Sustainable Valorization of Coffee Silverskin: Extraction of Phenolic Compounds and Proteins for Enzymatic Production of Bioactive Peptides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optimization of Hydrothermal Extraction of Phenolic Compounds from CS
2.2. Identification of Phenolic Compounds and Derivatives by LC-QTOF-MS
2.3. Effect of Extraction Methods on Extraction of Protein from CS
2.3.1. Conventional Alkaline Extraction (CAE)
2.3.2. Ultrasound- and Microwave-Assisted Alkaline Extraction
2.4. Enzymatic Production of Bioactive Peptides
2.5. Fractionation and Identification of Bioactive Peptides
2.6. Analytical Methods
2.6.1. Assays for Antioxidant Activity
2.6.2. Determination of Total Phenolic Content (TPC)
2.7. Statistical Analysis
3. Results
3.1. Optimization of Hydrothermal Extraction of Phenolic Compounds from CS
3.2. Identification of Phenolic Compounds and Derivatives by LC-QTOF-MS
3.3. Enzymatic Production of Bioactive Peptides from CS
3.4. Comparative Study of Bioactive Peptide Production from CS by Protease_SE5 and Alcalase
3.5. Fractionation and Identification of Bioactive Peptide
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nolasco, A.; Squillante, J.; Velotto, S.; D’Auria, G.; Ferranti, P.; Mamone, G.; Errico, M.E.; Avolio, R.; Castaldo, R.; Cirillo, T.; et al. Valorization of coffee industry wastes: Comprehensive physicochemical characterization of coffee silverskin and multipurpose recycling applications. J. Clean. Prod. 2022, 370, 133520. [Google Scholar] [CrossRef]
- Dong, R.; Zhu, M.; Long, Y.; Yu, Q.; Li, C.; Xie, J.; Huang, Y.; Chen, Y. Exploring correlations between green coffee bean components and thermal contaminants in roasted coffee beans. Food Res. Int. 2023, 167, 112700. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhang, N.; Xing, C.; Cui, Q.; Sun, Q. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere 2019, 223, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Narita, Y.; Inouye, K. Review on utilization and composition of coffee silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef]
- McCune, L.M.; Johns, T. Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the indigenous peoples of the North American Boreal Forest. J. Ethnopharmacol. 2002, 82, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Nair, G.V.; Rudloff, E.V. Isolation of hyperin from red-oister dog wood (Cornus stolonifera Michx.). Can. J. Chem. 1960, 38, 2531–2533. [Google Scholar] [CrossRef]
- Shelembe, J.S.; Cromarty, D.; Bester, M.J.; Minnaar, A.; Duodu, K.G. Characterisation of phenolic acids, flavonoids, proanthocyanidins and antioxidantactivity of water extracts from seed coats of Marama bean (Tylosema esculentum)—An underutilised food legume. Int. J. Food Sci. Technol. 2012, 47, 648–655. [Google Scholar] [CrossRef]
- Conde, T.; Mussatto, S.I. Isolation of polyphenols from apent coffee grounds and silverskin by mild hydrothermal pretreatment. Prep. Biochem. Biotechnol. 2016, 46, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Procentese, A.; Raganati, F.; Olivieri, G.; Russo, M.E.; Marzocchella, A. Combined antioxidant-biofuel production from coffee silverskin. Bioenergy Biofuels 2018, 103, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Kaewsalud, T.; Yakul, K.; Insomphun, C.; Jantanasakulwong, K.; Rachtanapun, P.; Tapingkae, W.; Chuetor, S.; Watanabe, M.; Chaiyaso, T. Hydrothermal–enzymatic process for the bio-valorization of keratin wastes by thermostable keratinase from Thermoactinomyces vulgaris TK1-21. J. Chem. Technol. Biotechnol. 2023, 98, 1203–1214. [Google Scholar] [CrossRef]
- Yakul, K.; Takenaka, S.; Peterbauer, C.; Haltrich, D.; Techapun, C.; Seesuriyachan, P.; Leksawasdi, N.; Chaiyaso, T. Functional modification of thermostable alkaline protease from Bacillus halodurans SE5 for efficient production of antioxidative and ACE-inhibitory peptides from sericin. Biocatal. Agric. Biotechnol. 2023, 54, 102943. [Google Scholar] [CrossRef]
- Mígueza, R.P.; Marinaa, M.L.; Puyanaa, M.C. High resolution liquid chromatography tandem mass spectrometry for the separation and identification of peptides in coffee silverskin protein hydrolysates. Microchem. J. 2019, 149, 103951. [Google Scholar] [CrossRef]
