Towards Sulphite-Free Winemaking: A New Horizon of Vinification and Maturation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Samples and Winemaking
2.2. Chemical Analyses
2.3. Headspace Solid-Phase Microextraction and GC-MS Analyses
2.4. Statistical Analyses
3. Results and Discussion
3.1. Bioma Products Compositions
3.2. Total and Free Sulphur Dioxide
3.3. Alcoholic and Malolactic Fermentation Trends
3.4. Volatile Acidity
3.5. Total Phenolics and Total and Bleachable Anthocyanins Content
3.6. Aroma Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; Da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Carrascon, V.; Fernandez-Zurbano, P.; Bueno, M.; Ferreira, V. Oxygen Consumption by Red Wines. Part II: Differential Effects on Color and Chemical Composition Caused by Oxygen Taken in Different Sulfur Dioxide-Related Oxidation Contexts. J. Agric. Food Chem. 2015, 63, 10938–10947. [Google Scholar] [CrossRef] [PubMed]
- Devatine, A.; Chiciuc, I.; Poupot, C.; Mietton-Peuchot, M. Micro-Oxygenation of Wine in Presence of Dissolved Carbon Dioxide. Chem. Eng. Sci. 2007, 62, 4579–4588. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Sroka, P.; Siuta, M. The Impact of Oxygen at Various Stages of Vinification on the Chemical Composition and the Antioxidant and Sensory Properties of White and Red Wines. Int. J. Food Sci. 2020, 2020, 7902974. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, V.; Fulcrand, H.; Cheynier, V.; Moutounet, M. Effect of Oxygenation on Polyphenol Changes Occurring in the Course of Wine-Making. Anal. Chim. Acta 2002, 458, 15–27. [Google Scholar] [CrossRef]
- Mateus, N.; Silva, A.M.S.; Rivas-Gonzalo, J.C.; Santos-Buelga, C.; De Freitas, V. A New Class of Blue Anthocyanin-Derived Pigments Isolated from Red Wines. J. Agric. Food Chem. 2003, 51, 1919–1923. [Google Scholar] [CrossRef] [PubMed]
- Cejudo-Bastante, M.J.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Micro-Oxygenation and Oak Chip Treatments of Red Wines: Effects on Colour-Related Phenolics, Volatile Composition and Sensory Characteristics. Part I: Petit Verdot Wines. Food Chem. 2011, 124, 727–737. [Google Scholar] [CrossRef]
- Styger, G.; Prior, B.; Bauer, F.F. Wine Flavor and Aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, X.; Li, P.; Lv, Y.; Nan, H.; Wen, L.; Wang, Z. Research Progress of Wine Aroma Components: A Critical Review. Food Chem. 2023, 402, 134491. [Google Scholar] [CrossRef]
- Ugliano, M. Oxygen Contribution to Wine Aroma Evolution during Bottle Ageing. J. Agric. Food Chem. 2013, 61, 6125–6136. [Google Scholar] [CrossRef]
- Kanavouras, A.; Coutelieris, F.; Karanika, E.; Kotseridis, Y.; Kallithraka, S. Color Change of Bottled White Wines as a Quality Indicator. OENO One 2020, 54, 543–551. [Google Scholar] [CrossRef]
- Mislata, A.M.; Puxeu, M.; Tomás, E.; Nart, E.; Ferrer-Gallego, R. Influence of the Oxidation in the Aromatic Composition and Sensory Profile of Rioja Red Aged Wines. Eur. Food Res. Technol. 2020, 246, 1167–1181. [Google Scholar] [CrossRef]
