Nutritional Characteristics, Health Impact, and Applications of Kefir
Abstract
:1. Introduction
2. Gut Microbiota Changes with Age
3. Kefir: Composition and Nutritional Profile
3.1. Occurrence
3.2. Microbial Diversity
3.3. Macronutrients and Micronutrients
4. Kefir: Implications for Healthy Aging
4.1. Type 2 Diabetes
4.2. Cardiovascular Health
4.3. Cognitive Function and Alzheimer’s Disease
4.4. Cancer
5. Applications in Food Product Development
6. Perspectives
Funding
Conflicts of Interest
Abbreviations
References
- United Nations Department of Economic and Social Affairs. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2022. [Google Scholar]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194. [Google Scholar] [CrossRef] [PubMed]
- Tchkonia, T.; Palmer, A.K.; Kirkland, J.L. New Horizons: Novel Approaches to Enhance Healthspan through Targeting Cellular Senescence and Related Aging Mechanisms. J. Clin. Endocrinol. Metab. 2021, 106, E1481–E1487. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Tana, C.; Nouvenne, A. The Intestinal Microbiome and Its Relevance for Functionality in Older Persons. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Raza, M.H.; Gul, K.; Arshad, A.; Riaz, N.; Waheed, U.; Rauf, A.; Aldakheel, F.; Alduraywish, S.; Rehman, M.U.; Abdullah, M.; et al. Microbiota in Cancer Development and Treatment. J. Cancer Res. Clin. Oncol. 2019, 145, 49–63. [Google Scholar] [CrossRef] [PubMed]
- DeJong, E.N.; Surette, M.G.; Bowdish, D.M.E. The Gut Microbiota and Unhealthy Aging: Disentangling Cause from Consequence. Cell Host Microbe 2020, 28, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.S.; Rampelli, S.; Jeffery, I.B.; Santoro, A.; Neto, M.; Capri, M.; Giampieri, E.; Jennings, A.; Candela, M.; Turroni, S.; et al. Mediterranean Diet Intervention Alters the Gut Microbiome in Older People Reducing Frailty and Improving Health Status: The NU-AGE 1-Year Dietary Intervention across Five European Countries. Gut 2020, 69, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Pellanda, P.; Ghosh, T.S.; O’Toole, P.W. Understanding the Impact of Age-Related Changes in the Gut Microbiome on Chronic Diseases and the Prospect of Elderly-Specific Dietary Interventions. Curr. Opin. Biotechnol. 2021, 70, 48–55. [Google Scholar] [CrossRef]
- Bessa, M.K.; Bessa, G.R.; Bonamigo, R.R. Kefir as a Therapeutic Agent in Clinical Research: A Scoping Review. Nutr. Res. Rev. 2023, 1–17. [Google Scholar] [CrossRef]
- Leite, A.M.O.; Miguel, M.A.L.; Peixoto, R.S.; Ruas-Madiedo, P.; Paschoalin, V.M.F.; Mayo, B.; Delgado, S. Probiotic Potential of Selected Lactic Acid Bacteria Strains Isolated from Brazilian Kefir Grains. J. Dairy. Sci. 2015, 98, 3622–3632. [Google Scholar] [CrossRef] [PubMed]
- Culpepper, T. The Effects of Kefir and Kefir Components on Immune and Metabolic Physiology in Pre-Clinical Studies: A Narrative Review. Cureus 2022, 14, e27768. [Google Scholar] [CrossRef]
- González-Orozco, B.D.; García-Cano, I.; Jiménez-Flores, R.; Alvárez, V.B. Invited Review: Milk Kefir Microbiota—Direct and Indirect Antimicrobial Effects. J. Dairy. Sci. 2022, 105, 3703–3715. [Google Scholar] [CrossRef] [PubMed]
- Bourrie, B.C.T.; Richard, C.; Willing, B.P. Kefir in the Prevention and Treatment of Obesity and Metabolic Disorders. Curr. Nutr. Rep. 2020, 9, 184–192. [Google Scholar] [CrossRef]
- Egea, M.B.; Santos, D.C.d.; Oliveira Filho, J.G.d.; Ores, J.d.C.; Takeuchi, K.P.; Lemes, A.C. A Review of Nondairy Kefir Products: Their Characteristics and Potential Human Health Benefits. Crit. Rev. Food Sci. Nutr. 2022, 62, 1536–1552. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.M.d.O.; Miguel, M.A.L.; Peixoto, R.S.; Rosado, A.S.; Silva, J.T.; Paschoalin, V.M.F. Microbiological, Technological and Therapeutic Properties of Kefir: A Natural Probiotic Beverage. Braz. J. Microbiol. 2013, 44, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Y.; Li, X.-Y.; Shen, L.; Ji, H.-F. Regulatory Effects of Transition Metals Supplementation/Deficiency on the Gut Microbiota. Appl. Microbiol. Biotechnol. 2021, 105, 1007–1015. [Google Scholar] [CrossRef]
- Peluzio, M.d.C.G.; Dias, M.d.M.E.; Martinez, J.A.; Milagro, F.I. Kefir and Intestinal Microbiota Modulation: Implications in Human Health. Front. Nutr. 2021, 8, 638740. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.A.; Hennet, T. Mechanisms and Consequences of Intestinal Dysbiosis. Cell. Mol. Life Sci. 2017, 74, 2959–2977. [Google Scholar] [CrossRef] [PubMed]
- Amato, K.R.; Sanders, J.G.; Song, S.J.; Nute, M.; Metcalf, J.L.; Thompson, L.R.; Morton, J.T.; Amir, A.; McKenzie, V.J.; Humphrey, G.; et al. Evolutionary Trends in Host Physiology Outweigh Dietary Niche in Structuring Primate Gut Microbiomes. ISME J. 2019, 13, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, I.B.; Lynch, D.B.; O’Toole, P.W. Composition and Temporal Stability of the Gut Microbiota in Older Persons. ISME J. 2016, 10, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Derrien, M.; van Passel, M.W.J.; van de Bovenkamp, J.H.B.; Schipper, R.; de Vos, W.; Dekker, J. Mucin-Bacterial Interactions in the Human Oral Cavity and Digestive Tract. Gut Microbes 2010, 1, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Nylund, L.; Candela, M.; Ostan, R.; Bucci, L.; Pini, E.; Nikkïla, J.; Monti, D.; Satokari, R.; Franceschi, C.; et al. Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians. PLoS ONE 2010, 5, e10667. [Google Scholar] [CrossRef]
- Bárcena, C.; Valdés-Mas, R.; Mayoral, P.; Garabaya, C.; Durand, S.; Rodríguez, F.; Fernández-García, M.T.; Salazar, N.; Nogacka, A.M.; Garatachea, N.; et al. Healthspan and Lifespan Extension by Fecal Microbiota Transplantation into Progeroid Mice. Nat. Med. 2019, 25, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Jia, H.; Zhang, X.; Wang, X.; Wang, Z.; Gao, Z.; Yuan, Y.; Yue, T. Supplementation of Kefir Ameliorates Azoxymethane/Dextran Sulfate Sodium Induced Colorectal Cancer by Modulating the Gut Microbiota. Food Funct. 2021, 12, 11641–11655. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The Role of Short-Chain Fatty Acids in Health and Disease. In Advances in Immunology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 91–119. [Google Scholar]
- Elderman, M.; Sovran, B.; Hugenholtz, F.; Graversen, K.; Huijskes, M.; Houtsma, E.; Belzer, C.; Boekschoten, M.; de Vos, P.; Dekker, J.; et al. The Effect of Age on the Intestinal Mucus Thickness, Microbiota Composition and Immunity in Relation to Sex in Mice. PLoS ONE 2017, 12, e0184274. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qi, Y.; Jasper, H. Preventing Age-Related Decline of Gut Compartmentalization Limits Microbiota Dysbiosis and Extends Lifespan. Cell Host Microbe 2016, 19, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Iebba, V.; Totino, V.; Gagliardi, A.; Santangelo, F.; Cacciotti, F.; Trancassini, M.; Mancini, C.; Cicerone, C.; Corazziari, E.; Pantanella, F.; et al. Eubiosis and Dysbiosis: The Two Sides of the Microbiota. New Microbiol. 2016, 39, 1–12. [Google Scholar] [PubMed]
- Rosendo-Silva, D.; Viana, S.; Carvalho, E.; Reis, F.; Matafome, P. Are Gut Dysbiosis, Barrier Disruption, and Endotoxemia Related to Adipose Tissue Dysfunction in Metabolic Disorders? Overview of the Mechanisms Involved. Intern Emerg Med. 2023, 18, 1287–1302. [Google Scholar] [CrossRef] [PubMed]
- Iatcu, C.O.; Steen, A.; Covasa, M. Gut Microbiota and Complications of Type-2 Diabetes. Nutrients 2021, 14, 166. [Google Scholar] [CrossRef] [PubMed]
- Salgaço, M.K.; Oliveira, L.G.S.; Costa, G.N.; Bianchi, F.; Sivieri, K. Relationship between Gut Microbiota, Probiotics, and Type 2 Diabetes Mellitus. Appl. Microbiol. Biotechnol. 2019, 103, 9229–9238. [Google Scholar] [CrossRef] [PubMed]
- Caricilli, A.; Saad, M. The Role of Gut Microbiota on Insulin Resistance. Nutrients 2013, 5, 829–851. [Google Scholar] [CrossRef] [PubMed]
- Zamberi, N.R.; Abu, N.; Mohamed, N.E.; Nordin, N.; Keong, Y.S.; Beh, B.K.; Zakaria, Z.A.B.; Nik Abdul Rahman, N.M.A.; Alitheen, N.B. The Antimetastatic and Antiangiogenesis Effects of Kefir Water on Murine Breast Cancer Cells. Integr. Cancer Ther. 2016, 15, NP53–NP66. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Ferrocino, I.; Reale, A.; Sabbatini, R.; Milanović, V.; Alkić-Subašić, M.; Boscaino, F.; Aquilanti, L.; Pasquini, M.; Trombetta, M.F.; et al. Study of Kefir Drinks Produced by Backslopping Method Using Kefir Grains from Bosnia and Herzegovina: Microbial Dynamics and Volatilome Profile. Food Res. Int. 2020, 137, 109369. [Google Scholar] [CrossRef] [PubMed]
- Prado, M.R.; Blandón, L.M.; Vandenberghe, L.P.S.; Rodrigues, C.; Castro, G.R.; Thomaz-Soccol, V.; Soccol, C.R. Milk Kefir: Composition, Microbial Cultures, Biological Activities, and Related Products. Front. Microbiol. 2015, 6, 1177. [Google Scholar] [CrossRef] [PubMed]