- Zhang, Z.; Poojary, M.M.; Choudhary, A.; Rai, D.K.; Tiwari, B.K. Comparison of selected clean and green extraction technologies for biomolecules from apple pomace. Electrophoresis 2018, 39, 1934–1945. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Álvarez, C.; Zhang, Z.; Poojary, M.M.; Lund, M.N.; Sun, D.W.; Tiwari, B.K. Optimisation and characterisation of protein extraction from coffee silverskin assisted by ultrasound or microwave techniques. Biomass Convers. Biorefinery 2021, 11, 1575–1585. [Google Scholar] [CrossRef]
- Yakul, K.; Kaewsalud, T.; Techapun, C.; Seesuriyachan, P.; Jantanasakulwong, K.; Watanabe, M.; Takenaka, S.; Chaiyaso, T. Enzymatic valorization process of yellow cocoon waste for production of antioxidative sericin and fibroin film. J. Chem. Technol. Biotechnol. 2021, 96, 953–962. [Google Scholar] [CrossRef]
- Schägger, H. Tricine–SDS-PAGE. Nat. Protocals 2006, 1, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, A.C.; Kilikian, B.V. Comparative study of Lowry and Bradford methods: Interfering substances. Biotechnol. Tech. 1999, 13, 149–154. [Google Scholar] [CrossRef]
- Cheng, M.; Takenaka, S.; Aoki, S.; Murakami, S.; Aoki, K. Purification and characterization of an eggshell membrane decomposing protease from Pseudomonas aeruginosa Strain ME-4. J. Biosci. Bioeng. 2009, 107, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Veenashri, B.R.; Muralikrishna, G. In vitro anti-oxidant activity of xylo-oligosaccharides derived from cereal and millet brans—A comparative study. Food Chem. 2011, 126, 1475–1481. [Google Scholar] [CrossRef]
- Shazly, A.B.; He, Z.; El-Aziz, M.A.; Zeng, M.; Zhang, S.; Qin, F.; Chen, J. Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates. Food Chem. 2017, 232, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xu, E.; Long, J.; Pan, X.; Xu, X.; Jin, Z.; Jiao, A. Comparison between ATR-IR, Raman, concatenated ATR-IR and Raman spectroscopy for the determination of total antioxidant capacity and total phenolic content of Chinese rice wine. Food Chem. 2016, 194, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Toldrá, F.; Zhao, M.; Zhou, F.; Luo, D.; Jia, R.; Mora, L. In vitro and in silico analysis of potential antioxidant peptides obtained from chicken hydrolysate produced using alcalase. Food Res. Int. 2022, 157, 111253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, S.; Bonneil, É.; Simpson, B.K. Generation of antioxidative peptides from atlantic sea cucumber using alcalase versus trypsin: In vitro activity, de novo sequencing, and in silico docking for in vivo function prediction. Food Chem. 2020, 306, 125581. [Google Scholar] [CrossRef] [PubMed]
- Irigoytia, M.B.; Irigoytia, K.; Sosa, N.; de Escalada Pla, M.; Genevois, C. Blueberry by-product as a novel food ingredient: Physicochemical characterization and study of its application in a bakery product. J. Sci. Food Agric. 2022, 102, 4551–4560. [Google Scholar] [CrossRef] [PubMed]
- Nolasco, A.; Squillante, J.; Velotto, S.; D’Auria, G.; Ferranti, P.; Mamone, G.; Errico, M.E.; Avolio, R.; Castaldo, R.; De Luca, L.; et al. Exploring the untapped potential of pine nut skin by-products: A holistic characterization and recycling approach. Foods 2024, 13, 1044. [Google Scholar] [CrossRef] [PubMed]
- Ainsa, A.; Marquina, P.L.; Roncalés, P.; Beltrán, J.A.; Calanche, M.J.B. Enriched fresh pasta with a sea bass by-product, a novel food: Fatty acid stability and sensory properties throughout shelf life. Foods 2021, 10, 255. [Google Scholar] [CrossRef] [PubMed]
- Kraithong, S.; Issara, U. A strategic review on plant by-product from banana harvesting: A potentially bio-based ingredient for approaching novel food and agro-industry sustainability. J. Saudi Soc. Agric. Sci. 2021, 20, 530–543. [Google Scholar] [CrossRef]
- Nolasco, A.; Squillante, J.; Esposito, F.; Velotto, S.; Romano, R.; Aponte, M.; Giarra, A.; Toscanesi, M.; Montella, E.; Cirillo, T. Coffee silverskin: Chemical and biological risk assessment and health profile for its potential use in functional foods. Foods 2022, 11, 2834. [Google Scholar] [CrossRef] [PubMed]