- Ough, C.S.; Crowell, E.A. Use of Sulfur Dioxide in Winemaking. J. Food Sci. 1987, 52, 386–388. [Google Scholar] [CrossRef]
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. The Role of Sulfur Dioxide in Wine. In Principles and Practices of Winemaking; Springer: Boston, MA, USA, 1999; pp. 448–473. ISBN 978-1-4419-5190-8. [Google Scholar]
- Kalkan Yıldırım, H.; Darıcı, B. Alternative methods of sulfur dioxide used in wine production. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 675–687. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Cantos-Villar, E. Demonstrating the Efficiency of Sulphur Dioxide Replacements in Wine: A Parameter Review. Trends Food Sci. Technol. 2015, 42, 27–43. [Google Scholar] [CrossRef]
- Lisanti, M.T.; Blaiotta, G.; Nioi, C.; Moio, L. Alternative Methods to SO2 for Microbiological Stabilization of Wine. Compr. Rev. Food Sci. Food Saf. 2019, 18, 455–479. [Google Scholar] [CrossRef] [PubMed]
- Vally, H. Role of Sulfite Additives in Wine Induced Asthma: Single Dose and Cumulative Dose Studies. Thorax 2001, 56, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Vally, H.; Thompson, P. Allergic and Asthmatic Reactions to Alcoholic Drinks. Addict. Biol. 2003, 8, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Vally, H.; Misso, N.L.A.; Madan, V. Clinical Effects of Sulphite Additives. Clin. Exp. Allergy 2009, 39, 1643–1651. [Google Scholar] [CrossRef]
- Qin, G.; Meng, Z. Effects of Sulfur Dioxide Derivatives on Expression of Oncogenes and Tumor Suppressor Genes in Human Bronchial Epithelial Cells. Food Chem. Toxicol. 2009, 47, 734–744. [Google Scholar] [CrossRef]
- Giacosa, S.; Río Segade, S.; Cagnasso, E.; Caudana, A.; Rolle, L.; Gerbi, V. SO2 in Wines. In Red Wine Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 309–321. ISBN 978-0-12-814399-5. [Google Scholar]
- Walzem, R.L. Wine and Health: State of Proofs and Research Needs. Inflammopharmacology 2008, 16, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Macoviciuc, S.; Nechita, C.B.; Cioroiu, I.B.; Cotea, V.; Niculaua, M. Effect of Added Sulphur Dioxide Levels on the Aroma Characteristics of Wines from Panciu Wine Region. Știința Agric. 2022, 1, 73–77. [Google Scholar] [CrossRef]
- Fišera, M.; Šustová, K.; Tvrzník, P.; Velichová, H.; Fišerová, L.; Lukášková, E.; Kráčmar, S. Reduce the sulphur dioxide content of wine by biological process in relation to the content of polyphenolic substances. J. Microbiol. Biotechnol. Food Sci. 2022, 11, e5975. [Google Scholar] [CrossRef]
- Santos, M.C.; Nunes, C.; Cappelle, J.; Gonçalves, F.J.; Rodrigues, A.; Saraiva, J.A.; Coimbra, M.A. Effect of High Pressure Treatments on the Physicochemical Properties of a Sulphur Dioxide-Free Red Wine. Food Chem. 2013, 141, 2558–2566. [Google Scholar] [CrossRef] [PubMed]