- Fiorda, F.A.; de Melo Pereira, G.V.; Thomaz-Soccol, V.; Rakshit, S.K.; Pagnoncelli, M.G.B.; Vandenberghe, L.P.d.S.; Soccol, C.R. Microbiological, Biochemical, and Functional Aspects of Sugary Kefir Fermentation—A Review. Food Microbiol. 2017, 66, 86–95. [Google Scholar] [CrossRef]
- Kesenkaş, S.H.; Gürsoy, O.; Özbaş, H. Fermented Foods in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Van Wyk, J. Kefir: The Champagne of Fermented Beverages. In Fermented Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 473–527. [Google Scholar]
- Brasil, G.A.; Silva-Cutini, M.d.A.; Moraes, F.d.S.A.; Pereira, T.d.M.C.; Vasquez, E.C.; Lenz, D.; Bissoli, N.S.; Endringer, D.C.; de Lima, E.M.; Biancardi, V.C.; et al. The Benefits of Soluble Non-Bacterial Fraction of Kefir on Blood Pressure and Cardiac Hypertrophy in Hypertensive Rats Are Mediated by an Increase in Baroreflex Sensitivity and Decrease in Angiotensin-Converting Enzyme Activity. Nutrition 2018, 51–52, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-R.; Wang, S.-Y.; Lin, Y.-Y.; Lin, C.-W. Antitumor Activity of Milk Kefir and Soy Milk Kefir in Tumor-Bearing Mice. Nutr. Cancer 2002, 44, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Pogačić, T.; Sinko, S.; Zamberlin, S.; Samarzija, D. Microbiota of Kefir Grains. Mljekarstvo 2013, 63, 3–14. [Google Scholar]
- Cheirsilp, B.; Radchabut, S. Use of Whey Lactose from Dairy Industry for Economical Kefiran Production by Lactobacillus kefiranofaciens in Mixed Cultures with Yeasts. New Biotechnol. 2011, 28, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Azizi, N.F.; Kumar, M.R.; Yeap, S.K.; Abdullah, J.O.; Khalid, M.; Omar, A.R.; Osman, M.A.; Mortadza, S.A.S.; Alitheen, N.B. Kefir and Its Biological Activities. Foods 2021, 10, 1210. [Google Scholar] [CrossRef] [PubMed]
- Talib, N.; Mohamad, N.E.; Yeap, S.K.; Hussin, Y.; Aziz, M.N.; Masarudin, M.J.; Sharifuddin, S.A.; Hui, Y.W.; Ho, C.L.; Alitheen, N.B. Isolation and Characterization of Lactobacillus spp. from Kefir Samples in Malaysia. Molecules 2019, 24, 2606. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Wang, L. Bioactive Components in Kefir and Koumiss. In Bioactive Components in Milk and Dairy Products; Wiley: Hoboken, NJ, USA, 2009; pp. 251–262. [Google Scholar]
- Wang, H.; Wang, C.; Guo, M. Autogenic Successions of Bacteria and Fungi in Kefir Grains from Different Origins When Sub-Cultured in Goat Milk. Food Res. Int. 2020, 138, 109784. [Google Scholar] [CrossRef]
- Hamida, R.S.; Shami, A.; Ali, M.A.; Almohawes, Z.N.; Mohammed, A.E.; Bin-Meferij, M.M. Kefir: A Protective Dietary Supplementation against Viral Infection. Biomed. Pharmacother. 2021, 133, 110974. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S. Potential of Kefir as a Dietetic Beverage—A Review. Br. Food J. 2007, 109, 280–290. [Google Scholar] [CrossRef]
- Arslan, S. A Review: Chemical, Microbiological and Nutritional Characteristics of Kefir. CyTA-J. Food 2015, 13, 340–345. [Google Scholar] [CrossRef]
- Rosa, D.D.; Dias, M.M.S.; Grześkowiak, Ł.M.; Reis, S.A.; Conceição, L.L.; Peluzio, M.D.C.G. Milk Kefir: Nutritional, Microbiological and Health Benefits. Nutr. Res. Rev. 2017, 30, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Bensmira, M.; Jiang, B. Total Phenolic Compounds and Antioxidant Activity of a Novel Peanut Based Kefir. Food Sci. Biotechnol. 2015, 24, 1055–1060. [Google Scholar] [CrossRef]
- Al-Mohammadi, A.-R.; Ibrahim, R.A.; Moustafa, A.H.; Ismaiel, A.A.; Abou Zeid, A.; Enan, G. Chemical Constitution and Antimicrobial Activity of Kefir Fermented Beverage. Molecules 2021, 26, 2635. [Google Scholar] [CrossRef] [PubMed]
- Laterra, J.; Keep, R.; Betz, L.; Goldstein, G. Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed.; Lippincott-Raven: New York, NY, USA, 1989. [Google Scholar]
- Bifari, F.; Nisoli, E. Branched-chain Amino Acids Differently Modulate Catabolic and Anabolic States in Mammals: A Pharmacological Point of View. Br. J. Pharmacol. 2017, 174, 1366–1377. [Google Scholar] [CrossRef] [PubMed]
- Salari, A.; Hashemi, M.; Afshari, A. Functional Properties of Kefiran in the Medical Field and Food Industry. Curr. Pharm. Biotechnol. 2022, 23, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: A Web-Accessible Database of Experimentally Determined Protein-Ligand Binding Affinities. Nucleic Acids Res. 2007, 35, D198–D201. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Saüch, J.; Sanz, F.; Furlong, L.I. The DisGeNET Cytoscape App: Exploring and Visualizing Disease Genomics Data. Comput. Struct. Biotechnol. J. 2021, 19, 2960–2967. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING V10: Protein–Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef]
- Pang, B.; Jin, H.; Liao, N.; Li, J.; Jiang, C.; Shi, J. Vitamin A Supplementation Ameliorates Ulcerative Colitis in Gut Microbiota–Dependent Manner. Food Res. Int. 2021, 148, 110568. [Google Scholar] [CrossRef]
- Biyong, E.F.; Alfos, S.; Dumetz, F.; Helbling, J.-C.; Aubert, A.; Brossaud, J.; Foury, A.; Moisan, M.-P.; Layé, S.; Richard, E.; et al. Dietary Vitamin A Supplementation Prevents Early Obesogenic Diet-Induced Microbiota, Neuronal and Cognitive Alterations. Int. J. Obes. 2021, 45, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Nichols, R.G.; Cai, J.; Patterson, A.D.; Cantorna, M.T. Vitamin A Deficiency in Mice Alters Host and Gut Microbial Metabolism Leading to Altered Energy Homeostasis. J. Nutr. Biochem. 2018, 54, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-W.; Zhang, K.-W.; Chen, S.-J.; Yang, C.; Li, P.-G. Vitamin A Deficiency Exacerbates Gut Microbiota Dysbiosis and Cognitive Deficits in Amyloid Precursor Protein/Presenilin 1 Transgenic Mice. Front. Aging Neurosci. 2021, 13, 753351. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Xiao, L.; Feng, D.; Chen, B.; Yang, T.; Tong, B.; Luo, R.; Wang, Y.; Chen, J. Vitamin A Deficiency Suppresses CEACAM1 to Impair Colonic Epithelial Barrier Function via Downregulating Microbial-Derived Short-Chain Fatty Acids. Genes. Dis. 2024, 11, 1066–1081. [Google Scholar] [CrossRef] [PubMed]
- Xin, F.Z.; Zhao, Z.H.; Zhang, R.N.; Pan, Q.; Gong, Z.Z.; Sun, C.; Fan, J.G. Folic Acid Attenuates High-Fat Diet-Induced Steatohepatitis via Deacetylase SIRT1-Dependent Restoration of PPAR. World J. Gastroenterol. 2020, 26, 2203–2220. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wen, J.; Guan, B.; Li, J.; Luo, J.; Li, J.; Wei, M.; Qiu, H. Folic Acid and Zinc Improve Hyperuricemia by Altering the Gut Microbiota of Rats with High-Purine Diet-Induced Hyperuricemia. Front. Microbiol. 2022, 13, 907952. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Li, M.; Yang, M.; Chen, S.; Lu, Y.; Tang, T.; Wang, R.; Zhang, C.; Qi, K. Dietary Folic Acid Supplementation Inhibits High Fat Diet Induced Body Weight Gain through Gut Microbiota-Associated Branched-Chain Amino Acids and Mitochondria in Mice. J. Nutr. Sci. Vitaminol. 2023, 69, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zuo, Y.; Zhao, H.; Zhao, H.; Wang, Y.; Zhang, X.; Zhang, J.; Wang, P.; Sun, L.; Zhang, H.; et al. Folic Acid Ameliorates Alcohol-Induced Liver Injury via Gut–Liver Axis Homeostasis. Front. Nutr. 2022, 9, 989311. [Google Scholar] [CrossRef] [PubMed]
- Weng, R.-X.; Wei, Y.-X.; Li, Y.-C.; Xu, X.; Zhuang, J.-B.; Xu, G.-Y.; Li, R. Folic Acid Attenuates Chronic Visceral Pain by Reducing Clostridiales Abundance and Hydrogen Sulfide Production. Mol. Pain. 2023, 19, 174480692211498. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhang, X.; Zheng, X.; Gao, J.; Shang, M.; Xu, J.; Liang, H. Folic Acid Protects against Hyperuricemia in C57BL/6J Mice via Ameliorating Gut-Kidney Axis Dysfunction. J. Agric. Food Chem. 2022, 70, 15787–15803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hua, R.; Zhang, B.; Zhang, X.; Yang, H.; Zhou, X. Serine Alleviates Dextran Sulfate Sodium-Induced Colitis and Regulates the Gut Microbiota in Mice. Front. Microbiol. 2018, 9, 3062. [Google Scholar] [CrossRef]
- Sugihara, K.; Kitamoto, S.; Saraithong, P.; Nagao-Kitamoto, H.; Hoostal, M.; McCarthy, C.; Rosevelt, A.; Muraleedharan, C.K.; Gillilland, M.G.; Imai, J.; et al. Mucolytic Bacteria License Pathobionts to Acquire Host-Derived Nutrients during Dietary Nutrient Restriction. Cell Rep. 2022, 40, 111093. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, H.; Deng, L.; Wang, L.; Chen, J.; Zhou, X.; Jiang, H. Serine Deficiency Exacerbates Inflammation and Oxidative Stress via Microbiota-Gut-Brain Axis in D-Galactose-Induced Aging Mice. Mediat. Inflamm. 2020, 2020, 5821428. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Shi, Y.; Han, L.; Feng, C.; Ge, Y.; Yu, Y.; Tang, X.; Cheng, X.; Sun, J.; Le, G.W. Dietary Methionine Restriction Ameliorated Fat Accumulation, Systemic Inflammation, and Increased Energy Metabolism by Altering Gut Microbiota in Middle-Aged Mice Administered Different Fat Diets. J. Agric. Food Chem. 2020, 68, 7745–7756. [Google Scholar] [CrossRef] [PubMed]
