [Google Scholar] [CrossRef] [PubMed]
- Moutiq, R.; Misra, N.N.; Mendonça, A.; Keener, K. In-Package Decontamination of Chicken Breast Using Cold Plasma Technology: Microbial, Quality and Storage Studies. Meat Sci. 2020, 159, 107942. [Google Scholar] [CrossRef] [PubMed]
- Bidner, B.S.; Ellis, M.; Brewer, M.S.; Campion, D.; Wilson, E.R.; McKeith, F.K. Effect of Ultimate PH on the Quality Characteristics of Pork. J. Muscle Foods 2004, 15, 139–154. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, Y.; Huang, S.; Dong, X.; Huang, J.; Huang, M. In-Package Cold Plasma Treatment of Braised Chicken: Voltage Effect. Food Sci. Hum. Wellness 2022, 11, 845–853. [Google Scholar] [CrossRef]
- Timmermann, E.; Bansemer, R.; Gerling, T.; Hahn, V.; Weltmann, K.-D.; Nettesheim, S.; Puff, M. Piezoelectric-Driven Plasma Pen with Multiple Nozzles Used as a Medical Device: Risk Estimation and Antimicrobial Efficacy. J. Phys. D Appl. Phys. 2021, 54, 025201. [Google Scholar] [CrossRef]
- Korzec, D.; Hoppenthaler, F.; Nettesheim, S. Piezoelectric Direct Discharge: Devices and Applications. Plasma 2020, 4, 1–41. [Google Scholar] [CrossRef]
- Asimakopoulou, E.; Εkonomou, S.Ι.; Papakonstantinou, P.; Doran, O.; Stratakos, A.C. Inhibition of Corrosion Causing Pseudomonas Aeruginosa Using Plasma-Activated Water. J. Appl. Microbiol. 2022, 132, 2781–2794. [Google Scholar] [CrossRef] [PubMed]
- Ekonomou, S.I.; Boziaris, I.S. Non-Thermal Methods for Ensuring the Microbiological Quality and Safety of Seafood. Appl. Sci. 2021, 11, 833. [Google Scholar] [CrossRef]
- Chauvin, J.; Judée, F.; Yousfi, M.; Vicendo, P.; Merbahi, N. Analysis of Reactive Oxygen and Nitrogen Species Generated in Three Liquid Media by Low Temperature Helium Plasma Jet. Sci. Rep. 2017, 7, 4562. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Antibacterial Plant Compounds, Extracts and Essential Oils: An Updated Review on Their Effects and Putative Mechanisms of Action. Phytomedicine 2021, 90, 153626. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Lee, J.; Lim, Y.; Choe, W.; Yong, H.I.; Jo, C. Direct Infusion of Nitrite into Meat Batter by Atmospheric Pressure Plasma Treatment. Innov. Food Sci. Emerg. Technol. 2017, 39, 113–118. [Google Scholar] [CrossRef]
- Aaslyng, M.D.; Bejerholm, C.; Ertbjerg, P.; Bertram, H.C.; Andersen, H.J. Cooking Loss and Juiciness of Pork in Relation to Raw Meat Quality and Cooking Procedure. Food Qual. Prefer. 2003, 14, 277–288. [Google Scholar] [CrossRef]
- Luo, J.; Xu, W.; Liu, Q.; Zou, Y.; Wang, D.; Zhang, J. Dielectric Barrier Discharge Cold Plasma Treatment of Pork Loin: Effects on Muscle Physicochemical Properties and Emulsifying Properties of Pork Myofibrillar Protein. LWT 2022, 162, 113484. [Google Scholar] [CrossRef]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water Distribution and Mobility in Meat during the Conversion of Muscle to Meat and Ageing and the Impacts on Fresh Meat Quality Attributes—A Review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Laghi, L.; Venturi, L.; Dellarosa, N.; Petracci, M. Water Diffusion to Assess Meat Microstructure. Food Chem. 2017, 236, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Li, R.; Wang, Y.; Xiang, Q.; Li, K.; Bai, Y. Effects of Combined Treatment with Ultrasound and PH Shifting on Foaming Properties of Chickpea Protein Isolate. Food Hydrocoll. 2022, 124, 107351. [Google Scholar] [CrossRef]