- Fredericks, I.N.; Du Toit, M.; Krügel, M. Efficacy of Ultraviolet Radiation as an Alternative Technology to Inactivate Microorganisms in Grape Juices and Wines. Food Microbiol. 2011, 28, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Puértolas, E.; López, N.; Condón, S.; Raso, J.; Álvarez, I. Pulsed Electric Fields Inactivation of Wine Spoilage Yeast and Bacteria. Int. J. Food Microbiol. 2009, 130, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.; Ballco, P.; López-Galán, B.; De Magistris, T.; Verneau, F. Exploring Consumers’ Perception and Willingness to Pay for “Non-Added Sulphite” Wines through Experimental Auctions: A Case Study in Italy and Spain. Wine Econ. Policy 2017, 6, 146–154. [Google Scholar] [CrossRef]
- Bozzini, M.F.; Pieracci, Y.; Ascrizzi, R.; Najar, B.; D’Antraccoli, M.; Ciampi, L.; Peruzzi, L.; Turchi, B.; Pedonese, F.; Alleva, A.; et al. Chemical Composition and Antimicrobial Activity against the Listeria Monocytogenes of Essential Oils from Seven Salvia Species. Foods 2023, 12, 4235. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Pieracci, Y.; Pistelli, L.; Lari, M.; Iannone, M.; Marianelli, A.; Ascrizzi, R.; Pistelli, L.; Flamini, G. Hibiscus Rosa-Sinensis as Flavoring Agent for Alcoholic Beverages. Appl. Sci. 2021, 11, 9864. [Google Scholar] [CrossRef]
- Yıldırım, H.K.; Elmacı, Y.; Ova, G.; Altuğ, T.; Yücel, U. Descriptive Analysis of Red Wines From Different Grape Cultivars in Turkey. Int. J. Food Prop. 2007, 10, 93–102. [Google Scholar] [CrossRef]
- Yıldırım, H.K.; Altındışli, A. Changes of Phenolic Acids During Ageing of Organic Wines. Int. J. Food Prop. 2015, 18, 1038–1045. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Esparza, I.; Bimbela, F.; Gandía, L.M.; Ancín-Azpilicueta, C. Valorization of Selected Fruit and Vegetable Wastes as Bioactive Compounds: Opportunities and Challenges. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2061–2108. [Google Scholar] [CrossRef]
- Galanakis, C.M. Functionality of Food Components and Emerging Technologies. Foods 2021, 10, 128. [Google Scholar] [CrossRef] [PubMed]
- Marchante, L.; Loarce, L.; Izquierdo-Cañas, P.M.; Alañón, M.E.; García-Romero, E.; Pérez-Coello, M.S.; Díaz-Maroto, M.C. Natural Extracts from Grape Seed and Stem By-Products in Combination with Colloidal Silver as Alternative Preservatives to SO2 for White Wines: Effects on Chemical Composition and Sensorial Properties. Food Res. Int. 2019, 125, 108594. [Google Scholar] [CrossRef] [PubMed]
- Sochorova, L.; Prusova, B.; Jurikova, T.; Mlcek, J.; Adamkova, A.; Baron, M.; Sochor, J. The Study of Antioxidant Components in Grape Seeds. Molecules 2020, 25, 3736. [Google Scholar] [CrossRef] [PubMed]
- Quero, J.; Jiménez-Moreno, N.; Esparza, I.; Osada, J.; Cerrada, E.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Grape Stem Extracts with Potential Anticancer and Antioxidant Properties. Antioxidants 2021, 10, 243. [Google Scholar] [CrossRef]
