Food Polysaccharides and Proteins: Processing, Characterization, and Health Benefits
Author Contributions
Funding
Conflicts of Interest
References
- Gao, Y.; Tan, J.; Sang, Y.; Tang, J.; Cai, X.; Xue, H. Preparation, structure, and biological activities of the polysaccharides from fruits and vegetables: A review. Food Biosci. 2023, 54, 102909. [Google Scholar] [CrossRef]
- Subhash, A.; Bamigbade, G.; al-Ramadi, B.; Kamal-Eldin, A.; Gan, R.; Ranadheera, C.; Ayyash, M. Characterizing date seed polysaccharides: A comprehensive study on extraction, biological activities, prebiotic potential, gut microbiota modulation, and rheology using microwave-assisted deep eutectic solvent. Food Chem. 2024, 444, 138618. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Guo, D.; Wu, B.; Wang, W.; Zhang, D.; Hou, S.; Bau, T.; Lei, J.; Xu, L.; Cheng, Y.; et al. Effects of different extraction methods on the physico-chemical characteristics and biological activities of polysaccharides from Clitocybe squamulose. Int. J. Biol. Macromol. 2024, 259 Pt 2, 2024129234. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Shen, M.; Chen, Y.; Yu, Q.; Chen, T.; Xie, J. Alleviative effects of natural plant polysaccharides against DSS-induced ulcerative colitis via inhibiting inflammation and modulating gut microbiota. Food Res. Int. 2023, 167, 112630. [Google Scholar] [CrossRef]
- Shen, M.; Cai, R.; Li, Z.; Chen, X.; Xie, J. The Molecular Mechanism of Yam Polysaccharide Protected H2O2-Induced Oxidative Damage in IEC-6 Cells. Foods 2023, 12, 262. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Girard, M.; Therriault, D.; Heuzey, M. 3D printed protein/polysaccharide food simulant for dysphagia diet: Impact of cellulose nanocrystals. Food Hydrocol. 2024, 148, 109455. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Q.; Huang, Z.; Muhammad, A.; Gharsallaoui, A.; Cai, M.; Yang, K.; Sun, P. Rheological and mechanical behavior of soy protein-polysaccharide composite paste for extrusion-based 3D food printing: Effects of type and concentration of polysaccharides. Food Hydrocol. 2024, 153, 109942. [Google Scholar] [CrossRef]
- Deng, J.; Zhu, E.-Q.; Xu, G.-F.; Naik, N.; Murugadoss, V.; Ma, M.-G.; Guo, Z.; Shi, Z.-J. Overview of renewable polysaccharide-based composites for biodegradable food packaging applications. Green Chem. 2022, 24, 480–492. [Google Scholar] [CrossRef]
- Guan, X.; Wang, F.; Zhou, B.; Sang, X.; Zhao, Q. The nutritional function of active polysaccharides from marine animals: A review. Food Biosci. 2024, 58, 103693. [Google Scholar] [CrossRef]
- Qin, Z.; Huang, M.; Zhang, X.; Hua, Y.; Zhang, X.; Li, X.; Fan, C.; Li, R.; Yang, J. Structural and in vivo-in vitro myocardial injury protection features of two novel polysaccharides from Allium macrostemon Bunge and Allium chinense G. Don. Int. J. Biol. Macromol. 2024, 264 Pt 1, 130537. [Google Scholar] [CrossRef]
- Kolsi, R.; Jardak, N.; Hajkacem, F.; Chaaben, R.; Jribi, I.; Feki, A.; Rebai, T.; Jamoussi, K.; Fki, L.; Belghith, H.; et al. Anti-obesity effect and protection of liver-kidney functions by Codium fragile sulphated polysaccharide on high fat diet induced obese rats. Int. J. Biol. Macromol. 2017, 102, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Zhang, D.; Fang, L.; Wang, J.; Liu, C.; Wu, D.; Liu, X.; Wang, X.; Min, W. Complement in Human Brain Health: Potential of Dietary Food in Relation to Neurodegenerative Diseases. Foods 2023, 12, 3580. [Google Scholar] [CrossRef]