- Park, D.H.; Lee, S.; Kim, E.J.; Jo, Y.-J.; Choi, M.-J. Development of a Stepwise Algorithm for Supercooling Storage of Pork Belly and Chicken Breast and Its Effect on Freshness. Foods 2022, 11, 380. [Google Scholar] [CrossRef] [PubMed]
- Huff-Lonergan, E.; Baas, T.J.; Malek, M.; Dekkers, J.C.M.; Prusa, K.; Rothschild, M.F. Correlations among Selected Pork Quality Traits. J. Anim. Sci. 2002, 80, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Maltin, C.; Balcerzak, D.; Tilley, R.; Delday, M. Determinants of Meat Quality: Tenderness. Proc. Nutr. Soc. 2003, 62, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Ngapo, T.M.; Dransfield, E.; Martin, J.-F.; Magnusson, M.; Bredahl, L.; Nute, G.R. Consumer Perceptions: Pork and Pig Production. Insights from France, England, Sweden and Denmark. Meat Sci. 2004, 66, 125–134. [Google Scholar] [CrossRef]
- Zeb, A.; Ullah, F. A Simple Spectrophotometric Method for the Determination of Thiobarbituric Acid Reactive Substances in Fried Fast Foods. J. Anal. Methods Chem. 2016, 2016, 9412767. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, A.M.; Muzolf-Panek, M. Predictive Modelling of TBARS Changes in the Intramuscular Lipid Fraction of Raw Ground Pork Enriched with Plant Extracts. J. Food Sci. Technol. 2022, 59, 1756–1768. [Google Scholar] [CrossRef] [PubMed]
- Font-i-Furnols, M. Meat Consumption, Sustainability and Alternatives: An Overview of Motives and Barriers. Foods 2023, 12, 2144. [Google Scholar] [CrossRef] [PubMed]
Trait | CAP Treatment Time | |||||
---|---|---|---|---|---|---|
0 min | 1 min | 3 min | 6 min | 9 min | ||
Day 0 | pH | 5.41 ± 0.02 azy | 5.40 ± 0.05 azy | 5.40 ± 0.04 az | 5.38 ± 0.02 azy | 5.39 ± 0.01 azy |
cooking loss, % | 18.51 ± 0.52 aw | 17.32 ± 0.53 acw | 15.59 ± 0.55 cbw | 15.61 ± 0.48 cbw | 15.61 ± 0.65 bv | |
WHC, % | 16.00 ± 0.82 az | 16.45 ± 0.83 az | 16.31 ± 0.73 az | 16.19 ± 0.81 az | 16.91 ± 0.71 az | |
Tenderness, kg | 2081.10 ± 388.26 az | 1848.17 ± 364.31 az | 1760.44 ± 318.32 az | 1988.35 ± 261.73 aw | 2069.22 ± 376.28 az | |
Day 2 | pH | 5.42 ± 0.03 az | 5.41 ± 0.03 az | 5.41 ± 0.04 az | 5.42 ± 0.04 az | 5.40 ± 0.03 az |
cooking loss, % | 19.31 ± 0.47 az | 19.34 ± 0.30 az | 18.73 ± 0.43 ayz | 18.29 ± 0.42 bz | 14.53 ± 0.22 bw | |
WHC, % | 15.61 ± 0.46 ay | 15.90 ± 0.63 ay | 16.42 ± 0.48 by | 16.49 ± 0.49 by | 16.48 ± 0.61 by | |
Tenderness, kg | 2199.51 ± 223.11 ay | 2605.47 ± 226.90 ay | 2219.48 ± 194.66 ay | 2637.76 ± 268.33 az | 2872.79 ± 295.60 ay | |
Day 4 | pH | 5.37 ± 0.04 ayx | 5.36 ± 0.05 ayx | 5.35 ± 0.02 ay | 5.37 ± 0.05 ayx | 5.37 ± 0.03 ayx |
cooking loss, % | 19.33 ± 0.31 az | 18.17 ± 0.25 abx | 17.50 ± 0.41 abx | 16.17 ± 0.49 bdx | 13.08 ± 0.40 dx | |
WHC, % | 15.37 ± 0.62 ax | 15.10 ± 0.35 ax | 16.19 ± 0.71 ax | 16.89 ± 0.71 bx | 17.12 ± 0.74 bx | |
Tenderness, kg | 2415.03 ± 323.65 ax | 2212.67 ± 451.21 ax | 2281.69 ± 127.03 ax | 2398.31 ± 502.11 ay | 2846.33 ± 611.57 ax | |
Day 6 | pH | 5.32 ± 0.04 axw | 5.33 ± 0.04 ax | 5.37 ± 0.02 azy | 5.33 ± 0.03 ax | 5.35 ± 0.40 ax |
cooking loss, % | 19.18 ± 0.54 ay | 17.32 ± 0.51 aw | 18.15 ± 0.52 ay | 15.54 ± 0.36 bw | 15.73 ± 0.39 by | |