- Zapata, R.C.; Singh, A.; Ajdari, N.M.; Chelikani, P.K. Dietary Tryptophan Restriction Dose-Dependently Modulates Energy Balance, Gut Hormones, and Microbiota in Obesity-Prone Rats. Obesity 2018, 26, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Yusufu, I.; Ding, K.; Smith, K.; Wankhade, U.D.; Sahay, B.; Patterson, G.T.; Pacholczyk, R.; Adusumilli, S.; Hamrick, M.W.; Hill, W.D.; et al. A Tryptophan-Deficient Diet Induces Gut Microbiota Dysbiosis and Increases Systemic Inflammation in Aged Mice. Int. J. Mol. Sci. 2021, 22, 5005. [Google Scholar] [CrossRef]
- Gao, N.; Yang, Y.; Liu, S.; Fang, C.; Dou, X.; Zhang, L.; Shan, A. Gut-Derived Metabolites from Dietary Tryptophan Supplementation Quench Intestinal Inflammation through the AMPK-SIRT1-Autophagy Pathway. J. Agric. Food Chem. 2022, 70, 16080–16095. [Google Scholar] [CrossRef] [PubMed]
- van Beek, A.A.; Hugenholtz, F.; Meijer, B.; Sovran, B.; Perdijk, O.; Vermeij, W.P.; Brandt, R.M.C.; Barnhoorn, S.; Hoeijmakers, J.H.J.; de Vos, P.; et al. Tryptophan Restriction Arrests B Cell Development and Enhances Microbial Diversity in WT and Prematurely Aging Ercc1−/Δ7 Mice. J. Leukoc. Biol. 2017, 101, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Dostal, A.; Chassard, C.; Hilty, F.M.; Zimmermann, M.B.; Jaeggi, T.; Rossi, S.; Lacroix, C. Iron Depletion and Repletion with Ferrous Sulfate or Electrolytic Iron Modifies the Composition and Metabolic Activity of the Gut Microbiota in Rats. J. Nutr. 2012, 142, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Dostal, A.; Lacroix, C.; Pham, V.T.; Zimmermann, M.B.; Del’Homme, C.; Bernalier-Donadille, A.; Chassard, C. Iron Supplementation Promotes Gut Microbiota Metabolic Activity but Not Colitis Markers in Human Gut Microbiota-Associated Rats. Br. J. Nutr. 2014, 111, 2135–2145. [Google Scholar] [CrossRef] [PubMed]
- Ellermann, M.; Gharaibeh, R.Z.; Maharshak, N.; Peréz-Chanona, E.; Jobin, C.; Carroll, I.M.; Arthur, J.C.; Plevy, S.E.; Fodor, A.A.; Brouwer, C.R.; et al. Dietary Iron Variably Modulates Assembly of the Intestinal Microbiota in Colitis-Resistant and Colitis-Susceptible Mice. Gut Microbes 2020, 11, 32–50. [Google Scholar] [CrossRef]
- Mahalhal, A.; Williams, J.M.; Johnson, S.; Ellaby, N.; Duckworth, C.A.; Burkitt, M.D.; Liu, X.; Hold, G.L.; Campbell, B.J.; Mark Pritchard, D.; et al. Oral Iron Exacerbates Colitis and Influences the Intestinal Microbiome. PLoS ONE 2018, 13, e0202460. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Li, X.; Zhang, X.; Shi, H.; Vos, M.B.; Wei, X.; Wang, Y.; Gao, H.; Rouchka, E.C.; Yin, X.; et al. Dietary Copper-Fructose Interactions Alter Gut Microbial Activity in Male Rats. Am. J. Physiol.-Gastrointest. Liver Physiol. 2018, 314, G119–G130. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Wu, C.; Guo, X.; Xu, Z.; Xing, C.; Cao, H.; Zhang, C.; Hu, G.; Liu, P. High Doses of Copper and Mercury Changed Cecal Microbiota in Female Mice. Biol. Trace Elem. Res. 2019, 189, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zheng, W.; Guo, R.; Yao, W. Effect of Dietary Copper Level on the Gut Microbiota and Its Correlation with Serum Inflammatory Cytokines in Sprague-Dawley Rats. J. Microbiol. 2017, 55, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Zackular, J.P.; Moore, J.L.; Jordan, A.T.; Juttukonda, L.J.; Noto, M.J.; Nicholson, M.R.; Crews, J.D.; Semler, M.W.; Zhang, Y.; Ware, L.B.; et al. Dietary Zinc Alters the Microbiota and Decreases Resistance to Clostridium Difficile Infection. Nat. Med. 2016, 22, 1330–1334. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Z.; Wang, P.; Yu, X.; Ding, H.; Wang, Z.; Feng, J. Effect of Long-Term and Short-Term Imbalanced Zn Manipulation on Gut Microbiota and Screening for Microbial Markers Sensitive to Zinc Status. Microbiol. Spectr. 2021, 9, e0048321. [Google Scholar] [CrossRef] [PubMed]
- Chi, L.; Gao, B.; Bian, X.; Tu, P.; Ru, H.; Lu, K. Manganese-Induced Sex-Specific Gut Microbiome Perturbations in C57BL/6 Mice. Toxicol. Appl. Pharmacol. 2017, 331, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.K.; Aring, L.; Das, N.K.; Solanki, S.; Inohara, N.; Iwase, S.; Samuelson, L.C.; Shah, Y.M.; Seo, Y.A. Impact of Dietary Manganese on Experimental Colitis in Mice. FASEB J. 2020, 34, 2929–2943. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Ramos, A.; Barba-Ostria, C.; Simancas-Racines, D.; Guamán, L.P. Protective Role of Butyrate in Obesity and Diabetes: New Insights. Front. Nutr. 2022, 9, 1067647. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, Y.; Lin, J.; Yang, N.; Chen, M. Sugary Kefir Strain Lactobacillus mali APS1 Ameliorated Hepatic Steatosis by Regulation of SIRT-1/Nrf-2 and Gut Microbiota in Rats. Mol. Nutr. Food Res. 2018, 62, e1700903. [Google Scholar] [CrossRef]
- Meier, J.J. GLP-1 Receptor Agonists for Individualized Treatment of Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2012, 8, 728–742. [Google Scholar] [CrossRef] [PubMed]
- Rosa, D.D.; Grześkowiak, Ł.M.; Ferreira, C.L.L.F.; Fonseca, A.C.M.; Reis, S.A.; Dias, M.M.; Siqueira, N.P.; Silva, L.L.; Neves, C.A.; Oliveira, L.L.; et al. Kefir Reduces Insulin Resistance and Inflammatory Cytokine Expression in an Animal Model of Metabolic Syndrome. Food Funct. 2016, 7, 3390–3401. [Google Scholar] [CrossRef] [PubMed]
- Sabatino, A.; Regolisti, G.; Cosola, C.; Gesualdo, L.; Fiaccadori, E. Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Curr. Diab Rep. 2017, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Ostadrahimi, A.; Taghizadeh, A.; Mobasseri, M.; Farrin, N.; Payahoo, L.; Beyramalipoor Gheshlaghi, Z.; Vahedjabbari, M. Effect of Probiotic Fermented Milk (Kefir) on Glycemic Control and Lipid Profile in Type 2 Diabetic Patients: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Iran. J. Public. Health 2015, 44, 228–237. [Google Scholar] [PubMed]
- Bellikci-Koyu, E.; Sarer-Yurekli, B.P.; Akyon, Y.; Aydin-Kose, F.; Karagozlu, C.; Ozgen, A.G.; Brinkmann, A.; Nitsche, A.; Ergunay, K.; Yilmaz, E.; et al. Effects of Regular Kefir Consumption on Gut Microbiota in Patients with Metabolic Syndrome: A Parallel-Group, Randomized, Controlled Study. Nutrients 2019, 11, 2089. [Google Scholar] [CrossRef] [PubMed]
- Bellikci-Koyu, E.; Sarer-Yurekli, B.P.; Karagozlu, C.; Aydin-Kose, F.; Ozgen, A.G.; Buyuktuncer, Z. Probiotic Kefir Consumption Improves Serum Apolipoprotein A1 Levels in Metabolic Syndrome Patients: A Randomized Controlled Clinical Trial. Nutr. Res. 2022, 102, 59–70. [Google Scholar] [CrossRef]
- Wang, M.-C.; Zaydi, A.I.; Lin, W.-H.; Lin, J.-S.; Liong, M.-T.; Wu, J.-J. Putative Probiotic Strains Isolated from Kefir Improve Gastrointestinal Health Parameters in Adults: A Randomized, Single-Blind, Placebo-Controlled Study. Probiotics Antimicrob. Proteins 2020, 12, 840–850. [Google Scholar] [CrossRef]
- Cannavale, C.N.; Mysonhimer, A.R.; Bailey, M.A.; Cohen, N.J.; Holscher, H.D.; Khan, N.A. Consumption of a Fermented Dairy Beverage Improves Hippocampal-Dependent Relational Memory in a Randomized, Controlled Cross-over Trial. Nutr. Neurosci. 2023, 26, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, İ.; Enver Dolar, M.; Özpınar, H. Effect of Administering Kefir on the Changes in Fecal Microbiota and Symptoms of Inflammatory Bowel Disease: A Randomized Controlled Trial. Turk. J. Gastroenterol. 2019, 30, 242–253. [Google Scholar] [CrossRef]
- Schoeler, M.; Caesar, R. Dietary Lipids, Gut Microbiota and Lipid Metabolism. Rev. Endocr. Metab. Disord. 2019, 20, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Svegliati Baroni, G.; Marzioni, M.; Di Nicola, F.; Santori, P.; Maroni, L.; Abenavoli, L.; Scarpellini, E. Farnesoid X Receptor, Bile Acid Metabolism, and Gut Microbiota. Metabolites. 2022, 12, 647. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-W.; Kang, H.W.; Lim, W.-C.; Kim, M.-K.; Lee, I.-Y.; Cho, H.-Y. Kefir Prevented Excess Fat Accumulation in Diet-Induced Obese Mice. Biosci. Biotechnol. Biochem. 2017, 81, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Ebner, J.; Aşçı Arslan, A.; Fedorova, M.; Hoffmann, R.; Küçükçetin, A.; Pischetsrieder, M. Peptide Profiling of Bovine Kefir Reveals 236 Unique Peptides Released from Caseins during Its Production by Starter Culture or Kefir Grains. J. Proteom. 2015, 117, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Quirós, A.; Hernández-Ledesma, B.; Ramos, M.; Amigo, L.; Recio, I. Angiotensin-Converting Enzyme Inhibitory Activity of Peptides Derived from Caprine Kefir. J. Dairy. Sci. 2005, 88, 3480–3487. [Google Scholar] [CrossRef] [PubMed]
