Valorization of Peach Fruit and Wine Lees through the Production of a Functional Peach and Grape Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Peach and Grape Juice
2.1.2. Wine Lees
2.1.3. Formulation of Functional Juices
2.1.4. Culture Medium and Reagents
2.2. Microorganism Strains and Preparation
2.3. Effect of the Addition of Wine Lees on the Survival of Listeria monocytogenes and Saccharomyces cerevisiae in Artificially Inoculated on Peach and Grape Juice
2.4. Effect of the Addition of Wine Lees on the Quality of Peach and Grape Juice
2.4.1. Physicochemical Analysis
2.4.2. Nutritional Analysis
2.4.3. Microbiological Analysis
2.4.4. Sensorial Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of the Addition of Wine Lees on the Survival of Listeria monocytogenes and Saccharomyces cerevisiae Artificially Inoculated on Peach and Grape Juice
3.2. Effect of the Addition of Wine Lees on the Quality of Peach and Grape Juice
3.2.1. Physicochemical Parameters
3.2.2. Addition of WL on Total Polyphenols Content (TPC) and Antioxidant Activity (AOX) of Peach and Grape Juice
3.3. Microbiological Quality
3.4. Sensorial Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Compound | RT | Precursor Ion (m/z) | Daughter Ion (m/z) | CE | Concentration |
---|---|---|---|---|---|
(min) | (V) | (µg/100 g) | |||
Flavanols | |||||
Catechin | 7.53 | 289.1 | 245 | 10 | 9302 ± 271 |
Epicatechin | 9.32 | 289.1 | 245 | 10 | 7197 ± 225 |
(Epi)catechin O-glucoside iso1 | 5.9 | 451.1 | 289.1 | 15 | 543 ± 0 |
(Epi)catechin O-glucoside iso2 | 6.75 | 451.1 | 289.1 | 15 | 1144 ± 14 |
(Epi)catechin O-glucoside iso3 | 7.69 | 451.1 | 289.1 | 15 | 5258 ± 167 |
Procyanidin dimer B2 | 8.67 | 577.1 | 289.1 | 15 | 9430 ± 199 |
Procyanidin dimer iso1 | 7.02 | 577.1 | 289.1 | 15 | 9740 ± 120 |
Procyanidin dimer iso2 | 7.32 | 577.1 | 289.1 | 15 | 4070 ± 110 |
Procyanidin dimer iso3 | 8.34 | 577.1 | 289.1 | 15 | 3291 ± 102 |
Procyanidin dimer iso4 | 8.34 | 577.1 | 289.1 | 15 | 622 ± 9 |
Procyanidin trimer iso1 | 4.86 | 865.2 | 577.1 | 15 | 183 ± 4 |
Procyanidin trimer iso2 | 7.99 | 865.2 | 577.1 | 15 | 286 ± 6 |
Procyanidin trimer iso3 | 8.24 | 865.2 | 577.1 | 15 | 267 ± 3 |
Procyanidin trimer iso4 | 9.93 | 865.2 | 577.1 | 15 | 216 ± 14 |
Procyanidin trimer iso5 | 10.11 | 865.2 | 577.1 | 15 | 380 ± 23 |
Flavonols | |||||
Quercetin | 17.39 | 301 | 151 | 25 | 7606 ± 110 |
Quercetin-3-O-glucoside | 11.84 | 463.1 | 301 | 15 | 182 ± 5 |
Quercetin-3-O-glucuronide | 12.46 | 477.1 | 301 | 15 | 41,466 ± 1467 |
Kaempferol | 19.54 | 285 | 143 | 40 | 89 ± 5 |
kaempferol-3-O-glucuronide | 13.76 | 461.1 | 285 | 15 | 594 ± 9 |
Isorhamnetin | 19.74 | 315.1 | 151 | 40 | 212 ± 12 |
Phenolic acids | |||||
Gallic acid | 3.01 | 169 | 125 | 12 | 10,656 ± 80 |