- Salehi, B.; Vlaisavljevic, S.; Adetunji, C.O.; Adetunji, J.B.; Kregiel, D.; Antolak, H.; Pawlikowska, E.; Uprety, Y.; Mileski, K.S.; Devkota, H.P.; et al. Plants of the Genus Vitis: Phenolic Compounds, Anticancer Properties and Clinical Relevance. Trends Food Sci. Technol. 2019, 91, 362–379. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.S.; Buica, A.; Nieuwoudt, H.; Aleixandre, J.L.; du Toit, W. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines. J. Agric. Food Chem. 2017, 65, 4009–4026. [Google Scholar] [CrossRef]
- Gordillo, B.; Cejudo-Bastante, M.J.; Rodríguez-Pulido, F.J.; Jara-Palacios, M.J.; Ramírez-Pérez, P.; González-Miret, M.L.; Heredia, F.J. Impact of Adding White Pomace to Red Grapes on the Phenolic Composition and Color Stability of Syrah Wines from a Warm Climate. J. Agric. Food Chem. 2014, 62, 2663–2671. [Google Scholar] [CrossRef]
- Gordillo, B.; Baca-Bocanegra, B.; Rodriguez-Pulído, F.J.; González-Miret, M.L.; García Estévez, I.; Quijada-Morín, N.; Heredia, F.J.; Escribano-Bailón, M.T. Optimisation of an Oak Chips-Grape Mix Maceration Process. Influence of Chip Dose and Maceration Time. Food Chem. 2016, 206, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A.; Taglieri, I.; Venturi, F.; Sanmartin, C.; Ferroni, G.; Macaluso, M.; Palla, F.; Flamini, G.; Zinnai, A. Technological Improvements on FML in the Chianti Classico Wine Production: Co-Inoculation or Sequential Inoculation? Foods 2022, 11, 1011. [Google Scholar] [CrossRef] [PubMed]
- De Beer, D.; Harbertson, J.F.; Kilmartin, P.A.; Roginsky, V.; Barsukova, T.; Adams, D.O.; Waterhouse, A.L. Phenolics: A Comparison of Diverse Analytical Methods. Am. J. Enol. Vitic. 2004, 55, 389–400. [Google Scholar] [CrossRef]
- Barbaccia, P.; Busetta, G.; Matraxia, M.; Sutera, A.M.; Craparo, V.; Moschetti, G.; Francesca, N.; Settanni, L.; Gaglio, R. Monitoring Commercial Starter Culture Development in Presence of Red Grape Pomace Powder to Produce Polyphenol-Enriched Fresh Ovine Cheeses at Industrial Scale Level. Fermentation 2021, 7, 35. [Google Scholar] [CrossRef]
- Pieracci, Y.; Pistelli, L.; Cecchi, M.; Pistelli, L.; De Leo, M. Phytochemical Characterization of Citrus-Based Products Supporting Their Antioxidant Effect and Sensory Quality. Foods 2022, 11, 1550. [Google Scholar] [CrossRef] [PubMed]
- Panero, L.; Motta, S.; Petrozziello, M.; Guaita, M.; Bosso, A. Effect of SO2, Reduced Glutathione and Ellagitannins on the Shelf Life of Bottled White Wines. Eur. Food Res. Technol. 2015, 240, 345–356. [Google Scholar] [CrossRef]
- Sims, C.A.; Morris, J.R. Effects of pH, Sulfur Dioxide, Storage Time, and Temperature on the Color and Stability of Red Muscadine Grape Wine. Am. J. Enol. Vitic. 1984, 35, 35–39. [Google Scholar] [CrossRef]
- Arapitsas, P.; Guella, G.; Mattivi, F. The Impact of SO2 on Wine Flavanols and Indoles in Relation to Wine Style and Age. Sci. Rep. 2018, 8, 858. [Google Scholar] [CrossRef]