WHC, % | 14.21 ± 0.45 aw | 14.32 ± 0.65 aw | 14.70 ± 0.43 aw | 14.89 ± 0.44 bw | 15.11 ± 0.54 bw | |
Tenderness, kg | 2432.51 ± 58.34 aw | 2400.23 ± 183.24 aw | 2608.23 ± 232.67 aw | 2545.17 ± 189.28 ax | 2601.76 ± 365.17 aw | |
Day 8 | pH | 5.35 ± 0.03 aw | 5.36 ± 0.04 ayx | 5.34 ± 0.04 ay | 5.36 ± 0.04 ayx | 5.36 ± 0.03 ax |
cooking loss, % | 19.07 ± 0.28 ax | 18.34 ± 0.40 ay | 18.76 ± 0.31 az | 16.68 ± 0.57 by | 16.37 ± 0.50 bz | |
WHC, % | 12.89 ± 0.46 av | 13.10 ± 0.61 av | 13.45 ± 0.46 av | 13.64 ± 0.39 av | 13.54 ± 0.71 av | |
Tenderness, kg | 1963.18 ± 260.52 av | 2065.69 ± 166.43 av | 1827.01 ± 247.50 av | 1976.72 ± 337.98 aw | 2049.52 ± 228.13 av |
Colour Spec | CAP Treatment | |||||
---|---|---|---|---|---|---|
0 min | 1 min | 3 min | 6 min | 9 min | ||
Day 0 | L* | 50.13 ± 1.73 az | 52.98 ± 1.21 az | 51.99 ± 2.71 az | 51.18 ± 0.97 az | 52.77 ± 2.39 az |
a* | 4.26 ± 0.23 ay | 3.53 ± 0.94 ax | 2.74 ± 0.42 bz | 2.25 ± 0.41 bw | 2.76 ± 0.56 bz | |
b* | 7.18 ± 0.44 az | 8.25 ± 0.49 bz | 7.94 ± 0.21 bz | 8.15 ± 0.35 bz | 8.36 ± 0.42 bz | |
Day 2 | L* | 53.10 ± 4.26 ay | 56.01 ± 0.82 ay | 55.65 ± 2.79 ay | 53.80 ± 1.56 ay | 54.14 ± 1.58 ay |
a* | 3.76 ± 0.40 aw | 3.08 ± 0.38 bw | 2.82 ± 0.58 by | 2.24 ± 0.23 bw | 2.33 ± 0.15 by | |
b* | 4.78 ± 0.31 aw | 4.97 ± 0.21 aw | 5.01 ± 0.52 aw | 5.34 ± 0.31 ay | 5.66 ± 0.41 bw | |
Day 4 | L* | 57.35 ± 1.97 ax | 58.35 ± 2.14 ax | 58.87 ± 0.98 ax | 58.06 ± 1.17 ax | 59.03 ± 3.48 ax |
a* | 4.24 ± 0.87 ayx | 3.88 ± 0.19 ay | 3.78 ± 0.47 ax | 3.47 ± 0.64 ax | 3.25 ± 0.22 bx | |
b* | 5.07 ± 0.05 ax | 4.97 ± 0.17 aw | 4.98 ± 0.43 aw | 5.03 ± 0.32 ax | 5.71 ± 0.24 bw | |
Day 6 | L* | 59.28 ± 2.96 aw | 59.34 ± 0.49 aw | 60.39 ± 2.82 aw | 60.86 ± 1.19 aw | 57.51 ± 1.83 aw |
a* | 4.72 ± 0.56 az | 4.18 ± 0.70 az | 4.14 ± 0.12 aw | 4.05 ± 0.76 az | 4.10 ± 0.65 aw | |
b* | 5.91 ± 0.50 ay | 6.17 ± 0.15 ay | 6.48 ± 0.59 ay | 6.48 ± 0.53 aw | 6.67 ± 0.27 by | |
Day 8 | L* | 61.19 ± 2.60 av | 60.70 ± 2.76 av | 59.86 ± 2.51 av | 59.30 ± 2.82 av | 59.53 ± 1.67 av |
a* | 4.09 ± 0.23 ax | 3.91 ± 0.87 ay | 3.89 ± 0.33 av | 3.71 ± 0.26 ay | 3.87 ± 0.47 av | |
b* | 5.12 ± 0.19 ax | 5.52 ± 0.33 ax | 5.52 ± 0.23 ax | 5.59 ± 0.33 ax | 5.38 ± 0.22 ax |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliinychenko, Y.K.; Ekonomou, S.I.; Tiwari, B.K.; Stratakos, A.C. Assessing the Effects of Cold Atmospheric Plasma on the Natural Microbiota and Quality of Pork during Storage. Foods 2024, 13, 1015. https://doi.org/10.3390/foods13071015
Oliinychenko YK, Ekonomou SI, Tiwari BK, Stratakos AC. Assessing the Effects of Cold Atmospheric Plasma on the Natural Microbiota and Quality of Pork during Storage. Foods. 2024; 13(7):1015. https://doi.org/10.3390/foods13071015
Chicago/Turabian StyleOliinychenko, Yelyzaveta K., Sotirios I. Ekonomou, Brijesh K. Tiwari, and Alexandros Ch. Stratakos. 2024. "Assessing the Effects of Cold Atmospheric Plasma on the Natural Microbiota and Quality of Pork during Storage" Foods 13, no. 7: 1015. https://doi.org/10.3390/foods13071015
APA StyleOliinychenko, Y. K., Ekonomou, S. I., Tiwari, B. K., & Stratakos, A. C. (2024). Assessing the Effects of Cold Atmospheric Plasma on the Natural Microbiota and Quality of Pork during Storage. Foods, 13(7), 1015. https://doi.org/10.3390/foods13071015