Caffeic acid O-glucoside iso1 | 6.99 | 341.1 | 179 | 15 | 385 ± 3 |
Caffeic acid O-glucoside iso2 | 7.64 | 341.1 | 179 | 15 | 498 ± 60 |
Caffeic acid | 8.03 | 179 | 135 | 16 | 2570 ± 61 |
p-Coumaric acid | 10.09 | 163 | 119 | 8 | 310 ± 29 |
Ferulic acid | 11.46 | 193.1 | 178 | 8 | 91 ± 9 |
Vanillic acid | 7.94 | 167 | 152 | 12 | 700 ± 15 |
Stilbenes | |||||
Resveratrol O-glucoside iso1 | 11.9 | 389.1 | 227 | 15 | 597 ± 2 |
Resveratrol O-glucoside iso2 | 14.4 | 389.1 | 227 | 15 | 2441 ± 28 |
Resveratrol | 15.27 | 227.1 | 143 | 30 | 659 ± 1 |
Piceatannol 3-O-glucoside iso1 | 12.34 | 405.1 | 243.1 | 15 | 2129 ± 84 |
Piceatannol 3-O-glucoside iso2 | 12.57 | 405.1 | 243.1 | 15 | 1725 ± 141 |
Viniferin-iso1 | 14.66 | 453.1 | 265.4 | 20 | 265 ± 6 |
Viniferin-iso2 | 15.92 | 453.1 | 359.5 | 20 | 31 ± 0 |
Compound | RT | Precursor Ion (m/z) | Daughter Ion (m/z) | CE | Concentration (µg/100 g) |
---|---|---|---|---|---|
(min) | (V) | ||||
Acetyl-pinotin A | 10.19 | 667.1657 | 667 | 15 | 243 ± 5 |
Acetylvisitin A | 8.5 | 603.1344 | 399.0718 | 16 | 2233 ± 99 |
Acetylvisitin B | 8.77 | 559.1446 | 355.0813 | 15 | 2976 ± 205 |
Catechin-ethyl-Malvidin-3-acetylglucoside dimer-iso1 | 9.43 | 851.2511 | 357 | 40 | 493 ± 33 |
Catechin-ethyl-malvidin-3-acetylglucoside dimer-iso2 | 9.81 | 851.2511 | 357 | 40 | 116 ± 3 |
Catechin-ethyl-malvidin-3-coumaroylglucoside dimer | 9.7 | 955.2785 | 357 | 40 | 65 ± 2 |
Coumaroylvisitin A | 9.58 | 707.1607 | 399.0718 | 15 | 265 ± 21 |
Coumaroylvisitin B | 9.29 | 663.1708 | 355.0822 | 15 | 746 ± 42 |
Cyanidin-(6-acetyl)-3-glucoside | 8.45 | 491.1184 | 491.1189 | 15 | 388 ± 9 |
Cyanidin-(6-coumaroyl)-3-glucoside | 9.42 | 595.1446 | 287.056 | 8 | 30 ± 5 |
Cyanidin-3-glucoside | 5.85 | 449.1078 | 287.0531 | 15 | 1071 ± 10 |
Delphinidin-(6-acetyl)-3-glucoside | 7.87 | 507.1133 | 303.0496 | 10 | 1384 ± 1 |
Delphinidin-(6-coumaroyl)-3-glucoside | 9.08 | 611.1395 | 303.0508 | 15 | 452 ± 36 |
Delphinidin-3-glucoside | 5.062 | 465.1028 | 303.0511 | 15 | 13,793 ± 54 |
Gallocatechin-malvidin-3-glucoside dimer | 3.58 | 797.2035 | 635 | 30 | 1068 ± 15 |
Malvidin 3-O-glucoside 4-vinylphenol (Pigment A) | 10.22 | 609.1603 | 447.1079 | 15 | 1521 ± 70 |
Malvidin acetyl 3-O-glucoside 4-vinylphenol (Acetyl-pigment A) | 10.5 | 651.1708 | 447.1076 | 12 | 246 ± 12 |
Malvidin-(6-acetyl)-3-glucoside | 9.13 | 535.1446 | 331.0836 | 8 | 14,818 ± 626 |
Malvidin-(6-caffeoyl)-3-glucoside | 9.41 | 655.1657 | 331.0808 | 15 | 329 ± 26 |
Malvidin-(6-coumaroyl)-3-glucoside | 9.92 | 639.1708 | 331.0823 | 12 | 18,663 ± 808 |
Malvidin-3-glucoside | 7.48 | 493.1341 | 331.0843 | 15 | 210,299 ± 1122 |
Malvidin-3-glucoside-(epi)catechin | 4.84 | 781.1974 | 619.6 | 30 | 272 ± 5 |