- Grainger, K.; Tattersall, H. (Eds.) Wine Production: Vine To Bottle, 1st ed.; Wiley: Hoboken, NJ, USA, 2005; ISBN 978-1-4051-1365-6. [Google Scholar]
- Zoecklein, B.W.; Fugelsang, K.C.; Gump, B.H.; Nury, F.S. Volatile Acidity. In Wine Analysis and Production; Springer: Boston, MA, USA, 1995; pp. 192–198. ISBN 978-1-4757-6980-7. [Google Scholar]
- Vilela-Moura, A.; Schuller, D.; Mendes-Faia, A.; Silva, R.D.; Chaves, S.R.; Sousa, M.J.; Côrte-Real, M. The Impact of Acetate Metabolism on Yeast Fermentative Performance and Wine Quality: Reduction of Volatile Acidity of Grape Musts and Wines. Appl. Microbiol. Biotechnol. 2011, 89, 271–280. [Google Scholar] [CrossRef]
- Emese, M.M. Eonological Parameters of Fetească Regală Wines Subjected to Ageing with Oak Chips of and Barrel during Three Periods of Time. J. Hortic. For. Biotechnol. 2019, 78–83. [Google Scholar]
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A Review of the Effect of Winemaking Techniques on Phenolic Extraction in Red Wines. Am. J. Enol. Vitic. 2005, 56, 197–206. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Vanzo, L.; Luzzini, G.; Arapitsas, P.; Marangon, M.; Curioni, A.; Mattivi, F.; Piombino, P.; Moio, L.; Versari, A.; et al. Monoterpenoids and Norisoprenoids in Italian Red Wines: This Article Is Published in Cooperation with Macrowine 2021, 23–30 June 2021. OENO One 2022, 56, 185–193. [Google Scholar] [CrossRef]
Must Composition | Concentration |
---|---|
Alcohol (% v/v) | 0.06 ± 0.02 |
Sugar (g/L) | 248 ± 12 |
pH | 3.5 ± 0.01 |
Titratable acidity (g/L) | 2.39 ± 0.11 |
Volatile acidity (g/L) | 0.09 ± 0.03 |
Malic acid (g/L) | 1.7 ± 0.13 |
Lactic acid (g/L) | 0.25 ± 0.05 |
Winemaking Steps | Traditional Winemaking | Bioma Winemaking |
---|---|---|
Harvest | Addition of 5 g/hL K2S2O5 | Addition of Epyca Red1 (1 L/3000 kg) |
Alcoholic fermentation (a.f.) | Persy yeasts (5 g/hL) | Persy yeasts (5 g/hL) |
Pumping over | Two a day | Two a day |
Beginning of malolactic fermentation (m.l.f) | Malolactic bacteria prime 48 h after the beginning of A.F. | Malolactic bacteria prime 48 h after the beginning of A.F. |
Racking | Addition of 8 g/hL K2S2O5 | Addition of Epyca Red 2 (1 L/3000 kg) and ML-A and ML-B |
Wine maturation | Wood and steel | Wood and steel |
Filtration | - | - |
Bottling | - | Addition of Epyca Red 3 (1 L/30 Q) |
Sample | Dry Extract (g/L) | Total Phenols (Catechins g/L) | Alcohol (vol. %) | Total Phenols (Gallic A. g/L) | SO2 Tot. (mg/L) | pH | Titratable Acidity (g/L) |
---|---|---|---|---|---|---|---|
Red1 | 0.6 ± 0.1 | 0.37 ± 0.05 | 7.75 ± 0.20 | 0.12 ± 0.04 | 12.8 ± 0.9 | 5.0 ± 0.1 | 0.07 ± 0.01 |
Red 2 | 1.9 ± 0.1 | 0.64 ± 0.05 | 8.63 ± 0.1 | 0.27 ± 0.09 | 12.8 ± 1.8 | 4.8 ± 0.2 | 0.09 ± 0.01 |
Red 3 | 1.3 ± 0.1 | 0.66 ± 0.01 | 7.97 ± 0.05 | 0.25 ± 0.01 | 19.2 ± 2.1 | 4.5 ± 0.2 | 0.09 ± 0.01 |
ML-A | 0.97 ± 0.10 | 0.69 ± 0.10 | 38.83 ± 0.90 | 0.27 ± 0.01 | 16.2 ± 1.1 | 4.8 ± 0.2 | 0.05 ± 0.01 |