- Klippel, B.F.; Duemke, L.B.; Leal, M.A.; Friques, A.G.F.; Dantas, E.M.; Dalvi, R.F.; Gava, A.L.; Pereira, T.M.C.; Andrade, T.U.; Meyrelles, S.S.; et al. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats. Front. Physiol. 2016, 7, 211. [Google Scholar] [CrossRef]
- Friques, A.G.F.; Arpini, C.M.; Kalil, I.C.; Gava, A.L.; Leal, M.A.; Porto, M.L.; Nogueira, B.V.; Dias, A.T.; Andrade, T.U.; Pereira, T.M.C.; et al. Chronic Administration of the Probiotic Kefir Improves the Endothelial Function in Spontaneously Hypertensive Rats. J. Transl. Med. 2015, 13, 390. [Google Scholar] [CrossRef] [PubMed]
- Bourrie, B.C.T.; Forgie, A.J.; Makarowski, A.; Cotter, P.D.; Richard, C.; Willing, B.P. Consumption of Kefir Made with Traditional Microorganisms Resulted in Greater Improvements in LDL Cholesterol and Plasma Markers of Inflammation in Males When Compared to a Commercial Kefir: A Randomized Pilot Study. Appl. Physiol. Nutr. Metab. 2023, 48, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for Taxonomy-Based Analysis of Pathways and Genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, R.S.; Brewer, H.B.; Ansell, B.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; Kontush, A.; Tall, A.R.; Webb, N.R. Translation of High-Density Lipoprotein Function Into Clinical Practice. Circulation 2013, 128, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Rader, D.J.; Alexander, E.T.; Weibel, G.L.; Billheimer, J.; Rothblat, G.H. The Role of Reverse Cholesterol Transport in Animals and Humans and Relationship to Atherosclerosis. J. Lipid Res. 2009, 50, S189–S194. [Google Scholar] [CrossRef]
- ZHOU, L.; LI, C.; GAO, L.; WANG, A. High-Density Lipoprotein Synthesis and Metabolism (Review). Mol. Med. Rep. 2015, 12, 4015–4021. [Google Scholar] [CrossRef] [PubMed]
- Franczyk, B.; Rysz, J.; Ławiński, J.; Rysz-Górzyńska, M.; Gluba-Brzózka, A. Is a High HDL-Cholesterol Level Always Beneficial? Biomedicines 2021, 9, 1083. [Google Scholar] [CrossRef]
- Sugano, M.; Tsuchida, K.; Makino, N. High-Density Lipoproteins Protect Endothelial Cells from Tumor Necrosis Factor-α-Induced Apoptosis. Biochem. Biophys. Res. Commun. 2000, 272, 872–876. [Google Scholar] [CrossRef]
- Lampka, M.; Olszewska-Słonina, D.; Hołyńska-Iwan, I.; Grąbczewska, Z.; Obońska, K.; Cwynar, A.; Stępowska, J.; Szewczyk-Golec, K. Effect of Low High-Density Lipoprotein Level on Endothelial Activation and Prothrombotic Processes in Coronary Artery Disease—A Pilot Study. Int. J. Environ. Res. Public. Health 2022, 19, 8637. [Google Scholar] [CrossRef]
- Korf, J.M.; Ganesh, B.P.; McCullough, L.D. Gut Dysbiosis and Age-Related Neurological Diseases in Females. Neurobiol. Dis. 2022, 168, 105695. [Google Scholar] [CrossRef]
- Rogers, G.B.; Keating, D.J.; Young, R.L.; Wong, M.-L.; Licinio, J.; Wesselingh, S. From Gut Dysbiosis to Altered Brain Function and Mental Illness: Mechanisms and Pathways. Mol. Psychiatry 2016, 21, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.; Fonseca, S.; Carding, S.R. Gut Microbes and Metabolites as Modulators of Blood-Brain Barrier Integrity and Brain Health. Gut Microbes 2020, 11, 135–157. [Google Scholar] [CrossRef]
- Włodarek, D. Role of Ketogenic Diets in Neurodegenerative Diseases (Alzheimer’s Disease and Parkinson’s Disease). Nutrients 2019, 11, 169. [Google Scholar] [CrossRef] [PubMed]
- Nandwana, V.; Nandwana, N.K.; Das, Y.; Saito, M.; Panda, T.; Das, S.; Almaguel, F.; Hosmane, N.S.; Das, B.C. The Role of Microbiome in Brain Development and Neurodegenerative Diseases. Molecules 2022, 27, 3402. [Google Scholar] [CrossRef] [PubMed]
- Noori, N.; Bangash, M.; Motaghinejad, M.; Hosseini, P.; Noudoost, B. Kefir Protective Effects against Nicotine Cessation-Induced Anxiety and Cognition Impairments in Rats. Adv. Biomed. Res. 2014, 3, 251. [Google Scholar] [CrossRef]
- Kraus, C.; Castrén, E.; Kasper, S.; Lanzenberger, R. Serotonin and Neuroplasticity—Links between Molecular, Functional and Structural Pathophysiology in Depression. Neurosci. Biobehav. Rev. 2017, 77, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Geng, W.; Pan, Y.; Wang, J.; Xiao, P.; Wang, Y. Supplementation with Lactobacillus kefiranofaciens ZW3 from Tibetan Kefir Improves Depression-like Behavior in Stressed Mice by Modulating the Gut Microbiota. Food Funct. 2019, 10, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhang, B.; Yu, Z.; Hu, Y.; Lv, H.; Ji, X.; Wang, J.; Peng, B.; Wang, S. Ameliorative Effect of Dietary Tryptophan on Neurodegeneration and Inflammation in D-Galactose-Induced Aging Mice with the Potential Mechanism Relying on AMPK/SIRT1/PGC-1α Pathway and Gut Microbiota. J. Agric. Food Chem. 2021, 69, 4732–4744. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, M.; Ge, Y.; Wang, X. SIRT1 and Aging Related Signaling Pathways. Mech. Ageing Dev. 2020, 187, 111215. [Google Scholar] [CrossRef]
- Price, N.L.; Gomes, A.P.; Ling, A.J.Y.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; et al. SIRT1 Is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metab. 2012, 15, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.; Hyttinen, J.M.T.; Kaarniranta, K. AMP-Activated Protein Kinase Inhibits NF-ΚB Signaling and Inflammation: Impact on Healthspan and Lifespan. J. Mol. Med. 2011, 89, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Ruderman, N.B.; Julia Xu, X.; Nelson, L.; Cacicedo, J.M.; Saha, A.K.; Lan, F.; Ido, Y. AMPK and SIRT1: A Long-Standing Partnership? Am. J. Physiol.-Endocrinol. Metab. 2010, 298, E751–E760. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zhang, J.; Hong, L.; Huang, W.; Dai, X.; Ye, Q.; Chen, X. Metformin Ameliorates Stress-Induced Depression-like Behaviors via Enhancing the Expression of BDNF by Activating AMPK/CREB-Mediated Histone Acetylation. J. Affect. Disord. 2020, 260, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, M.; Mukherjee, S.; Wang, H.; Li, H.; Sun, K.; Benechet, A.P.; Qiu, Z.; Maher, L.; Redinbo, M.R.; Phillips, R.S.; et al. Symbiotic Bacterial Metabolites Regulate Gastrointestinal Barrier Function via the Xenobiotic Sensor PXR and Toll-like Receptor 4. Immunity 2014, 41, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhong, C. Oxidative Stress in Alzheimer’s Disease. Neurosci. Bull. 2014, 30, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Ghoneum, M.; Abdulmalek, S.; Pan, D. Reversal of Age-Associated Oxidative Stress in Mice by PFT, a Novel Kefir Product. Int. J. Immunopathol. Pharmacol. 2020, 34, 205873842095014. [Google Scholar] [CrossRef] [PubMed]
- Batista, L.L.; Malta, S.M.; Guerra Silva, H.C.; Borges, L.D.F.; Rocha, L.O.; da Silva, J.R.; Rodrigues, T.S.; Venturini, G.; Padilha, K.; da Costa Pereira, A.; et al. Kefir Metabolites in a Fly Model for Alzheimer’s Disease. Sci. Rep. 2021, 11, 11262. [Google Scholar] [CrossRef] [PubMed]
- van de Wouw, M.; Walsh, A.M.; Crispie, F.; van Leuven, L.; Lyte, J.M.; Boehme, M.; Clarke, G.; Dinan, T.G.; Cotter, P.D.; Cryan, J.F. Distinct Actions of the Fermented Beverage Kefir on Host Behaviour, Immunity and Microbiome Gut-Brain Modules in the Mouse. Microbiome 2020, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra e Oliveira, T.; Campos-Toimil, M.; Meyrelles, S.S.; Pereira, T.M.C.; et al. Oxidative Stress and Dementia in Alzheimer’s Patients: Effects of Synbiotic Supplementation. Oxid. Med. Cell Longev. 2020, 2020, 2638703. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, M.; Moridnia, A.; Mortazavi, D.; Salehi, M.; Bagheri, M.; Sheikhi, A. Kefir: A Powerful Probiotics with Anticancer Properties. Med. Oncol. 2017, 34, 183. [Google Scholar] [CrossRef] [PubMed]
- Sheikhi, A.; Shakerian, M.; Giti, H.; Baghaeifar, M.; Jafarzadeh, A.; Ghaed, V.; Heibor, M.; Baharifar, N.; Dadafarin, Z.; Bashirpour, G. Probiotic Yogurt Culture Bifidobacterium Animalis Subsp. Lactis BB-12 and Lactobacillus Acidophilus LA-5 Modulate the Cytokine Secretion by Peripheral Blood Mononuclear Cells from Patients with Ulcerative Colitis. Drug Res. 2016, 66, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Sheikhi, A.; Jafarzadeh, A. A New Therapeutic Potential for Cancers: One CAR with 2 Different Engines! Hum. Vaccin. Immunother. 2017, 13, 1786–1788. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chan, H.M.; Kubow, S. Kefir Extracts Suppress In Vitro Proliferation of Estrogen-Dependent Human Breast Cancer Cells but Not Normal Mammary Epithelial Cells. J. Med. Food 2007, 10, 416–422. [Google Scholar] [CrossRef]
- de Moreno de LeBlanc, A.; Matar, C.; Farnworth, E.; Perdigon, G. Study of Cytokines Involved in the Prevention of a Murine Experimental Breast Cancer by Kefir. Cytokine 2006, 34, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rizk, S.; Maalouf, K.; Baydoun, E. Elias Baydoun Kefir Induces Cell-Cycle Arrest and Apoptosis in HTLV-1-Negative Malignant T-Lymphocytes. Cancer Manag. Res. 2011, 3, 39–47. [Google Scholar] [CrossRef]