Malvidin-3-glucoside-ethyl-(epi)catechin-iso1 | 8.4 | 781.1974 | 619.6 | 30 | 12 ± 1 |
Malvidin-3-glucoside-ethyl-(epi)catechin-iso2 | 8.57 | 781.1974 | 619.6 | 30 | 32 ± 2 |
Malvidin-3-glucoside-ethyl-(epi)catechin-iso3 | 8.75 | 781.1974 | 619.6 | 30 | 65 ± 6 |
Malvidin-3-glucoside-ethyl-(epi)catechin-iso4 | 9 | 781.1974 | 619.6 | 30 | 28 ± 1 |
Malvidin-3-glucoside-vinylguaiacol | 9.63 | 639.1708 | 331.0823 | 30 | 1224 ± 121 |
Malvidin-glucoside-vinyl-catechin | 9.56 | 805.1974 | 643.3 | 30 | 289 ± 22 |
Pinotin A (malvidin-3-glucoside-vinylcatechol) | 9.53 | 625.1552 | 463.0998 | 15 | 261 ± 3 |
visitin A (malvidin-3-glucoside-pyruvic acid) | 8.11 | 561.1239 | 399.073 | 15 | 3427 ± 17 |
Visitin B (malvidin-3-glucoside-acetaldehyde) | 8.32 | 517.1341 | 355.0826 | 8 | 2391 ± 78 |
Peonidin-(6-acetyl)-3-glucoside | 9.08 | 505.1341 | 301.0714 | 10 | 2061 ± 154 |
Peonidin-(6-coumaroyl)-3-glucoside | 9.87 | 609.1603 | 301.0716 | 15 | 1452 ± 91 |
Peonidin-3-glucoside | 7.14 | 463.1235 | 301.0717 | 15 | 16,231 ± 1 |
Peonidin-3-glucoside-pyruvic acid | 7.81 | 531.1133 | 369.0607 | 15 | 234 ± 3 |
Petunidin-(6-acetyl)-3-glucoside | 8.66 | 521.1378 | 317.0667 | 15 | 5013 ± 244 |
Petunidin-(6-coumaroyl)-3-glucoside | 9.52 | 625.1552 | 317.0662 | 15 | 713 ± 37 |
Petunidin-3-glucoside | 6.47 | 479.1184 | 317.0669 | 15 | 23,368 ± 281 |
Petunidin-3-glucoside-pyruvic acid | 7.05 | 547.1082 | 385.0547 | 15 | 244 ± 0 |
References
- Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. Phenolic compounds in fruits—An overview: Phenolic Compounds in Fruits. Int. J. Food Sci. Technol. 2012, 47, 2023–2044. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Kovačević, D.B.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-Products of Plant Food Processing as a Source of Functional Compounds—Recent Developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Aruoma, O.I.; Landes, B.; Ramful-Baboolall, D.; Bourdon, E.; Neergheen-Bhujun, V.; Wagner, K.-H.; Bahorun, T. Functional Benefits of Citrus Fruits in the Management of Diabetes. Prev. Med. 2012, 54, S12–S16. [Google Scholar] [CrossRef] [PubMed]
- Oikeh, E.I.; Omoregie, E.S.; Oviasogie, F.E.; Oriakhi, K. Phytochemical, Antimicrobial, and Antioxidant Activities of Different Citrus Juice Concentrates. Food Sci. Nutr. 2016, 4, 103–109. [Google Scholar] [CrossRef]
- Martín-Garcia, A.; Riu-Aumatell, M.; López-Tamames, E. Revalorization of Cava (Spanish Sparkling Wine) Lees on Sourdough Fermentation. Fermentation 2022, 8, 133. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Kang, X.; He, X.; Dong, M.; Zhang, Q.; Liu, R.H. Cellular Antioxidant Activity of Common Fruits. J. Agric. Food Chem. 2008, 56, 8418–8426. [Google Scholar] [CrossRef]