- Uzeme, P.; Aluta, Z.; Aderolu, O.; Ishola, A.; Gordon, A.; Olumayokun, A. Chemical characterisation of sulfated polysaccharides from the red seaweed Centroceras clavulatum and their in vitro immunostimulatory and antioxidant properties. Food Hydrocoll. Health 2023, 3, 100135. [Google Scholar]
- Min, C.; Zhang, C.; Cao, Y.; Li, H.; Pu, H.; Huang, J.; Xiong, Y. Rheological, textural, and water-immobilizing properties of mung bean starch and flaxseed protein composite gels as potential dysphagia food: The effect of Astragalus polysaccharide. Int. J. Biol. Macromol. 2023, 239, 124236. [Google Scholar] [CrossRef]
- Funami, T.; Nakauma, M. Cation-responsive food polysaccharides and their usage in food and pharmaceutical products for improved quality of life. Food Hydrocol. 2023, 141, 108675. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Polysaccharide-catechin conjugates: Synthesis methods, structural characteristics, physicochemical properties, bioactivities and potential applications in food industry. Trends Food Sci. Technol. 2024, 145, 104353. [Google Scholar] [CrossRef]
- Qi, X.; Li, Y.; Li, J.; Rong, L.; Pan, W.; Shen, M.; Xie, J. Fibrillation modification to improve the viscosity, emulsifying, and foaming properties of rice protein. Food Res. Int. 2023, 166, 112609. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Recent advances on protein separation and purification methods. Adv. Colloid Interface Sci. 2020, 284, 102254. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Langrish, A. Fluidized bed drying of chickpeas: Developing a new drying schedule to reduce protein denaturation and remove trypsin inhibitors. J. Food Eng. 2023, 351, 111515. [Google Scholar] [CrossRef]
- Ren, C.; Hong, S.; Qi, L.; Wang, Z.; Sun, L.; Xu, X.; Du, M.; Wu, C. Heat-induced gelation of SAM myofibrillar proteins as affected by ionic strength, heating time and temperature: With emphasis on protein denaturation and conformational changes. Food Biosci. 2023, 56, 103320. [Google Scholar] [CrossRef]
- Lu, X.; Zhan, J.; Ma, R.; Tian, Y. Structure, thermal stability, and in vitro digestibility of rice starch–protein hydrolysate complexes prepared using different hydrothermal treatments. Int. J. Biol. Macromol. 2023, 230, 123130. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, T.; Zhao, J.; Fan, M.; Qian, H.; Li, Y.; Wang, L. Entanglement between Water Un-Extractable Arabinoxylan and Gliadin or Glutenins Induced a More Fragile and Soft Gluten Network Structure. Foods 2023, 12, 1800. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, L.; Shen, M.; Zhang, Y.; Yu, H.; Xie, J. Food Polysaccharides and Proteins: Processing, Characterization, and Health Benefits. Foods 2024, 13, 1113. https://doi.org/10.3390/foods13071113
Rong L, Shen M, Zhang Y, Yu H, Xie J. Food Polysaccharides and Proteins: Processing, Characterization, and Health Benefits. Foods. 2024; 13(7):1113. https://doi.org/10.3390/foods13071113
Chicago/Turabian StyleRong, Liyuan, Mingyue Shen, Yanjun Zhang, Hansong Yu, and Jianhua Xie. 2024. "Food Polysaccharides and Proteins: Processing, Characterization, and Health Benefits" Foods 13, no. 7: 1113. https://doi.org/10.3390/foods13071113
APA StyleRong, L., Shen, M., Zhang, Y., Yu, H., & Xie, J. (2024). Food Polysaccharides and Proteins: Processing, Characterization, and Health Benefits. Foods, 13(7), 1113. https://doi.org/10.3390/foods13071113