ML-B | 16.56 ± 0.40 | 2.09 ± 0.10 | 7.70 ± 0.10 | 0.14 ± 0.01 | 8.2 ± 0.9 | 7.2 ± 0.2 | 0.01 ± 0.00 |
Sampling Time | Total Phenols (g/L Catechin) | Total Anthocyanins (mg/L Malvin) | Bleachable Anthocyanins (mg/L Malvin) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bioma | Traditional | Bioma | Traditional | Bioma | Traditional | |||||||
24-Sept | 1.17 ± 0.03 B | 1.72 ± 0.02 A | 139.65 ± 1.88 A | 134.75 ± 19.79 A | 52.94 ± 0.62 B | 70.49 ± 0.94 A | ||||||
27-Sept | 2.88 ± 0.01 B | 3.11 ± 0.03 A | 193.85 ± 0.47 B | 230.42 ± 1.41 A | 61.25 ± 4.95 B | 172.38 ± 9.89 A | ||||||
28-Sept | 3.16 ± 0.02 B | 3.28 ± 0.01 A | 194.51 ± 1.41 B | 273.32 ± 0.94 A | 141.31 ± 0.62 B | 209.13 ± 14.84 A | ||||||
29-Sept | 3.25 ± 0.01 B | 3.4 ± 0.02 A | 205.49 ± 4.70 B | 287.28 ± 2.82 A | 144.38 ± 6.18 B | 266.88 ± 16.08 A | ||||||
30-Sept | 3.44 ± 0.01 B | 3.55 ± 0.03 A | 291.27 ± 2.82 B | 367.08 ± 1.88 A | 209.13 ± 16.08 A B | 275.19 ± 19.18 A | ||||||
13-Oct | 3.61 ± 0.02 A | 3.17 ± 0.01 B | 294.6 ± 1.88 B | 402.99 ± 0.94 A | 203.88 ± 9.89 B | 295.75 ± 13.61 A | ||||||
19-Oct | 3.9 ± 0.02 A | 3.42 ± 0.04 B | 423.94 ± 0.47 B | 445.22 ± 0.47 A | 289.63 ± 1.23 A | 292.69 ± 8.04 A | ||||||
20-Oct | 3.97 ± 0.02 A | 3.58 ± 0.02 B | 364.42 ± 2.82 A | 360.7 ± 10.72 A | 304.5 ± 1.23 A | 255.06 ± 10.51 B | ||||||
03-Nov | 4.6 ± 0.14 A | 4.09 ± 0.02 B | 369.74 ± 1.88 B | 356.44 ± 1.88 A | 302.75 ± 3.71 A | 273 ± 7.42 B | ||||||
10-Nov | 4.83 ± 0.11 A | 4.4 ± 0.05 B | 313.69 ± 4.33 B | 328.94 ± 2.21 A | 313.98 ± 1.92 A | 262.94 ± 19.18 B | ||||||
18-Nov | 3.8 ± 0.01 A | 3.78 ± 0.01 A | 287.58 ± 27.79 A | 286.58 ± 0.33 A | 300 ± 2.22 A | 270.55 ± 7.42 A B | ||||||
04-Dec | 3.64 ± 0.01 A | 3.64 ± 0.01 A | 299.95 ± 4.94 A | 293 ± 23.04 A | 280 ± 2.78 A | 204.53 ± 0.68 B | ||||||
BW | BS | TW | TS | BW | BS | TW | TS | BW | BS | TW | TS | |
04-March | 3.02 ± 0.11 A | 3.02 ± 0.11 A | 2.73 ± 0 A | 2.73 ± 0 A | 297.85 ± 13.54 A | 297.85 ± 3.53 A | 273.45 ± 0.18 A | 273.45 ± 0.18 A | 250 ± 1.98 A | 250 ± 1.98 A | 199.24 ± 0.37 A | 199.24 ± 0.37 A |
04-Apr | 2.73 ± 0.01 B | 2.89 ± 0.17 A | 2.62 ± 0.06 A B | 2.7 ± 0.13 A | 288 ± 5.6 A | 288 ± 5.6 A | 265.23 ± 0.32 A | 265.23 ± 0.32 A | 243 ± 0.00 A | 243 ± 0.01 A | 190 ± 0.00 A | 190 ± 0.00 A |
04-Jun | 2.46 ± 0.01 B | 2.56 ± 0.2 A | 2.36 ± 0.01 B | 2.54 ± 0.09 A | 281 ± 10.1 A | 285 ± 10 A | 255.13 ± 4.32 B | 264.2 ± 4.23 A | 210 ± 4.10 A | 210 ± 4.10 A | 183 ± 0.00 A | 183 ± 0.00 A |
04-July | 2.2 ± 0.05 A | 2.22 ± 0.1 A | 2.11 ± 0.05 A | 2.12 ± 0.05 A | 235.94 ± 0.66 A | 256 ± 5.3 A | 199.5 ± 1.88 B | 263.7 ± 5.16 A | 187 ± 0.01 B | 205.6 ± 6.7 A | 167 ± 0.92 A B | 174.6 ± 3.54 A |
04-Sept | 2.18 ± 0.03 A | 2.2 ± 0.07 A | 2.2 ± 0.01 A | 2.09 ± 0.1 B | 209.14 ± 0.47 B | 248 ± 4.3 A | 188 ± 0.47 B | 263 ± 6.23 A | 180.91 ± 3.2 B | 200.8 ± 4.54 A | 158 ± 0.33 A | 150.4 ± 0.98 A |