- A Manganaris, G.; Goulas, V.; Vicente, A.R.; A Terry, L. Berry Antioxidants: Small Fruits Providing Large Benefits. J. Sci. Food Agric. 2014, 94, 825–833. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Kłębukowska, L. Antioxidant and Antimicrobial Properties of Selected Fruit Juices. Plant Foods Hum. Nutr. 2022, 77, 427–435. [Google Scholar] [CrossRef]
- Olas, B. Berry Phenolic Antioxidants—Implications for Human Health? Front. Pharmacol. 2018, 9, 78. [Google Scholar] [CrossRef]
- Câmara, J.S.; Albuquerque, B.R.; Aguiar, J.; Corrêa, R.C.G.; Gonçalves, J.L.; Granato, D.; Pereira, J.A.M.; Barros, L.; Ferreira, I.C.F.R. Food Bioactive Compounds and Emerging Techniques for Their Extraction: Polyphenols as a Case Study. Foods 2020, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Lugasi, A.; Hóvári, J. Antioxidant Properties of Commercial Alcoholic and Nonalcoholic Beverages. Mol. Nutr. Food Res. 2003, 47, 79–86. [Google Scholar] [CrossRef]
- Aguilera, Y.; Martin-Cabrejas, M.A.; de Mejia, E.G. Phenolic Compounds in Fruits and Beverages Consumed as Part of the Mediterranean Diet: Their Role in Prevention of Chronic Diseases. Phytochem. Rev. 2016, 15, 405–423. [Google Scholar] [CrossRef]
- Bagheri, L.; Khlifi, M.; Maherani, B.; Salmieri, S.; Lacroix, M. Thermosensitization Enhancement of A. niger, S. Cerevisiae, and L. Fructivorans Using Combination of Mild Heat Treatment with Nanoemulsion-Based Mediterranean Formulation to Fabricate Wholesome Orange Juice. LWT 2020, 123, 109094. [Google Scholar] [CrossRef]
- Franco, C.M.; Vázquez, B.I. Natural Compounds as Antimicrobial Agents. Antibiotics 2020, 9, 217. [Google Scholar] [CrossRef] [PubMed]
- Puupponen-Pimia, R.; Nohynek, L.; Hartmann-Schmidlin, S.; Kahkonen, M.; Heinonen, M.; Maatta-Riihinen, K.; Oksman-Caldentey, K.-M. Berry Phenolics Selectively Inhibit the Growth of Intestinal Pathogens. J. Appl. Microbiol. 2005, 98, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Jara-Palacios, M.J. Wine Lees as a Source of Antioxidant Compounds. Antioxidants 2019, 8, 45. [Google Scholar] [CrossRef]
- López-Fernández-Sobrino, R.; Torres-Fuentes, C.; Bravo, F.I.; Muguerza, B. Winery by-Products as a Valuable Source for Natural Antihypertensive Agents. Crit. Rev. Food Sci. Nutr. 2022, 63, 7708–7721. [Google Scholar] [CrossRef]
- Jurčević, I.L.; Dora, M.; Guberović, I.; Petras, M.; Brnčić, S.R.; Đikić, D. Polyphenols from Wine Lees as a Novel Functional Bioactive Compound in the Protection against Oxidative Stress and Hyperlipidaemia. Food Technol. Biotechnol. 2017, 55, 109–116. [Google Scholar] [CrossRef]
- López-Fernández-Sobrino, R.; Soliz-Rueda, J.R.; Ávila-Román, J.; Arola-Arnal, A.; Suárez, M.; Muguerza, B.; Bravo, F.I. Blood Pressure-Lowering Effect of Wine Lees Phenolic Compounds Is Mediated by Endothelial-Derived Factors: Role of Sirtuin 1. Antioxidants 2021, 10, 1073. [Google Scholar] [CrossRef]