- Jalali, F.; Sharifi, M.; Salehi, R. Kefir Induces Apoptosis and Inhibits Cell Proliferation in Human Acute Erythroleukemia. Med. Oncol. 2016, 33, 7. [Google Scholar] [CrossRef] [PubMed]
- Nagira, T.; Narisawa, J.; Teruya, K.; Katakura, Y.; Shim, S.-Y.; Kusumoto, K.; Tokumaru, S.; Tokumaru, K.; Barnes, D.W.; Shirahata, S. Erratum to: Suppression of UVC-Induced Cell Damage and Enhancement of DNA Repair by the Fermented Milk, Kefir. Cytotechnology 2012, 64, 107. [Google Scholar] [CrossRef]
- Ghoneum, M.; Felo, N. Selective Induction of Apoptosis in Human Gastric Cancer Cells by Lactobacillus Kefiri (PFT), a Novel Kefir Product. Oncol. Rep. 2015, 34, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Gu, F.; Ruan, H.; Chen, Q.; He, J.; He, G. Induction of Apoptosis of Gastric Cancer Cells SGC7901 in Vitro by a Cell-Free Fraction of Tibetan Kefir. Int. Dairy. J. 2013, 30, 14–18. [Google Scholar] [CrossRef]
- Grishina, A.; Kulikova, I.; Alieva, L.; Dodson, A.; Rowland, I.; Jin, J. Antigenotoxic Effect of Kefir and Ayran Supernatants on Fecal Water-Induced DNA Damage in Human Colon Cells. Nutr. Cancer 2010, 63, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Rizk, S.; El Khoury, N.; El-Hayek, S.; Tarras, O.; El-sibai, M.; El-Sabban, M. Kefir Exhibits Anti-proliferative and Pro-apoptotic Effects on Colon Adenocarcinoma Cells with No Significant Effects on Cell Migration and Invasion (647.24). FASEB J. 2014, 28. [Google Scholar] [CrossRef]
- Cevikbas, A.; Yemni, E.; Ezzedenn, F.W.; Yardimici, T.; Cevikbas, U.; Stohs, S.J. Antitumoural Antibacterial and Antifungal Activities of Kefir and Kefir Grain. Phytother. Res. 1994, 8, 78–82. [Google Scholar] [CrossRef]
- Almostafa Alcazar, I.; Aloklah, B.; Al-Deen, R.B.; Aljamali, M.; Alkadry, R.; Albiski, F. In Vitro Anticancer Properties of Kefir and Kefir Products Produced by a Novel Method in Syria. Int. J. Pharm. Sci. Invent. 2017, 6, 2319–2670. [Google Scholar]
- Zeng, X.; Jia, H.; Shi, Y.; Chen, K.; Wang, Z.; Gao, Z.; Yuan, Y.; Yue, T. Lactobacillus kefiranofaciens JKSP109 and Saccharomyces cerevisiae JKSP39 Isolated from Tibetan Kefir Grain Co-Alleviated AOM/DSS Induced Inflammation and Colorectal Carcinogenesis. Food Funct. 2022, 13, 6947–6961. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Y.; Wang, J.; Lv, M.; Zhou, C.; Jia, L.; Geng, W. Lactobacillus kefiranofaciens ZW18 from Kefir Enhances the Anti-Tumor Effect of Anti-Programmed Cell Death 1 (PD-1) Immunotherapy by Modulating the Gut Microbiota. Food Funct. 2022, 13, 10023–10033. [Google Scholar] [CrossRef] [PubMed]
- Guiomar de Almeida Brasiel, P.; Cristina Potente Dutra Luquetti, S.; Dutra Medeiros, J.; Otavio do Amaral Corrêa, J.; Barbosa Ferreira Machado, A.; Paula Boroni Moreira, A.; Novaes Rocha, V.; Teodoro de Souza, C.; do Carmo Gouveia Peluzio, M. Kefir Modulates Gut Microbiota and Reduces DMH-Associated Colorectal Cancer via Regulation of Intestinal Inflammation in Adulthood Offsprings Programmed by Neonatal Overfeeding. Food Res. Int. 2022, 152, 110708. [Google Scholar] [CrossRef] [PubMed]
- Adiloğlu, A.K.; Gönülateş, N.; Işler, M.; Şenol, A. The Effect of Kefir Consumption on Human Immune System: A Cytokine Study. Mikrobiyol. Bul. 2013, 47, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Pepe, G.; Tenore, G.C.; Mastrocinque, R.; Stusio, P.; Campiglia, P. Potential Anticarcinogenic Peptides from Bovine Milk. J. Amino Acids 2013, 2013, 939804. [Google Scholar] [CrossRef] [PubMed]
- Khoury, N.; El-Hayek, S.; Tarras, O.; El-Sabban, M.; El-Sibai, M.; Rizk, S. Kefir Exhibits Anti-Proliferative and pro-Apoptotic Effects on Colon Adenocarcinoma Cells with No Significant Effects on Cell Migration and Invasion. Int. J. Oncol. 2014, 45, 2117–2127. [Google Scholar] [CrossRef]
- Ahmed, Z.; Wang, Y.; Ahmad, A.; Khan, S.T.; Nisa, M.; Ahmad, H.; Afreen, A. Kefir and Health: A Contemporary Perspective. Crit. Rev. Food Sci. Nutr. 2013, 53, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Ganatsios, V.; Nigam, P.; Plessas, S.; Terpou, A. Kefir as a Functional Beverage Gaining Momentum towards Its Health Promoting Attributes. Beverages 2021, 7, 48. [Google Scholar] [CrossRef]
- Paredes, J.L.; Escudero-Gilete, M.L.; Vicario, I.M. A New Functional Kefir Fermented Beverage Obtained from Fruit and Vegetable Juice: Development and Characterization. LWT 2022, 154, 112728. [Google Scholar] [CrossRef]
- Panou, A.; Karabagias, I.K. Biodegradable Packaging Materials for Foods Preservation: Sources, Advantages, Limitations, and Future Perspectives. Coatings 2023, 13, 1176. [Google Scholar] [CrossRef]
- Üçok, G.; Kara, Ü.; Sert, D. Physical, Mechanical, and Thermal Properties of Gelatine-based Edible Film Made Using Kefir: Monitoring Aspergillus flavus and A. parasiticus Growth on the Film Surface. J. Food Process Preserv. 2022, 46, e16778. [Google Scholar] [CrossRef]
- Correia, S.; Gonçalves, C.; Oliveira, J.M.; Radhouani, H.; Reis, R.L. Impact of Kefiran Exopolysaccharide Extraction on Its Applicability for Tissue Engineering and Regenerative Medicine. Pharmaceutics 2022, 14, 1713. [Google Scholar] [CrossRef] [PubMed]
- Nejati, F.; Capitain, C.C.; Krause, J.L.; Kang, G.-U.; Riedel, R.; Chang, H.-D.; Kurreck, J.; Junne, S.; Weller, P.; Neubauer, P. Traditional Grain-Based vs. Commercial Milk Kefirs, How Different Are They? Appl. Sci. 2022, 12, 3838. [Google Scholar] [CrossRef]
Bioactive Compounds | Research Design | Experimental Model | Methods | Gut Microbiota Alteration | Physiological Effect | Ref. |
---|---|---|---|---|---|---|
Retinol (vitamin A) | Supplementation: 5000 IU retinyl acetate for 10 days | 7-week-old male 57BL/6Cnc mice with ulcerative colitis | 16S rRNA gene sequencing; qPCR; TRACE 1310-ISQ LT GC-MS system | Abundant gut microbial diversity and flora composition; decrease in Bacteroides, Parabacteroides, Escherichia/Shigella, Klebsiella, Oscillibacter, Pseudolavonifractor, Clostridium sensu stricto, Butyrimimonas, Mucispirllum, and Clostridium XIVb; increased abundance of Akkermansia, Lactobacillus, Prevotella, and Aerococcus | Significant increase in SCFAs: acetic acid, butyric acid, propionic acid, valeric acid, isobutyric acid, and isovaleric acid except caproic acid (p < 0.05); significant increase in mRNA expression of Muc1, Muc4, ZO-1, occludin, and IL-10 (p < 0.05); mRNA expression of IL-6, IL-1β, and TNF-α and serum levels of LPS, TNF-α, IL-6, and IL-1β significantly reduced (p < 0.05) | [60] |
Supplementation: 25 IU/g for 16 weeks | 3-week-old male C57BL/6J mice with neuronal and cognitive alterations | 16S rRNA gene sequencing; qPCR; NMR; HPLC; LC-ESI-MS/MS; Varian 3500 GC flame-ionization system | Increased the abundance of Lachnospiraceae, Porphyromonadaceae, Mycoplasmataceae, and Subdoligranulum; decrease in RC9 | Significant reduction in weight gain, fat mass, leptin, and insulin without any significant change in SCFA and BCFA (p < 0.05); similarly, no significant effect on the expression of genes coding for proteins involved in GC signaling, namely GC receptors, mineralocorticoid receptors, and 11β-Hsd1enzyme, responsible for the local production of active GC; prevented recognition memory deficits | [61] | |
Deficiency VA Knockout model | 7-week-old male C57BL/6J mice with altered metabolism | 16S rRNA gene sequencing; qPCR; proton (1H) NMR | Significantly lower abundance of Bacteroidetes, Bacteroidia, Pseudomonadaceae, Clostridium_XVIII, Roseburia, Blautia, Pseudomonas, Parabacteroides; Increased Firmicutes/Bacteriodes ratio, Johnsonella, and Staphylococcaceae (p < 0.05) | Increased acetate, significantly higher levels of lactate and glucose in serum and liver; decreased butyrate levels; glucose clearance was slower; increased level of carbohydrate, lower lipid, and amino acids (BCAA) levels; hyperglycemic state induction and increased protein metabolism | [62] | |
Deficiency: VA < 120 IU/kg for 45 weeks | 8-week-old male C57BL/6J APP/PS1 transgenic mice with Alzheimer’s disease | 16S rRNA gene sequencing; RP-HPLC; qPCR | Enrichment in pro-AD pro-AD Clostridia and decreased abundance of anti-AD Lactobacillus | VA deprivation resulted in increased deposition of Aβ plaque (Aβ40 and Aβ42) and increased expression of BACE1 and p-Tau (p < 0.05); downregulation of GABAAα2, GABAB1b, and BDNF in the cortex and hippocampus (p < 0.05); decreased mRNA expression of RARγ, RALDH1, RXRα, RXRβ, RXRγ, and CYP26B1 genes in the cortex (p < 0.05) | [63] | |