04-Oct | 2.15 ± 0.05 A | 2.15 ± 0.06 A | 2.13 ± 0.08 A | 2 ± 0.06 B | 182.3 ± 0.65 B | 224 ± 7.9 A | 187.5 ± 0.80 B | 240.5 ± 0.98 A | 180 ± 3.898 A B | 190.7 ± 10.2 A | 150 ± 5.25 A | 145.4 ± 1.45 A B |
Compounds | l.r.i. 1 | Class | Relative Abundance ± Standard Deviation (n = 3) | |||||
---|---|---|---|---|---|---|---|---|
Bioma T0 | Bioma Steel October (BS) | Bioma Wood October (BW) | Traditional T0 | Traditional Steel October (TS) | Traditional Wood October (TW) | |||
acetic acid | 610 | nt | 0.5 ± 0.22 C | 1.3 ± 0.09 AB | 1.7 ± 0.31A | 0.2 ± 0.02 C | 1.2 ± 0.08 B | 1.2 ± 0.04 B |
ethyl acetate | 612 | nt | 2.0 ± 0.05 D | 9.8 ± 0.04 C | 11.8 ± 0.79 AB | 1.8 ± 0.11 D | 11.3 ± 0.09 B | 12.7 ± 0.05 A |
2-methyl-1-propanol | 625 | nt | 0.4 ± 0.06 B | - 2,C | - C | 0.5 ± 0.04 A | - C | - C |
acetale | 726 | nt | 1.5 ± 0.10 A | - B | - B | - B | - B | - B |
isoamyl alcohol | 736 | nt | 8.8 ± 0.48 C | 17.7 ± 0.54 B | 17.9 ± 1.83 B | 10.6 ± 0.69 C | 21.5 ± 0.53 A | 22.4 ± 0.66 A |
amyl alcohol | 739 | nt | 3.0 ± 0.03 B | 6.4 ± 0.61 A | 8.4 ± 1.62 A | 2.9 ± 0.34 B | 7.2 ± 0.42 A | 7.5 ± 0.34 A |
2,3-butanediol | 790 | nt | 0.7 ± 0.11 | 0.7 ± 0.16 | 0.8 ± 0.28 | 0.3 ± 0.07 | 3.3 ± 2.55 | 2.2 ± 1.16 |
ethyl butyrate | 803 | nt | 0.2 ± 0.01 D | 0.6 ± 0.06 AB | 0.5 ± 0.16 BC | 0.3 ± 0.04 CD | 0.8 ± 0.06 A | 0.8 ± 0.06 A |
ethyl lactate | 813 | nt | - D | 1.5 ± 0.01 B | 2.0 ± 0.19 A | - D | 1.1 ± 0.07 C | 2.0 ± 0.30 A |
ethyl 2-methylbutyrate | 849 | nt | - C | - C | 0.1 ± 0.01 B | - C | 0.1 ± 0.01 B | 0.3 ± 0.02 A |
ethyl isovalerate | 852 | nt | - D | 0.2 ± 0.01 C | - D | - D | 0.3 ± 0.02 B | 0.5 ± 0.01 A |
1-hexanol | 903 | nt | 0.4 ± 0.05 A | 0.5 ± 0.07 A | 0.4 ± 0.18 A | 0.4 ± 0.01 A | 0.5 ± 0.01 A | - B |
isopentyl acetate | 877 | nt | 5.4 ± 0.15 E | 5.4 ± 0.01 E | 6.0 ± 0.04 D | 6.9 ± 0.16 C | 7.4 ± 0.09 B | 7.9 ± 0.12 A |
2-methyl-1-butyl acetate | 880 | nt | 1.0 ± 0.03 D | 1.1 ± 0.05 CD | 1.3 ± 0.15 ABC | 1.2 ± 0.1 BC | 1.3 ± 0.01 AB | 1.5 ± 0.01A |
ethyl hexanoate | 1000 | nt | 14.4 ± 0.16 B | 9.4 ± 0.27 C | 9.3 ± 0.56 C | 16.1 ± 0.23 A | 9.9 ± 0.14 C | 9.7 ± 0.76 C |
hexyl acetate | 1012 | nt | 0.3 ± 0.01B | - C | - C | 0.4 ± 0.00 A | - C | - C |
1,4-cineole | 1015 | om | - B | 0.2 ± 0.01 A | - B | - B | - B | - B |
α-terpinene | 1017 | mh | - B | 1.0 ± 0.07 A | - B | - B | - B | - B |
p-cymene | 1024 | mh | - B | 2.0 ± 0.06 A | 2.3 ± 0.29 A | - B | - B | - B |
γ-terpinene | 1028 | mh | - C | 0.9 ± 0.09 A | 0.3 ± 0.06 B | - C | - C | - C |
terpinolene | 1088 | mh | - B | 1.0 ± 0.01 A | - B | - B | - B | - B |
ethyl heptanoate | 1097 | nt | 0.2 ± 0.00 | - | - | 0.2 ± 0.00 | - | - |
nonanal | 1105 | nt | - | 0.9 ± 0.73 | - | 0.1 ± 0.1 | 1.7 ± 1.66 | - |
phenethyl alcohol | 1116 | nt | 4.9 ± 2.04 AB | 5.5 ± 0.28 AB | 4.8 ± 0.32 AB | 3.0 ± 0.08 B | 6.5 ± 0.86 AB | 7.9 ± 2.29 A |
methyl octanoate | 1126 | nt | 0.1 ± 0.01 A | - B | - B | 0.1 ± 0.00 A | - B | - B |