- López-Fernández-Sobrino, R.; Soliz-Rueda, J.; Margalef, M.; Arola-Arnal, A.; Suárez, M.; Bravo, F.; Muguerza, B. ACE Inhibitory and Antihypertensive Activities of Wine Lees and Relationship among Bioactivity and Phenolic Profile. Nutrients 2021, 13, 679. [Google Scholar] [CrossRef]
- Tagkouli, D.; Tsiaka, T.; Kritsi, E.; Soković, M.; Sinanoglou, V.J.; Lantzouraki, D.Z.; Zoumpoulakis, P. Towards the Optimization of Microwave-Assisted Extraction and the Assessment of Chemical Profile, Antioxidant and Antimicrobial Activity of Wine Lees Extracts. Molecules 2022, 27, 2189. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Silva, V.; Igrejas, G.; Gaivão, I.; Aires, A.; Klibi, N.; Dapkevicius, M.D.L.E.; Valentão, P.; Falco, V.; Poeta, P. Valorization of Winemaking By-Products as a Novel Source of Antibacterial Properties: New Strategies to Fight Antibiotic Resistance. Molecules 2021, 26, 2331. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Sancho-Pardo, L.; Bravo, F.I.; Mulero, M.; Muguerza, B.; Arola-Arnal, A. Optimized Extraction by Response Surface Methodology Used for the Characterization and Quantification of Phenolic Compounds in Whole Red Grapes (Vitis vinifera). Nutrients 2018, 10, 1931. [Google Scholar] [CrossRef]
- Ortiz-Solà, J.; Abadias, M.; Colás-Medà, P.; Sánchez, G.; Bobo, G.; Viñas, I. Evaluation of a Sanitizing Washing Step with Different Chemical Disinfectants for the Strawberry Processing Industry. Int. J. Food Microbiol. 2020, 334, 108810. [Google Scholar] [CrossRef]
- Abadias, M.; Usall, J.; Oliveira, M.; Alegre, I.; Viñas, I. Efficacy of Neutral Electrolyzed Water (NEW) for Reducing Microbial Contamination on Minimally-Processed Vegetables. Int. J. Food Microbiol. 2008, 123, 151–158. [Google Scholar] [CrossRef]
- Nicolau-Lapeña, I.; Abadias, M.; Bobo, G.; Aguiló-Aguayo, I.; Lafarga, T.; Viñas, I. Strawberry Sanitization by Peracetic Acid Washing and Its Effect on Fruit Quality. Food Microbiol. 2019, 83, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Unaroj; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D. Comparision of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Dong, J.-W.; Cai, L.; Xing, Y.; Yu, J.; Ding, Z.-T. Re-Evaluation of ABTS•+ Assay for Total Antioxidant Capacity of Natural Products. Nat. Prod. Commun. 2015, 10, 1934578X1501001. [Google Scholar] [CrossRef]
- ISO 4833-2:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 Degrees C by the Surface Plating Technique. ISO: Geneva, Switzerland, 2013.
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. ISO: Geneva, Switzerland, 2008.
