Potential Health Benefits of Fermented Vegetables with Additions of Lacticaseibacillus rhamnosus GG and Polyphenol Vitexin Based on Their Antioxidant Properties and Prohealth Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Fermented Vegetables
2.2.1. Preparation of Probiotic-Fermented Vegetables
2.2.2. Preparation of Vitexin-Fermented Vegetables
2.3. pH Determination
2.4. Determination of the Antioxidant Activity of Fermented Vegetables
2.4.1. Total Phenolic Content (TPC)
2.4.2. DPPH Free Radical Scavenging Activity
2.4.3. Oxygen Radical Absorbance Capacity (ORAC)
2.4.4. Ferric Reducing Antioxidant Power (FRAP)
2.5. Microbial Counts
2.6. DNA Extraction and Sequencing
2.7. Microbiome Bioinformatic Analysis
2.8. Statistical Analysis
3. Results
3.1. Changes in the pH Values of Fermented Vegetables
3.2. Microbiological Analyses
3.3. Antioxidant Activity and Total Phenolic Content
3.4. The Microbial Richness and Microbiota Diversity of Standard Fermented Vegetables, Probiotic-Fermented Vegetables, and Vitexin-Fermented Vegetables
3.5. The Relationship between Bacterial OTUs and Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boutari, C.; Mantzoros, C.S. A 2022 Update on The Epidemiology of Obesity and a Call to Action: As its Twin COVID-19 Pandemic Appears to be Receding, the Obesity and Dysmetabolism Pandemic Continues to Rage on. Metab. Clin. Exp. 2022, 133, 155217. [Google Scholar] [CrossRef] [PubMed]
- Scheithauer, T.P.M.; Rampanelli, E.; Nieuwdorp, M.; Vallance, B.A.; Verchere, C.B.; van Raalte, D.H.; Herrema, H. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Front. Immunol. 2020, 11, 571731. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.R. Plant-based Diet for Obesity Treatment. Front. Nutr. 2022, 9, 952553. [Google Scholar] [CrossRef] [PubMed]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef]
- Mathur, H.; Beresford, T.P.; Cotter, P.D. Health Benefits of Lactic Acid Bacteria (LAB) Fermentates. Nutrients 2020, 12, 1679. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, Y.; Xiao, L.; Qu, L.; Zhang, X.; Wei, Y. Advancing Insights into Probiotics during Vegetable Fermentation. Foods 2023, 12, 3789. [Google Scholar] [CrossRef]
- Lee, N.-K.; Han, K.J.; Son, S.-H.; Eom, S.J.; Lee, S.-K.; Paik, H.-D. Multifunctional Effect of Probiotic Lactococcus lactis KC24 isolated from kimchi. LWT—Food Sci. Technol. 2015, 64, 1036–1041. [Google Scholar] [CrossRef]
- Lee, K.-H.; Bong, Y.-J.; Lee, H.A.; Kim, H.-Y.; Park, K.-Y. Probiotic Effects of Lactobacillus plantarum and Leuconostoc mesenteroides Isolated from Kimchi. J. Korean Soc. Food Sci. Nutr. 2016, 45, 12–19. [Google Scholar] [CrossRef]
- Yun, Y.-R.; Lee, J.J.; Lee, H.J.; Choi, Y.-J.; Lee, J.-H.; Park, S.J.; Park, S.H.; Seo, H.-Y.; Min, S.G. Comparison of Quality Characteristics of Commercial Kimchi Manufactured in Korea, China, and the United States. Foods 2021, 10, 2488. [Google Scholar] [CrossRef]
- Lee, M.; Kim, D.; Choi, E.J.; Song, J.H.; Kang, J.Y.; Lee, K.W.; Chang, J.Y. Transcriptome Responses of Lactic Acid Bacteria isolated from Kimchi under Hydrogen Peroxide Exposure. Food Res. Int. 2023, 168, 112681. [Google Scholar] [CrossRef] [PubMed]