4-terpineol | 1177 | om | - C | 6.1 ± 0.05 A | 5.3 ± 0.23 B | - C | 0.2 ± 0.03 C | 0.2 ± 0.01 C |
diethyl succinate | 1180 | nt | - D | 1.3 ± 0.04 BC | 1.5 ± 0.01 AB | - D | 1.0 ± 0.2 C | 1.7 ± 0.29 A |
ethyl octanoate | 1198 | nt | 40.7 ± 0.82 A | 20.8 ± 0.65 B | 20.7 ± 1.12 B | 39.8 ± 0.98 A | 19.1 ± 1.07 BC | 16.9 ± 1.44 C |
isopentyl hexanoate | 1252 | nt | 0.3 ± 0.04 B | - C | - C | 0.3 ± 0.02 A | - C | - C |
β-phenylethyl acetate | 1258 | nt | 0.3 ± 0.02 A | - C | - C | 0.2 ± 0.01 B | - C | - C |
ethyl decanoate | 1396 | nt | 13.2 ± 0.39 A | 5.5 ± 0.67 B | 5.0 ± 0.30 B | 13.4 ± 0.64 A | 4.9 ± 0.01 BC | 3.9 ± 0.05 C |
isoamyl octanoate | 1446 | nt | 0.4 ± 0.02 A | - B | - B | 0.4 ± 0.04 A | - B | - B |
2-methylbutyl octanoate | 1449 | nt | 0.1 ± 0.00 | - | - | - | - | - |
ethyl dodecanoate | 1595 | nt | 1.1 ± 0.04 A | 0.3 ± 0.01 B | - C | 1.0 ± 0.15 A | 0.1 ± 0.03 BC | 0.2 ± 0.09 BC |
Chemical Classes | Bioma T0 | Bioma Steel October | Bioma Wood October | Traditional T0 | Traditional Steel October | Traditional Wood October | ||
Monoterpene hydrocarbons (mh) | - C | 4.9 ± 0.22 A | 2.6 ± 0.35 B | - C | - C | - C | ||
Oxygenated monoterpenes (om) | - C | 6.3 ± 0.05 A | 5.3 ± 0.23 B | - C | 0.2 ± 0.03 C | 0.2 ± 0.01 C | ||
Other non-terpene derivatives (nt) | 99.9 ± 0.10 A | 88.9 ± 0.17 C | 92.2 ± 0.57 B | 100.1 ± 0.01 A | 99.2 ± 0.51 A | 99.3 ± 0.38 A | ||
Alcohols | 18.2 ± 1.32 C | 30.8 ± 0.44 B | 32.3 ± 0.99 B | 17.7 ± 1.07 C | 39.0 ± 2.46 A | 40.0 ± 2.12 A | ||
Acids | 0.5 ± 0.22 C | 1.33 ± 0.09 AB | 1.7 ± 0.31 A | 0.2 ± 0.02 C | 0.12 ± 0.08 B | 1.2 ± 0.04 B | ||
Esters | 79.7 ± 1.63 A | 55.9 ± 1.43 B | 58.2 ± 0.73 B | 82.1 ± 1.17 A | 57.3 ± 1.39 B | 58.1 ± 1.70 B | ||
Aldehydes | 1.5 ± 0.10 | 0.9 ± 0.73 | - | 0.1 ± 0.01 | 1.7 ± 1.66 | - | ||
Total identified (%) | 99.9 ± 0.10 | 100.1 ± 0.10 | 100.1 ± 0.10 | 100.1 ± 0.01 | 99.4 ± 0.54 | 99.5 ± 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercanti, N.; Macaluso, M.; Pieracci, Y.; Flamini, G.; Scappaticci, G.; Marianelli, A.; Zinnai, A. Towards Sulphite-Free Winemaking: A New Horizon of Vinification and Maturation. Foods 2024, 13, 1108. https://doi.org/10.3390/foods13071108
Mercanti N, Macaluso M, Pieracci Y, Flamini G, Scappaticci G, Marianelli A, Zinnai A. Towards Sulphite-Free Winemaking: A New Horizon of Vinification and Maturation. Foods. 2024; 13(7):1108. https://doi.org/10.3390/foods13071108
Chicago/Turabian StyleMercanti, Nicola, Monica Macaluso, Ylenia Pieracci, Guido Flamini, Giulio Scappaticci, Andrea Marianelli, and Angela Zinnai. 2024. "Towards Sulphite-Free Winemaking: A New Horizon of Vinification and Maturation" Foods 13, no. 7: 1108. https://doi.org/10.3390/foods13071108
APA StyleMercanti, N., Macaluso, M., Pieracci, Y., Flamini, G., Scappaticci, G., Marianelli, A., & Zinnai, A. (2024). Towards Sulphite-Free Winemaking: A New Horizon of Vinification and Maturation. Foods, 13(7), 1108. https://doi.org/10.3390/foods13071108