- Lucas, B.F.; de Morais, M.G.; Santos, T.D.; Costa, J.A.V. Spirulina for snack enrichment: Nutritional, physical and sensory evaluations. LWT-Food Sci. Technol. 2018, 90, 270–276. [Google Scholar] [CrossRef]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus aureus Clinical Strains. Int. J. Environ. Res. Public Health 2018, 15, 2321. [Google Scholar] [CrossRef]
- Alarcón, M.; López-Viñas, M.; Pérez-Coello, M.S.; Díaz-Maroto, M.C.; Alañón, M.E.; Soriano, A. Effect of Wine Lees as Alternative Antioxidants on Physicochemical and Sensorial Composition of Deer Burgers Stored during Chilled Storage. Antioxidants 2020, 9, 687. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Macias, S.; Ferrer-Bustins, N.; Comas-Basté, O.; Jofré, A.; Latorre-Moratalla, M.; Bover-Cid, S.; Vidal-Carou, M.D.C. Revalorization of Cava Lees to Improve the Safety of Fermented Sausages. Foods 2021, 10, 1916. [Google Scholar] [CrossRef] [PubMed]
- Ayar, A.; Siçramaz, H.; Öztürk, S.; Yilmaz, S. Öztürk Probiotic Properties of Ice Creams Produced with Dietary Fibres from By-Products of the Food Industry. Int. J. Dairy Technol. 2018, 71, 174–182. [Google Scholar] [CrossRef]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Summo, C.; Caponio, F. Bioactive Compounds from Vine Shoots, Grape Stalks, and Wine Lees: Their Potential Use in Agro-Food Chains. Foods 2021, 10, 342. [Google Scholar] [CrossRef]
- Vázquez-Armenta, F.J.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; González-Aguilar, G.A.; Nazzaro, F.; Fratianni, F.; Ayala-Zavala, J.F. Antibacterial and Antioxidant Properties of Grape Stem Extract Applied as Disinfectant in Fresh Leafy Vegetables. J. Food Sci. Technol. 2017, 54, 3192–3200. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Santos, R.A.; Queiroz, M.; Leal, C.; Saavedra, M.J.; Domínguez-Perles, R.; Rodrigues, M.; Barros, A.I. Monitoring the Antioxidant and Antimicrobial Power of Grape (Vitis vinifera L.) Stems Phenolics over Long-Term Storage. Ind. Crop. Prod. 2018, 126, 83–91. [Google Scholar] [CrossRef]
- Huang, J.; Luo, Y.; Zhou, B.; Zheng, J.; Nou, X. Growth and Survival of Salmonella Enterica and Listeria Monocytogenes on Fresh-Cut Produce and Their Juice Extracts: Impacts and Interactions of Food Matrices and Temperature Abuse Conditions. Food Control. 2019, 100, 300–304. [Google Scholar] [CrossRef]
- Leneveu-Jenvrin, C.; Quentin, B.; Assemat, S.; Remize, F. Maintaining Physicochemical, Microbiological, and Sensory Quality of Pineapple Juice (Ananas comosus, Var. ‘Queen Victoria’) through Mild Heat Treatment. Processes 2020, 8, 1186. [Google Scholar] [CrossRef]
- Gündüz, G.T.; Korkmaz, A.; Solak, E.; Sözbir, H.D. Antimicrobial, Antioxidant Activities and Total Phenolic Contents of the Traditional Turkish Beverages Produced by Using Grapes. Turk. J. Agric.-Food Sci. Technol. 2019, 7, 119–125. [Google Scholar] [CrossRef]
- Sabel, A.; Bredefeld, S.; Schlander, M.; Claus, H. Wine Phenolic Compounds: Antimicrobial Properties against Yeasts, Lactic Acid and Acetic Acid Bacteria. Beverages 2017, 3, 29. [Google Scholar] [CrossRef]
- Makarewicz, M.; Drożdż, I.; Tarko, T.; Duda-Chodak, A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants 2021, 10, 188. [Google Scholar] [CrossRef]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- De Iseppi, A.; Lomolino, G.; Marangon, M.; Curioni, A. Current and Future Strategies for Wine Yeast Lees Valorization. Food Res. Int. 2020, 137, 109352. [Google Scholar] [CrossRef] [PubMed]
- Rivas, M.; Casquete, R.; Córdoba, M.d.G.; Ruíz-Moyano, S.; Benito, M.J.; Pérez-Nevado, F.; Martín, A. Chemical Composition and Functional Properties of Dietary Fibre Concentrates from Winemaking By-Products: Skins, Stems and Lees. Foods 2021, 10, 1510. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Chong, C.H.; Mah, S.H.; Abdullah, L.C.; Choong, T.S.Y.; Chua, B.L. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts. Molecules 2018, 23, 484. [Google Scholar] [CrossRef]