- Savo Sardaro, M.L.; Zaini, S.; Amato, K.R. A Model for Probiotic Fermented Food Production. Appl. Sci. 2023, 13, 11123. [Google Scholar] [CrossRef]
- Tuganbay, A.; Yousefvand, A.; Saris, P.E.J. Production of Kurut (Kurt) using Probiotic Lacticaseibacillus rhamnosus strain in Combination with a Yeast isolated from Kazakhstan Kurut. Front. Food Sci. Technol. 2022, 2, 1045579. [Google Scholar] [CrossRef]
- Dzandu, B.; Chotiko, A.; Sathivel, S. Antioxidant Activity and Viability of Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, and Co-culture in Fermented Tomato Juice during Refrigerated Storage. Food Biosci. 2022, 50, 102085. [Google Scholar] [CrossRef]
- An, H.; Zhai, Z.; Yin, S.; Luo, Y.; Han, B.; Hao, Y. Coexpression of the Superoxide Dismutase and The Catalase Provides Remarkable Oxidative Stress Resistance in Lactobacillus rhamnosus. J. Agric. Food Chem. 2011, 27, 3851–3856. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Chen, C.; Ni, D.; Yang, Y.; Tian, J.; Li, Y.; Chen, S.; Ye, X.; Wang, L. Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods 2023, 12, 3315. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Diwan, B.; Singh, B.P.; Kulshrestha, S. Probiotic Fermentation of Polyphenols: Potential Sources of Novel Functional Foods. Food Prod. Process Nutr. 2022, 4, 21. [Google Scholar] [CrossRef]
- Babaei, F.; Moafizad, A.; Darvishvand, Z.; Mirzababaei, M.; Hosseinzadeh, H.; Nassiri-Asl, M. Review of the Effects of Vitexin in Oxidative Stress-related Diseases. Food Sci. Nutr. 2020, 8, 2569–2580. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Li, H.; Yi, J.; Zhang, J.; Che, H.; Cao, J.; Yang, L.; Zhu, C.; Jiang, W. Antioxidant Properties of the Mung Bean Flavonoids on Alleviating Heat Stress. PLoS ONE 2011, 6, e21071. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cao, D.; Yi, J.; Cao, J.; Jiang, W. Identification of the Flavonoids in Mungbean (Phaseolus radiatus L.) Soup and their Antioxidant Activities. Food Chem. 2012, 135, 2942–2946. [Google Scholar] [CrossRef] [PubMed]
- Supasatyankul, B.; Saisriyoot, M.; Klinkesorn, U.; Rattanaporn, K.; Sae-Tan, S. Extraction of Phenolic and Flavonoid Compounds from Mung Bean (Vigna radiata L.) Seed Coat by Pressurized Liquid Extraction. Molecules 2022, 27, 2085. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, M.J.; Park, H.J.; Kim, H.J.; Cho, S.K.; Jeong, M.H. Simultaneous Determination of Synthetic Food Additives in Kimchi by Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Food Sci. Biotechnol. 2018, 16, 877–882. [Google Scholar] [CrossRef]
- Pavasutti, V.; Sinthuvanich, C.; Tayana, N.; Kongkiatpaiboon, S.; Sae-tan, S. Mung bean Seed Coat Water Extract Restores Insulin Sensitivity via Upregulation of Antioxidant Defense System and Downregulation of Inflammation in Insulin-Resistant HepG2 Cells. NFS J. 2023, 32, 100145. [Google Scholar] [CrossRef]
- Park, J.-M.; Shin, J.-H.; Gu, J.-G.; Yoon, S.-J.; Song, J.-C.; Jeon, W.-M.; Suh, H.-J.; Chang, U.-J.; Yang, C.-Y.; Kim, J.-M. Effect of Antioxidant Activity in Kimchi during a Short-term and Over-ripening Fermentation Period. J. Biosci. Bioeng. 2011, 112, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.B.; Mani, J.S.; Naiker, M. Microplate Methods for Measuring Phenolic Content and Antioxidant Capacity in Chickpea: Impact of Shaking. Eng. Proc. 2023, 48, 57. [Google Scholar]
- Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-radical Scavenging Capacity and Antioxidant Activity of Selected Plant Species from the Canadian Prairies. Food Chem. 2004, 84, 551–562. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-well Format. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, B.; Holte, K.; Myhrstad, M.; Barikmo, I.; Hvattum, E.; Remberg, S.; Wold, A.-B.; Haffner, K.; Baugerød, H.; Andersen, L.; et al. A Systematic Screening of Total Antioxidants in Dietary Plants. J. Nutr. 2002, 132, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Cui, F.; Wang, D.; Lv, X.; Li, X.; Li, J. Fermented Vegetables: Health Benefits, Defects, and Current Technological Solutions. Foods 2024, 13, 38. [Google Scholar] [CrossRef]
- Masiá, C.; Geppel, A.; Jensen, P.E.; Buldo, P. Effect of Lactobacillus rhamnosus on Physicochemical Properties of Fermented Plant-Based Raw Materials. Foods 2021, 10, 573. [Google Scholar] [CrossRef]
- Fatih, Y.; Wiley, R.C. Minimally Processed Refrigerated Fruits and Vegetables, 2nd ed.; Springer: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Abedi, E.; Hashemi, S.M.B. Lactic Acid Production—Producing Microorganisms and Substrates Sources-state of Art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-H.; Kang, S.-H.; Ahn, E.-S.; Yoo, M.-J.; Chung, H.-J. Effect of the Combination of Fermentation Temperature and Time on the Properties of Baechu Kimchi. J. Korean Soc Food Cult. 2004, 19, 30–42. [Google Scholar]
- You, S.-Y.; Yang, J.-S.; Kim, S.H.; Hwang, I.M. Changes in the Physicochemical Quality Characteristics of Cabbage Kimchi with respect to Storage Conditions. J. Food Qual. 2017, 4, 9562981. [Google Scholar] [CrossRef]
- FAO/WHO Working Group. Guidelines for the Evaluation of Probiotics in Food. Available online: https://www.foodinprogress.com/wp-content/uploads/2019/04/Guidelines-for-the-Evaluation-of-Probiotics-in-Food.pdf (accessed on 20 December 2023).
- Cha, J.; Kim, Y.B.; Park, S.E.; Lee, S.H.; Roh, S.W.; Son, H.S.; Whon, T.W. Does Kimchi Deserve the Status of a Probiotic Food? Crit. Rev. Food Sci. Nut. 2023, 30, 1–14. [Google Scholar] [CrossRef]
- Thierry, A.; Madec, M.N.; Chuat, V.; Bage, A.S.; Picard, O.; Grondin, C.; Rué, O.; Mariadassou, M.; Marché, L.; Valence, F. Microbial Communities of a Variety of 75 Homemade Fermented Vegetables. Front. Microbiol. 2023, 14, 1323424. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of Fermentation on the Antioxidant Activity in Plant-based Foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef]
- Lee, M.; Song, J.H.; Park, J.M.; Chang, J.Y. Bacterial Diversity in Korean Temple Kimchi Fermentation. Food Res. Int. 2019, 126, 108592. [Google Scholar] [CrossRef]
- Fusco, V.; Quero, G.M.; Cho, G.S.; Kabisch, J.; Meske, D.; Neve, H.; Bockelmann, W.; Franz, C.M. The Genus Weissella: Taxonomy, Ecology and Biotechnological Potential. Front. Microbiol. 2015, 6, 155. [Google Scholar] [CrossRef]
- Park, S.; Saravanakumar, K.; Sathiyaseelan, A.; Han, K.S.; Lee, J.; Wang, M.H. Polysaccharides of Weissella cibaria Act as a Prebiotic to Enhance the Probiotic Potential of Lactobacillus rhamnosus. Appl. Biochem. Biotechnol. 2023, 195, 3928–3940. [Google Scholar] [CrossRef]