Deficiency: VA 300 IU/Kg for 4 weeks | 3-week-old female Sprague–Dawley rats; impairment of colonic epithelial barrier integrity | 16s rRNA gene sequencing; qRT-PCR; HPLC; GC-MS | Predominant phyla: Firmicutes (60.25%), Verrucomicrobiota (14.47%), Bacteroidota (13.74%), Proteobacteria (9.26%), Actinobacteriota (1.14%), and Desulfobacterota (0.88%); Family: decreased relative abundances of Peptostreptococcaceae, Erysipelotrichaceae, Coriobacteriaceae, Eggerthellaceae, and Staphylococcaceae while there is an increased relative abundance of Bacteroidaceae, Streptococcaceae, Butyricicoccaceae, and Actinomycetaceae (p < 0.05) Genus: decreased relative abundances of Romboutsia, Collinsella, norank_F_Erysipelotrichaceae, and Allobaculum while there is an increased relative abundance of Bacteroides, norank_f_Oscillospiraceae, Lachnospiraceae_NK4A136_group, Colidextribacter, and Streptococcus (p < 0.05) | Reduced weight (p < 0.001); shorter lengths and looser fibrils of desmosome junctions (p < 0.05); increased level of DAO (p < 0.05),evidence of a leaky gut; decreased expression of CEACAM1; increased HDAC1 and HDAC3 expression (p < 0.05) | [64] | |
Folic acid (vitamin B9) | Supplementation: folic acid 5 mg/kg/day for 8 weeks | Six-week-old male Sprague–Dawley rats with HFD-induced steatohepatitis | 16S rRNA sequencing; qPCR | Increased levels of Bacteroidetes, Pseudomonadaceae, and Leptotrichiaceae | No effect on body weight; reduced hepatic lipid accumulation, ballooning degeneration, inflammatory infiltration, and severe fibrosis (p < 0.05); reduced expressions of αSMA, TGF-β1, Col1a1, Col2a1, and Col3a1 (p < 0.05); significant reduction in ALT, AST, FBG, TG, TC, LDL, TBA, and Hcy (p < 0.05); no significant change in HDL; downregulation of mRNA expression levels of SREBP1c, SCD, ACACA, and FASN (p < 0.01) and upregulation of PPARγ, ACADL, FABP1, CPT1α, and FATP2 (p < 0.01); decreased expression of pro-inflammatory proteins TNF-α, IL-6, IL-1β, and CCR2 (p < 0.05) | [65] |
Supplementation: 84 µg/kg folic acid per day for 8 weeks | 2-month-old Sprague–Dawley male rats with hyperuricemia | 16S rRNA gene sequencing | Increased abundance of Actinobacteria, Lactobacillus, Bacteroides, Collinsella, and Blautia; decreased abundance of Clostridium, Romboutsia, Norank-f-Lachnospiraceae, and Ruminococcus | Decreased levels of serum uric acid levels (p < 0.01), and adenosine deaminase and xanthine oxidase (p < 0.05) | [66] | |
Supplementation: folic acid 5 mg/kg for 25 weeks | 3- to 4-week-old male C57BL/6J conventional (CV) and germ-free (GF) mice with HFD-induced obesity | 16S rRNA gene sequencing; qPCR; HPLC-MS/MS | Decreased abundance of unclassified_f_Lachnospiraceae, un classified_g_norank_f_Oscillospiraceae, unclassified_g_Lachnospiraceae_NK4A136_group, uncultured_bacterium_g_norank_f_Oscillospiraceae, uncultured_bacterium_g_norank_f_Lachnospiraceae, uncultured_bacterium_g_Oscillibacter, uncultured_bacterium_g_Bilophila, uncultured_bacterium_g_Roseburia, uncultured_bacterium_g_UCG-009, and uncultured_bacterium_g_Tuzzerella; increased abundance of uncultured_bacterium_g_norank_f_Muribaculaceae, Ileibacterium_valens, Akkermansia_muciniphila, uncultured_bacterium_g_Dubosiella, uncultured_bacterium_g_Coriobacteriaceae_UCG-002, unclassified_g_norank_f_norank_o_Clostridia_UCG-014, uncultured_Clostridiales_bacterium_g_norank_f_Oscillospiraceae, and unclassified_g_Rikenellaceae_RC9_gut_group; reduction in fecal dysbiosis | Reduced weight gain; reduced plasma level of BCAAs (valine, isoleucine, and leucine, p < 0.05); mRNA levels of Bcat2, Bckdha, and/or Ppm1k were increased in adipose tissues but decreased in the liver (p < 0.05); increased mRNA levels of mitochondrial biogenesis genes: Pgc-1a, Cox1, Nd1 or Nd6 (p < 0.05); | [67] | |
Supplementation: 5.0 mg/kg/day folic acid for 10 weeks | 7-week-old male C57BL/6J mice with alcohol-induced liver damage | 16S rRNA gene sequencing | Increased relative abundance of Verrucomicrobiota and Proteobacteria, Lachnospiraceae_NK4A136_group, and Akkermansia | Reduced levels of ALT, AST, TG, and LPS, and inflammatory cytokines, IL-1β, IL-6, and TNF-α while tight junction proteins ZO-1, claudin 1, and occludin significantly increased (p < 0.05); reduced expression of TLR4, MyD88, IRAK1, TRAF6, p-IκBα/IκBα, and NF-κB (p < 0.05) | [68] | |
Supplementation: three doses of folic acid (10, 80, or 150 μg/kg/day) for 7 days | 6-week-old male Sprague–Dawley (SD) rats with chronic visceral hyperalgesia/IBD | 16S rRNA gene sequencing | For all doses: reduced I number without affecting α-diversity (p > 0.05); decreased abundance of Clostridiales (p < 0.05); reduced H2S concentration (80 μg/kg; p < 0.001) | Attenuation of chronic visceral pain; frequency of sEPSCs of neurons in the spinal dorsal horn significantly reduced (p < 0.05); overall reduction in spontaneous glutamatergic synaptic activity of SG neurons | [69] | |
Supplementation: 2.5 mg/kg/day and 5 mg/kg/day folic acid (L-FA) for 10 weeks | 7-week-old male C57BL/6J mice with hyperuricemia | 16S rRNA gene sequencing | Decreased relative abundance of Firmicutes while Bacteroidetes was not significantly changed; increased Lactobacillus and Lactococcus (p < 0.05) | High-dose FA restored expression of GLUT9, ABCG2, α-SMA, and E-cad (p < 0.05) and increased protein expression levels of Claudin-1, Occludin, ZO-1, and SCFAs (acetic acid and propionic acid) (p < 0.05); reversed elevated levels of TNFα, IL-1β, IL-6, TLR4, MYD88, and p-IκB and LPS (p < 0.05) | [70] | |
Serine | Supplementation: 40 mg/kg body weight, once orally for 7 days | 9-week-old male C57BL/6 mice with acute colitis | 16S rRNA gene sequencing | No significant difference in alpha diversity; increased relative abundance of Firmicutes, Clostridia, and Bacteroidia | Reversed weight loss; no significant change in colon length, colon weight, and length/weight ratio of colon but significant decrease in disease activity index (p > 0.05); increased levels of IgA, IgG, and IgM; decreased IL-1β, IL-6, TNF-α, MPO, and EPO levels (p > 0.05) | [71] |
Deficiency: L-serine deficient diet (ΔSer, TD.140546) for 3 days | 6- to 12-week-old female and male SPF C57BL/6 mice, and GF Swiss Webster mice with IBD | qPCR; 16S rRNA gene sequencing | Increased relative abundances of Verrucomicrobiaceae (and A. muciniphila) and Enterobacteriaceae (and E. coli), while Sutterellaceae and Porphyromonadaceae were decreased | Reduced body weight and increased colon inflammation; degradation of mucus layer; increased intestinal permeability | [72] | |
Deficiency: serine- and glycine-deficient (SGD) diet for 2 months | 9-week-old male C57BL/6J mice with inflammation and oxidative stress | 16S rRNA gene sequencing; RT-qPCR | Significant decrease in Firmicutes to Bacteroidetes ratio, and relative abundance of Clostridium XIVa was further decreased | Increased accumulation of advanced glycation end products, and MDA; high serum levels of TNF-α, IL-1β, and IL-6; levels of SOD, CAT, GSH-Px, and GSH were significantly reduced (p < 0.05); increased mRNA levels of TNF-α, IL-1β, and IL-6, while Cat, Sod1, Sod2, and Gpx1 were decreased (p < 0.05); a significant decrease in butyric acid but not change in acetate or propionate levels (p < 0.05); a significant decrease in mRNA expression of Slc16a3, Slc16a7, and Gpr109a (p < 0.05); increased pNF-kB, and decreased pAMPK (p < 0.05) | [73] | |
Methionine | Dietary methionine restriction (MR) at 0% or 80% for 16 weeks | 8-month-old male C57BL/6J mice with age-related or HFD-induced diseases | 16S rRNA gene sequencing; RT-qPCR | Increased relative abundance of Firmicutes and decreased Proteobacteria and Verrucomicrobia by either MR0 or MR80; MR80 showed an increased relative abundance of Bacteroides, Faecalibaculum, Corynebacterium, and Roseburia while Desulfovibrio, Lachnospiraceae, Akkermansia, Lachnoclostridium, Oscillibacter, Ruminiclostridium, and Escherichia−Shigella decreased (p < 0.05) | MR80 reduced body weight and IWAT (p < 0.05); increased levels of acetic, butyric, and propionic acid (p < 0.05); reduced serum LPS and LBP (p < 0.05); reduced serum and ileal TNF-α, IL-6, IL-1β, and IL-10 (p < 0.05); increased claudin-3, occludin, and ZO-1 (p < 0.05) | [74] |