- Wootton-Beard, P.C.; Ryan, L. Improving Public Health?: The Role of Antioxidant-Rich Fruit and Vegetable Beverages. Food Res. Int. 2011, 44, 3135–3148. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, P.; Rueda-Robles, A.; Borrás-Linares, I.; Quirantes-Piné, R.M.; Emanuelli, T.; Segura-Carretero, A.; Lozano-Sánchez, J. Grape and Grape-Based Product Polyphenols: A Systematic Review of Health Properties, Bioavailability, and Gut Microbiota Interactions. Horticulturae 2022, 8, 583. [Google Scholar] [CrossRef]
- Martínez-Antequera, F.; Molina-Roque, L.; Heras, V.d.L.; Mancera, J.; Martos-Sitcha, J.; Moyano, F. Feed Supplementation with Winery by-Products Improves the Physiological Status of Juvenile Liza aurata during a Short-Term Feeding Trial and Hypoxic Challenge. Aquac. Rep. 2023, 31, 101667. [Google Scholar] [CrossRef]
- Katz, I.H.; Nagar, E.E.; Okun, Z.; Shpigelman, A. The Link between Polyphenol Structure, Antioxidant Capacity and Shelf-Life Stability in the Presence of Fructose and Ascorbic Acid. Molecules 2020, 25, 225. [Google Scholar] [CrossRef]
- Lara, M.V.; Bonghi, C.; Famiani, F.; Vizzotto, G.; Walker, R.P.; Drincovich, M.F. Stone Fruit as Biofactories of Phytochemicals with Potential Roles in Human Nutrition and Health. Front. Plant Sci. 2020, 11, 562252. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Mansour, G.; Ghanem, C.; Mercenaro, L.; Nassif, N.; Hassoun, G.; Del Caro, A. Effects of Altitude on the Chemical Composition of Grapes and Wine: A Review. OENO One 2022, 56, 227–239. [Google Scholar] [CrossRef]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant Activity and Polyphenols Characterization of Four Monovarietal Grape Pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef] [PubMed]
- Romero-Díez, R.; Rodríguez-Rojo, S.; Cocero, M.J.; Duarte, C.M.M.; Matias, A.A.; Bronze, M.R. Phenolic Characterization of Aging Wine Lees: Correlation with Antioxidant Activities. Food Chem. 2018, 259, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Wongnarat, C.; Srihanam, P. Phytochemical and Antioxidant Activity in Seeds and Pulp of Grape Cultivated in Thailand. Orient. J. Chem. 2017, 33, 113–121. [Google Scholar] [CrossRef]
- De Santis, D.; Ferri, S.; Rossi, A.; Frisoni, R.; Turchetti, G. By-Product of Raspberry Juice as a Functional Ingredient: Effects on the Properties and Qualitative Characteristics of Enriched Pasta. Int. J. Food Sci. Technol. 2022, 57, 7720–7730. [Google Scholar] [CrossRef]
- Arfaoui, L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef] [PubMed]
- Toydemir, G.; Subasi, B.G.; Hall, R.D.; Beekwilder, J.; Boyacioglu, D.; Capanoglu, E. Effect of Food Processing on Antioxidants, Their Bioavailability and Potential Relevance to Human Health. Food Chem. X 2022, 14, 100334. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and Grape Polyphenols—A Chemical Perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Cele, N.P.; Akinola, S.A.; Shoko, T.; Manhevi, V.E.; Remize, F.; Sivakumar, D. The Bioaccessibility and Antioxidant Activities of Fermented Mango Cultivar Juices after Simulated In Vitro Digestion. Foods 2022, 11, 2702. [Google Scholar] [CrossRef] [PubMed]
- Guler, A.; Candemir, A.; Ozaltin, K.E.; Asiklar, F.B.; Saygac, S. Determination of Biochemical Characteristics, Antioxidant Activities, and Individual Phenolic Compounds of 13 Native Turkish Grape Juices. Erwerbs-Obstbau 2022, 64, 25–35. [Google Scholar] [CrossRef]
- Techakanon, C.; Sirimuangmoon, C. The Effect of Pasteurization and Shelf Life on the Physicochemical, Microbiological, Antioxidant, and Sensory Properties of Rose Apple Cider during Cold Storage. Beverages 2020, 6, 43. [Google Scholar] [CrossRef]
- Fattouch, S.; Caboni, P.; Coroneo, V.; Tuberoso, C.I.G.; Angioni, A.; Dessi, S.; Marzouki, N.; Cabras, P. Antimicrobial Activity of Tunisian Quince (Cydonia oblonga Miller) Pulp and Peel Polyphenolic Extracts. J. Agric. Food Chem. 2007, 55, 963–969. [Google Scholar] [CrossRef]
- Aneja, K.R.; Dhiman, R.; Aggarwal, N.K.; Kumar, V.; Kaur, M. Microbes Associated with Freshly Prepared Juices of Citrus and Carrots. Int. J. Food Sci. 2014, 2014, 408085. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs (OJ L 338,. 22.12.2005, p. 1). 1. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:338:0001:0026:EN:PDF (accessed on 15 June 2023).