- Kim, M.; Chun, J. Bacterial Community Structure in Kimchi, a Korean Fermented Vegetable Food, as Revealed by 16S rRNA Gene Analysis. Int. J. Food Microbiol. 2005, 103, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Feyereisen, M.; Mahony, J.; Kelleher, P.; Roberts, R.J.; O’Sullivan, T.; Geertman, J.-M.A.; van Sinderen, D. Comparative Genome Analysis of the Lactobacillus brevis Species. BMC Genom. 2019, 20, 416. [Google Scholar] [CrossRef]
- Holland, R.; Crow, V.; Curry, B. Lactic Acid Bacteria|Pediococcus spp. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 149–152. [Google Scholar]
- Maoloni, A.; Ferrocino, I.; Milanović, V.; Cocolin, L.; Corvaglia, M.R.; Ottaviani, D.; Bartolini, C.; Talevi, G.; Belleggia, L.; Cardinali, F.; et al. The Microbial Diversity of Non-Korean Kimchi as Revealed by Viable Counting and Metataxonomic Sequencing. Foods 2020, 9, 1568. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, S.H.; Jeon, C.O. Kimchi Microflora: History, Current Status, and Perspectives for Industrial Kimchi Production. Appl. Microbiol. Biotechnol. 2014, 98, 2385–2393. [Google Scholar] [CrossRef]
- Park, S.-E.; Cho, K.-M.; Kwon, S.J.; Kim, E.-J.; Seo, S.-H.; Jeong, D.; Chung, H.-J.; Son, H.-S. Effects of the Addition of Starches with Different Amylose Contents on Kimchi Microbiota and Metabolites. LWT 2023, 175, 114475. [Google Scholar] [CrossRef]
- Wouters, D.; Bernaert, N.; Conjaerts, W.; Van Droogenbroeck, B.; De Loose, M.; De Vuyst, L. Species Diversity, Community Dynamics, and Metabolite Kinetics of Spontaneous Leek Fermentations. Food Microbiol. 2013, 33, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Saravanakumar, K.; Sathiyaseelan, A.; Park, S.; Hu, X.; Wang, M.-H. Cellular Antioxidant Properties of Nontoxic Exopolysaccharide Extracted from Lactobacillales (Weissella cibaria) isolated from Korean Kimchi. LWT 2022, 154, 112727. [Google Scholar] [CrossRef]
- Dordevic, T.M.; Siler-Marinkovic, S.; Dimitrijevic-Brankovic, S.I. Effect of Fermentation on Antioxidant Properties of Some Cereals and Pseudo Cereals. Food Chem. 2010, 119, 957–963. [Google Scholar] [CrossRef]
- Song, M.W.; Chung, Y.; Kim, K.-T.; Hong, W.S.; Chang, H.J.; Paik, H.-D. Probiotic Characteristics of Lactobacillus brevis B13-2 isolated from Kimchi and Investigation of Antioxidant and Immune-Modulating Abilities of its Heat-killed Cells. LWT 2020, 128, 109452. [Google Scholar] [CrossRef]
- Lin, X.; Xia, Y.; Wang, G.; Yang, Y.; Xiong, Z.; Lv, F.; Zhou, W.; Ai, L. Lactic Acid Bacteria with Antioxidant Activities Alleviating Oxidized Oil induced Hepatic Injury in Mice. Front. Microbiol. 2018, 9, 2684. [Google Scholar] [CrossRef]
- Niknezhad, S.V.; Najafpour-Darzi, G.; Morowvat, M.H.; Ghasemi, Y. Eexopolysaccharide Production of Pantoea sp. BCCS 001 GH: Physical Characterizations, Emulsification, and Antioxidant Activities. Int. J. Biol. Macromol. 2018, 118, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yan, D.; Liu, Y.; Luo, X.; Li, Y.; Cao, C.; Li, M.; Han, Q.; Wang, C.; Wu, R.; et al. Purification, Structural Characteristics, and Biological Activities of Exopolysaccharide Isolated from Leuconostoc mesenteroides SN-8. Front. Microbiol. 2021, 12, 644226. [Google Scholar] [CrossRef] [PubMed]