Dietary methionine restriction (MRD) at 0.86% for 22 weeks | 4-week-old male C57BL/6J mice with HFD-induced obesity | 16S rRNA gene sequencing; qPCR; 1H NMR; GC-MS-QP2010 | Significant increase in the relative abundance of Firmicutes (p < 0.05), and Firmicutes/Bacteroides ratio (p < 0.01); reduction in Verrucomicrobia (p < 0.05); MRD showed enrichment in Allobaculum, Bacteroides, Oscillospira, Bifidobacterium, Sutterella, Roseburia, Lactobacillus, Bilophila, and Stenotrophomonas at the genus level; increased relative abundance of Bacteroides, Bifidobacterium, Oscillospira, Ruminococcus, Coprococcus, Corynebacterium, Lactobacillus, and Roseburia while Akkermansia and Desulfovibrio were reduced (p < 0.05) | Significant decrease in body weight, food intake, blood glucose, plasma TG, TC, FFA, and LDL-c while HDL-c was increased (p < 0.05); increased levels of SCFAs such as formate, acetate, propionate, butyrate, lactate, pyruvate, succinate, α-keto-β-methyl-valerate, α-ketoisovalerate; increase in amino acid-related metabolites, 4-hydroxyphenylactate, and histidine and decreased levels of isoleucine, valine, glycine, tyrosine, urocanate, methionine; bile acids-related metabolites such as bile acids and taurocholic acid were increased while taurine was decreased; carbohydrate-related metabolites including β-glucose, α-glucose, α-xylose, and α-galactose were decreased; other metabolites like xanthine, trimethylamine, and ethanol were also reduced; (p < 0.05); significant increase in ileum and colon GSH-Px, GSH/GSSG, and T-AOC levels (p < 0.05); decreased plasma LPS, LBP, TNF-α, IL-6, colonic mRNA expression of CD14 and TLR4, and LBP, MyD88, NF-κB, TNF-α, and IL-6 in colon and ileum (p < 0.05); increased colonic and ileal tight junction proteins claudin-3, ZO-1, and occludin mRNA expression (p < 0.05) | ||
Tryptophan | Dietary tryptophan restriction: 10% (10TRP), 40% (40TRP), and 70% (70TRP) for 21 days | 3-week-old male obesity-prone rats (OP-CD, Strain 463) | qPCR; TD-NMR; | No significant change with 70TRP; 40TRP and 10TRP showed a reduction in gene copies of Enterobacteriaceae and Lactobacillus but increased Roseburia; all TRP diets reduced 16S rRNA gene copies of Bacteroides and Clostridium coccoides; tryptophan restriction did not affect Bifidobacterium spp., Clostridium leptum, and Clostridium perfringens | Decreased food intake, energy expenditure, body weight, fat mass, lean mass, fasting blood glucose, plasma insulin, leptin, C-peptide and increased plasma glucagon, GLP-1, QUICKI, and pancreatic polypeptide by 40TRP and 10TRP; 10TRP increased plasma amylin and ghrelin; 70TRP and 40TRP increased plasma PYY without plasma GIP change (p < 0.05) | [75] |
Dietary tryptophan restriction deficient: 0.1%, recommended: 0.2%, and high: 1.25% diets for 8 weeks | 20-month-old male C57BL/6 mice with systemic inflammation and gut dysbiosis | 16S rRNA gene sequencing | High-dose TRP restored a relative abundance of Proteobacteria, Deferribacteres, Mucispirillum, and Lachnospiraceae that were reduced by low TRP while the increased abundance of Acetatifactor, Enterorhabdus, and Adlercreutzi was decreased with high TRP | Elevated serum levels of IL-6, IL-1a, and IL-17a, and decreased IL-27 by TRP-deficient diet compared to TRP-rich diets (p < 0.05) | [76] | |
Dietary tryptophan supplementation: 200 mg/kg tryptophan for 2 weeks | 6- to 8-week-old male BALB/c mice with Intestinal inflammation | 16S rRNA sequencing; RT-qPCR; qPCR | Reduced Firmicutes/Bacteroidetes ratio; a high proportion of Clostridiales_un-Classified, Acetivibrio, Cetobacterium, and low Enterobacter, Pantoea, and Chromohalobacter | Decreased expression of ileum IL-1β, TNF-α, IL-17, iNOS, and p-p65; elevated levels of IκBα; restoration of mRNA expression levels of α-defensin 5, Reg3b, Reg3g, mucin 2 and trefoil factor 3, and goblet cell differentiation factors Krüppel-like factor 4 and Ets-Domain Transcription Factor; reduced Beclin1 and LC3B-II: I ratio, p-AMPK, SIRT1, p-mTOR, and p-p70s6k and increased expression of SQSTM1 (p < 0.05) | [77] | |
Dietary tryptophan restriction (95% reduction) for 12 weeks | 16-week-old DNA-repair deficient, premature-aged mice (Ercc1-/Δ7; 20-wk life span); premature aging | 16S rRNA gene sequencing | Increased microbial diversity and abundances of Bacteroidetes RC9 and Clostridiales; reduced proportion of Alistipes and Akkermansia spp. correlates with a decrease in the number of B-cell precursors; gut microbiota composition restored from aging phenotype to younger WT mice | Reduced body and spleen weight (p < 0.001); reduced frequencies of B lineage cells within total bone marrow cells and total B lineage cells; overall decrease in B-cell frequencies in mesenteric lymph node and spleen (p < 0.01); neutrophil numbers unaffected in bone marrow (p < 0.05); however, a significant reduction in splenic neutrophil and monocyte numbers (p < 0.05) | [78] | |
Iron | Iron deficiency and repletion: Fe-deficient diet for 24 days, repleted for 13 days with FeSO4 or electrolytic Fe at 10 and 20 mg Fe kg/diet; a total of 37 days | 21-day-old male Sprague–Dawley rats | TGGE and qPCR | Fe-deficient group: decreased Bacteroides spp. and Roseburia spp. while Enterobacteriaceae increased; Fe-repletion reversed the trend and Lactobacillus/Pediococcus/Leuconostoc spp. significantly decreased to baseline levels (p < 0.05) | Fe deficiency resulted in reduced weight gain and food intake, cecal butyrate (−87%) and propionate (−72%) levels (p < 0.05); repletion restored and increased cecal butyrate, and neutrophil infiltration in colonic mucosa (p < 0.01) | [79] |
Iron depletion for 12 weeks (2·9 mg Fe/kg diet) and repletion for 4 weeks (35 and 70 mg Fe/kg diet) | 8-week-old female Fischer 344 rats | qPCR and pyrosequencing; HPLC | Low relative abundance of Bilophila spp. and Coprococcus spp.; 35 ppm Fe-supplemented rats have higher Bacteroides spp., Clostridium cluster IV, F. prausnitzii, E. hallii, and sulfate-reducing bacteria than Fe-deficient rats; no significant change between 70 ppm supplementation and Fe-deficient rats | Significant increase in acetate and propionate concentrations, and Fermentative metabolites by 35 and 70 ppm Fe-supplementation with butyrate increasing significantly by 35 ppm | [80] | |
Iron-deficient (<10 ppm iron/kg diet); control (35 ppm iron/kg diet); iron supplemented diets (200 ppm iron/kg) diet for 4 weeks | 8- to 14-week-old WT 129S6/SvEV and colitis-susceptible interleukin-10-deficient (Il10−/−) mice; IBD associated intestinal microbiota | qPCR; 16S rRNA sequencing | The relative abundance of Proteobacteria, Enterobacteriaceae, and Escherichia coli was increased by low Fe and control compared to high Fe diet | High Fe showed reduced colitis based on clinical disease activity and histological inflammation; while high and low Fe decreased colonic and serum IL-12 p40 compared to control; modest reduction of colitis by high and low Fe | [81] | |
Supplementation: chow diets containing 100, 200, or 400 ppm iron for 8 or 10 days | 8- to 9-week-old Female C57BL/6 mice with DSS-induced colitis | 16S rRNA gene sequencing | 400 ppm reduced species richness, with a significant increase in Proteobacteria and Actinobacteria and a decrease in Bacteroidetes and Firmicutes | Significant reduction in body weight at 100 ppm (p < 0.01) while fecal calprotectin levels increased for 100 (p < 0.05) and 400 (p < 0.001) ppm at day 8 vs. 10; overall decrease in colitis by increasing dietary iron content | [82] | |
Copper | Supplementation: 1.6 (low), 6.0 (adequate), or 20 (high) ppm of copper for 4 weeks | Male weanling Sprague–Dawley rats with high-fructose-fed rats (NAFLD) | 16S rRNA sequencing; qPCR | Reduced abundance of Verrucomicrobia; low-cupper diet exhibited more pronounced obesity phenotype featured by high Firmicutes/Bacteroidetes ratio, and decreased Bacteroidaceae, and Bacteroides; high-copper diet decreased Bifidobacteriaceae and Bifidobacterium but increased Lactobacillaceae and Lactobacillus, Erysipelotrichaceae, Enterobacteriaceae. Both low and high copper diets reduced Akkermansia | Increased levels of plasma AST, ALT, gut permeability, and steatosis; ileal Reg3b protein expression and IL-22 mRNA expression (p < 0.001); downregulation of protein expression of Claudin-1 and occludin by low- and high-copper diets (p < 0.001); elevated plasma endotoxin by low-copper diet (p < 0.0001) | [83] |
Supplementation: 5 mg/kg of copper for 90 days | 8-week-old Kunming female mice | 16S rRNA gene sequencing | Decreased abundance of Rikenella, Jeotgailcoccus, and Staphylococcus; increased abundance of Corynebacterium (p < 0.05) | Body weight decrease (p < 0.05); blunt intestinal villi, necrosis of enterocytes, severe atrophy of central lacteal, and decreased number of goblet cells | [84] | |
Supplementation: 6, 120, and 240 mg/kg of copper fed for 8 weeks | 21-day-old male Sprague–Dawley rats | Pyrosequencing; AAS | High copper dose (120 and 240 mg/kg) decreased abundance of Christensenellaceae, Lachnospiraceae, Allobaculum, Flavonifractor, Oscillospira, Parabacteroides-related OTUs, and Blautia-related OTUs; increased abundance of Ruminococcaceae, Defluviitaleaceae, Peptococcaceae, Peptostreptococcaceae, Turicibacter, Coprococcus, Anaerotruncus, Peptococcus, Dorea, Rikenella, Barnesiella, Bacteroides, and Alistipes-related OTUs (p < 0.05) | No significant change in body weight and levels of inflammatory cytokines IL-1β, IL-6, and IL-8 (p < 0.05); TNF-α increased significantly with high copper level (p < 0.01) | [85] | |