- Real Decreto 3484/2000, De 29 de Diciembre, por el que se Establecen las Normas de Higiene para la Elaboración, Distribución y Comercio de Comidas Preparadas. B. O. E, 11, pp. 1435–1441. 2001. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2001-809 (accessed on 15 June 2023).
Sample/Days | 0 | 4 | 7 | 11 | 14 | 21 | |
---|---|---|---|---|---|---|---|
SST | CK | 13.93 ± 0.06Ca * | 13.97 ± 0.06Ca | 13.93 ± 0.06Ca | 13.90 ± 0.00Ca | 13.87 ± 0.02Ca | 13.87 ± 0.06Ca |
1.5 | 14.70 ± 0.08Bb | 14.77 ± 0.06Bab | 14.70 ± 0.08Bb | 14.83 ± 0.06Ba | 14.77 ± 0.01Bab | 14.73 ± 0.06Bab | |
2 | 15.27 ± 0.06Ab | 15.30 ± 0.00Ab | 15.27 ± 0.06Ab | 15.27 ± 0.06Ab | 15.47 ± 0.01Aa | 15.20 ± 0.00Aa | |
TA | CK | 2.96 ± 0.05Cab | 2.85 ± 0.01Cb | 2.93 ± 0.198Bab | 2.93 ± 0.19Cab | 3.11 ± 0.13Cab | 3.51 ± 0.48Aa |
1.5 | 3.56 ± 0.04Ba | 3.61 ± 0.48Ba | 3.56 ± 0.14Aa | 3.56 ± 0.14Ba | 3.57 ± 0.14Ba | 3.36 ± 0.3Aa | |
2 | 3.73 ± 0.09Ab | 3.82 ± 0.02Ab | 3.84 ± 0.08Aab | 3.84 ± 0.08Ab | 3.86 ± 0.05Aab | 4.02 ± 0.03Aa |
TPC | ABT | FRAP | |
---|---|---|---|
TPC * | 1.000 | 0.981 | 0.958 |
ABTS | 0.981 | 1.000 | 0.916 |
FRAP | 0.958 | 0.916 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto-Santiago, V.; Aguiló-Aguayo, I.; Bravo, F.I.; Mulero, M.; Abadias, M. Valorization of Peach Fruit and Wine Lees through the Production of a Functional Peach and Grape Juice. Foods 2024, 13, 1095. https://doi.org/10.3390/foods13071095
Prieto-Santiago V, Aguiló-Aguayo I, Bravo FI, Mulero M, Abadias M. Valorization of Peach Fruit and Wine Lees through the Production of a Functional Peach and Grape Juice. Foods. 2024; 13(7):1095. https://doi.org/10.3390/foods13071095
Chicago/Turabian StylePrieto-Santiago, Virginia, Ingrid Aguiló-Aguayo, Francisca Isabel Bravo, Miquel Mulero, and Maribel Abadias. 2024. "Valorization of Peach Fruit and Wine Lees through the Production of a Functional Peach and Grape Juice" Foods 13, no. 7: 1095. https://doi.org/10.3390/foods13071095
APA StylePrieto-Santiago, V., Aguiló-Aguayo, I., Bravo, F. I., Mulero, M., & Abadias, M. (2024). Valorization of Peach Fruit and Wine Lees through the Production of a Functional Peach and Grape Juice. Foods, 13(7), 1095. https://doi.org/10.3390/foods13071095