- Alamgir, K.M.; Masuda, S.; Fujitani, Y.; Fukuda, F.; Tani, A. Production of Ergothioneine by Methylobacterium species. Front. Microbiol. 2015, 6, 1185. [Google Scholar] [CrossRef]
- Sun, T.; Ho, C.-T. Antioxidant Activities of Buckwheat Extracts. Food Chem. 2005, 90, 743–749. [Google Scholar] [CrossRef]
- Peng, Q.; Jiang, S.; Chen, J.; Ma, C.; Huo, D.; Shao, Y.; Zhang, J. Unique Microbial Diversity and Metabolic Pathway Features of Fermented Vegetables from Hainan, China. Front. Microbiol. 2018, 9, 346759. [Google Scholar] [CrossRef] [PubMed]
Formula | Storage Time (Days) | Lacticaseibacillus rhamnosus GG | Lactic Acid Bacteria |
---|---|---|---|
Fermented vegetables supplemented with probiotics | 0 | 7.71 ± 0.24 a | 8.53 ± 0.19 a |
3 | 7.68 ± 0.12 a | 8.42 ± 0.09 a | |
6 | 7.60 ± 0.10 a | 8.26 ± 0.19 a | |
9 | 7.60 ± 0.17 a | 8.21 ± 0.23 a | |
12 | 7.66 ± 0.04 a | 8.08 ± 0.08 ab | |
15 | 7.48 ± 0.40 a | 7.61 ± 0.30 b |
Antioxidant Activity | Formulas | Storage Time | |
---|---|---|---|
Day 0 | Day 15 | ||
TPC (mg GAE/g sample) | N | 1855.00 ± 54.95 a | 2161.44 ± 51.84 a,* |
P | 2038.33 ± 20.21 b | 2490.10 ± 78.93 b,* | |
V | 3990.45 ± 94.61 c | 4925.63 ± 40.53 c,* | |
DPPH (µmol TE/g sample) | N | 10,257.79 ± 754.45 a | 12,494.70 ± 529.56 a,* |
P | 10,344.70 ± 465.36 a | 13,350.78 ± 878.67 a,* | |
V | 16,232.39 ± 532.06 b | 19,645.62 ± 163.91 b,* | |
ORAC (µmol TE/g sample) | N | 32,252.04 ± 1771.88 a | 34,429.51 ± 1838.23 a |
P | 69,616.58 ± 1131.59 b | 78,285.27 ± 1467.08 b,* | |
V | 88,466.93 ± 1607.07 c | 128,401.30 ± 2492.60 c,* | |
FRAP (µmol TE/g sample) | N | 10,167.19 ± 227.09 a | 11,380.52 ± 877.75 a |
P | 10,559.74 ± 845.03 a | 13,005.10 ± 732.32 a,* | |
V | 35,351.76 ± 1867.80 b | 40,100.52 ± 1435.23 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngamsamer, C.; Muangnoi, C.; Tongkhao, K.; Sae-Tan, S.; Treesuwan, K.; Sirivarasai, J. Potential Health Benefits of Fermented Vegetables with Additions of Lacticaseibacillus rhamnosus GG and Polyphenol Vitexin Based on Their Antioxidant Properties and Prohealth Profiles. Foods 2024, 13, 982. https://doi.org/10.3390/foods13070982
Ngamsamer C, Muangnoi C, Tongkhao K, Sae-Tan S, Treesuwan K, Sirivarasai J. Potential Health Benefits of Fermented Vegetables with Additions of Lacticaseibacillus rhamnosus GG and Polyphenol Vitexin Based on Their Antioxidant Properties and Prohealth Profiles. Foods. 2024; 13(7):982. https://doi.org/10.3390/foods13070982
Chicago/Turabian StyleNgamsamer, Chanya, Chawanphat Muangnoi, Kullanart Tongkhao, Sudathip Sae-Tan, Khemmapas Treesuwan, and Jintana Sirivarasai. 2024. "Potential Health Benefits of Fermented Vegetables with Additions of Lacticaseibacillus rhamnosus GG and Polyphenol Vitexin Based on Their Antioxidant Properties and Prohealth Profiles" Foods 13, no. 7: 982. https://doi.org/10.3390/foods13070982
APA StyleNgamsamer, C., Muangnoi, C., Tongkhao, K., Sae-Tan, S., Treesuwan, K., & Sirivarasai, J. (2024). Potential Health Benefits of Fermented Vegetables with Additions of Lacticaseibacillus rhamnosus GG and Polyphenol Vitexin Based on Their Antioxidant Properties and Prohealth Profiles. Foods, 13(7), 982. https://doi.org/10.3390/foods13070982