Supplementation: 0, 0.04, 0.20, or 1.00 mg/kg CuSO4 for 15 days | 1-day-old Sprague–Dawley rats | 16S rRNA gene sequencing; UPLC-Q-TOF | Dose-dependent impact on α- and β-diversity, and reduced Firmicutes/Bacteroidetes ratio; increasing copper levels increased Treponema_2 and Erysipelatoclostridium and decreased Romboutsia, Chlamydia, Bifidobacterium, and Lactobacillus; 0.04 mg/kg increased abundance of Alloprevotella, Lachnospiraceae_NK4A136, Ruminiclostridium_5, and Ruminococcaceae_UCG-013 but declined with other copper levels | Increased serum ALT, AST, and ALP levels and decreased TP, ALB, and urea levels by 0.20 and 1.00 mg/kg dose (p < 0.05); no significant change in albumin, globulin, ratio of white balls, creatinine, and total cholesterol (p < 0.05). Additionally, 0.20 and 1.00 mg/kg doses showed inflammatory lesions, bile duct hyperplasia, and fatty degradation while only 1.00 mg/kg resulted in point necrosis; copper exposure reduced N-acetyl-D-glucosamine, xanthine, L-tyrosine, 2-phenylacetamide, phenylpyruvic acid, L-phenylalanine but increased 2-hydroxybenzaldehyde, 12-KETE, gamma-linolenic acid, and 20-hydroxyeicosatetraenoic acid (p < 0.05) | ||
Zinc | Supplementation: 0/29/1000 mg/kg of Zinc for 5 weeks | 8- to 12-week-old C57BL/6 S100a9−/− mice with Clostridium difficile | 16S rRNA gene sequencing; qPCR; ICP-MS; LA-ICP-MS; MALDI IMS | High Zn diet showed decreased microbial diversity and OYUs of Turicibacter (OTU 2) and Clostridium (OTU 11) but increased Enterococcus (OTU 4) and Clostridium XI (OTU 3) (p < 0.001) | Increased level of IL-1β and MCP-1, and reduction in IL-6, IL-10, and IL-12 (p70) by high Zn diet (p < 0.05); decrease in epithelial damage and pseudomembrane formation | [86] |
Supplementation: 0/30/150/600 mg/kg of Zn for 4 and 8 weeks | 3-week-old C57BL/6 mice | 16S rRNA gene sequencing; GCMS | Increased abundance of Verrucomicrobia, Akkermansia, Faecalibaculum, Helicobacter, Dubosiella, Caulobacter, Bradyrhizobium, and Ileibacterium by high and excess Zn diet; decrease in Romboutsia, Bacteroides, Lactobacillus, and Bifidobacterium while Bacteroidetes/Firmicutes ratio increased (p < 0.05) with increasing Zn diet at 4 weeks; increased abundance of Actinobacteria, Bifidobacterium, and Anaeroplasma at 8 weeks in high Zn diets while Verrucomicrobia, Intestinimonas, and Lactobacillus decreased | Significant reduction in cecal metabolites and total SCFAs, acetic acid, butyric acid, isobutyric acid, isovaleric acid, and propionic acid by excess Zn at both 4 and 8 weeks (p < 0.05) | [87] | |
Supplementation: 4 mg/kg zinc per day for 8 weeks | 2-month-old Sprague–Dawley male rats with hyperuricemia | 16S rRNA gene sequencing | Increased abundance of Lactobacillus, Norank-f-Muribaculaceae, and Bacteroides; decreased abundance of Clostridium, Romboutsia, Blautia, and Norank-f-Lachnospiraceae | Decreased levels of uric acid levels (p < 0.01), and adenosine deaminase and xanthine oxidase (p < 0.05) | [66] | |
Manganese | Supplementation: 100 ppm MnCl2 for 13 weeks | Male and female 7-week-old C57BL/6 mice | 6S rRNA gene sequencings, metagenomics sequencing, and GC-MS metabolomics | Decrease α-diversity; increased relative abundance of Firmicutes and Tenericutes and decrease in Bacteroidetes and Verrucimirobia in males; decrease in Firmicutes and increased Verrucimirobia in females (p < 0.05) | Significant alteration in genes for tryptophan biosynthesis pathway in females with an increase in anthranilate phosphoribosyltransferase (p < 0.01), indole-3-glycerol phosphate synthase, and tryptophan synthase (α-chain) (p < 0.05), phenylalanine synthesis with increased biosynthetic aromatic amino acid aminotransferase (p < 0.001) and prephenate dehydratase (p < 0.05); in male, there is increase in tryptophan synthase (β-chain) (p < 0.001) and decrease in biosynthetic aromatic amino acid aminotransferase (p < 0.001) and prephenate dehydratase (p < 0.01); additional sex-specific alterations in GABA and putrescine biosynthesis genes, precursor of neurotransmitter synthesis, and LPS biosynthesis genes (p < 0.05); decrease in α-tocopherol and γ-tocopherol in both sexes | [88] |
Deficiency: <0.01 ppm Mn for 14 days | 3–4 weeks C57BL/6 mice aged with DSS-induced colitis | 16S rRNA gene sequencing; qPCR; ICP-MS | No significant fecal microbiota difference | Increased weight loss and 13% decrease in colon length (p < 0.05); a significant decrease in colon tight junction proteins Zo1, Zo2, Cldn2, Cldn3, and Ocln but not on Cldn4, 5, 7, 12, and 15 (p < 0.05); MnSOD enzyme activity reduced by 57%, (p < 0.01) with a significant increase in H2O2, 8-isoprostane (p < 0.05), and 8-hydroxy-2-deoxyguanosine (p < 0.01); decrease in chemokine (Ccl2 and Cxcl1) expression; Tnfα, Il6, Il1β, and Il10 showed no significant change (p < 0.05) | [89] |
Research NCT/Population/Duration | Source of Intervention/Dose | Gut Microbiota Alteration | Physiological Effect | References |
---|---|---|---|---|
NCT03966846; 62 participants with metabolic syndrome (18–65 years); 12 weeks | DC1500I culture (Olsztyn, Poland); 180 mL of kefir daily; control: unfermented milk (180 mL) | Significant increase in Actinobacteria (p = 0.023); no significant change in Bacteroidetes, Proteobacteria, or Verrucomicrobia | Kefir intake resulted in decrease in serum TNF-α (p = 0.047; 40%), IL-6 (p = 0.01; 23.7%), IL-10 (p < 0.01 = 56.5%), IFN-γ (p < 0.01; 46.8%), homocysteine (p = 0.048; 4.3%), SBP (p < 0.01; 7%), and DBP (p = 0.04; 5.2%); no significant change in anthropometrical parameters (weight, BMI, WC, FM, FFM, TBW), glycemic parameters (glucose, insulin, HbA1c, HOMA-IR), and lipid profile (TC, HDL-c, ApoA1, ApoB, triglycerides); improvement in inflammatory markers | [96,97] |
NCT01428999; 54 healthy adults (20–40 years); 3 weeks | AB-kefir and placebo products by SYNBIO TECH INC (Kaohsiung, Taiwan); AB-kefir group or placebo group; one sachet (2 g) of AB-kefir or placebo after meal twice a day | In males, a significant correlation was observed between (1) heightened abdominal bloating and a reduction in bifidobacteria (p = 0.022), (2) an elevated E. coli population (p = 0.080) and total aerobes (p = 0.096), (3) increased bifidobacteria and decreased total aerobes (p = 0.041) and (4) increased E. coli and increased total aerobes (p = 0.008). In females, there was an increase in total anaerobes (0.49 log CFU/g; p = 0.038) and total gut microbial counts (0.45 log CFU/g; p = 0.049) | Kefir consumption showed a reduction in symptoms of abdominal pain, bloating (p = 0.014), and appetite (p = 0.041); general improvement in gastrointestinal functions | [98] |
NCT02849275; 26 healthy adults (25–45 years); 4 weeks | Dairy-fermented beverage (25–30 × 109 CFU of active kefir cultures); 8 oz of a dairy-based fermented beverage or control (8 oz non-fermented beverage) | Increased abundance of Lactobacillus (p < 0.01) | Significant improvement in performance on two metrics of relational memory, misplacement (p = 0.04) and object–location binding (p = 0.03); although no observed correlations between Lactobacillus abundance and memory performance; improvement in hippocampal-dependent relational memory | [99] |
45 patients with IBD (UC: 19–68 years, CD: 24–65 years); 4 weeks | Kefir fermented and produced under anaerobic conditions (Kefir culture: 2.0 × 1010 CFU/mL viable Lactobacillus bacteria); 400 mL/day kefir; control group: no treatment | Kefir significantly increased fecal Lactobacillus in CD compared to the control group (p < 0.024); no significant change in UC. UC and CD showed increased Lactobacillus bacterial fecal load (p = 0.001 and p = 0.005) after kefir intake (week 4) | Significant reduction in bloating scores (p = 0.012) and feeling good scores significantly increased (p = 0.032) in CD | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apalowo, O.E.; Adegoye, G.A.; Mbogori, T.; Kandiah, J.; Obuotor, T.M. Nutritional Characteristics, Health Impact, and Applications of Kefir. Foods 2024, 13, 1026. https://doi.org/10.3390/foods13071026
Apalowo OE, Adegoye GA, Mbogori T, Kandiah J, Obuotor TM. Nutritional Characteristics, Health Impact, and Applications of Kefir. Foods. 2024; 13(7):1026. https://doi.org/10.3390/foods13071026
Chicago/Turabian StyleApalowo, Oladayo Emmanuel, Grace Adeola Adegoye, Teresia Mbogori, Jayanthi Kandiah, and Tolulope Mobolaji Obuotor. 2024. "Nutritional Characteristics, Health Impact, and Applications of Kefir" Foods 13, no. 7: 1026. https://doi.org/10.3390/foods13071026
APA StyleApalowo, O. E., Adegoye, G. A., Mbogori, T., Kandiah, J., & Obuotor, T. M. (2024). Nutritional Characteristics, Health Impact, and Applications of Kefir. Foods, 13(7), 1026. https://doi.org/10.3390/foods13071026