- Ginting, A.R.; Kit, T.; Mingvanish, W.; Thanasupsin, S.P. Valorization of coffee silverskin through subcritical water extraction: An optimization based on T-CQA using response surface methodology. Sustainability 2022, 14, 8435. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Barreira, S.V.P.; Nunes, M.A.; Cunha, L.M.; Oliveira, M.B.P.P. Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Ind. Crops Prod. 2014, 53, 350–357. [Google Scholar] [CrossRef]
- Nzekoue, F.K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L.A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020, 133, 109128. [Google Scholar] [CrossRef] [PubMed]
- Benali, T.; Bakrim, S.; Ghchime, R.; Benkhaira, N.; El Omari, N.; Balahbib, A.; Taha, D.; Zengin, G.; Hasan, M.M.; Bibi, S.; et al. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol. Genet. Eng. Rev. 2022, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.A.; Park, D.W.; Kwon, J.E.; Song, H.S.; Park, B.; Jeon, H.; Sohn, E.H.; Koo, H.J.; Kang, S.C. Quinic acid inhibits vascular inflammation in TNF-α-stimulated vascular smooth muscle cells. Biomed. Pharmacother. 2017, 96, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Biondić Fučkar, V.; Božić, A.; Jukić, A.; Krivohlavek, A.; Jurak, G.; Tot, A.; Serdar, S.; Žuntar, I.; Režek Jambrak, A. Coffee Silver Skin—Health Safety, Nutritional value, and microwave extraction of proteins. Foods 2023, 12, 518. [Google Scholar] [CrossRef] [PubMed]
- Jethwa, F.; Shetty, P.; Dabade, A. Extraction and functional properties of crude proteins from coffee silver skin and its cost effective application. In NCIFEH Conference Proceeding; Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences; Life Science Informatics Publications: Maharashtra, India, 2018; p. 252. [Google Scholar]
- Hou, F.; Ding, W.; Qu, W.; Oladejo, A.O.; Xiong, F.; Zhang, W.; He, R.; Ma, H. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation. Food Chem. 2017, 218, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, C.; Abugoch, L.; Tapia, C.; Gamboa, A. Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation. Int. J. Food Sci. Technol. 2013, 48, 843–849. [Google Scholar] [CrossRef]
- Ochoa-Rivas, A.; Nava-Valdez, Y.; Serna-Saldívar, S.O.; Chuck-Hernández, C. Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions: Effects in yield and functional properties of protein isolates. Food Bioprocess Technol. 2017, 10, 543–555. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Potkule, J.; Verma, R.; Punia, S.; Mahapatra, A.; Belwal, T.; Dahuja, A.; Joshi, S.; Berwal, M.K.; et al. Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocoll. 2021, 115, 106595. [Google Scholar] [CrossRef]
- Klein, T.; Eckhard, U.; Dufour, A.; Solis, N.; Overall, C.M. Proteolytic cleavage—Mechanisms, function, and “Omic” approaches for a near-ubiquitous posttranslational modification. Chem. Rev. 2018, 118, 1137–1168. [Google Scholar] [CrossRef]
- Wan, M.-Y.; Dong, G.; Yang, B.-Q.; Feng, H. Identification and characterization of a novel antioxidant peptide from feather keratin hydrolysate. Biotechnol. Lett. 2016, 38, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Mu, T.H. Identification and Characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innovative Food Sci. Emerg. Technol. 2017, 43, 92–101. [Google Scholar] [CrossRef]
- Hedstrom, L. Serine Protease mechanism and specificity. Chem. Rev. 2002, 102, 4501–4524. [Google Scholar] [CrossRef] [PubMed]
- Landeshammer, B.B.; Kollipara, L.; Biß, K.; Pfenninger, M.; Malchow, S.; Shuvaev, K.; Zahedi, R.P.; Sickmann, A. Combining de novo peptide sequencing algorithms, a synergistic approach to boost both identifications and confidence in bottom-up proteomics. J. Proteome Res. 2017, 16, 3209–3218. [Google Scholar] [CrossRef] [PubMed]
No. | Proposed Compounds | Molecular Formula | Mass | Matching Score (%) * |
---|---|---|---|---|
Alkaloids | ||||
1 | Caffeine | C8H10N4O2 | 194.0795 | 74.20 |
Polyphenols | ||||
Phenolic acids | ||||
2 | 3-O-Caffeoylshikimic acid | C16H16O8 | 336.0838 | 95.70 |
3 | 5-O-Caffeoylshikimic acid | C16H16O8 | 336.0840 | 95.36 |
4 | 3-Dehydroshikimic acid | C7H8O5 | 172.0362 | 86.71 |
5 | 5Z-Caffeoylquinic acid CQA | C16H18O9 | 354.0943 | 94.83 |
6 | Caffeic acid | C9H8O4 | 180.0419 | 93.69 |
7 | cis-p-Coumaric acid-4-4-(apiosyl-(1->2)-glucoside) | C20H26O12 | 458.1412 | 81.76 |
8 | Ferulic acid | C10H10O4 | 194.0579 | 97.13 |
9 | Loganic acid | C16H24O10 | 376.1366 | 72.74 |
10 | p-Coumaric acid | C9H8O3 | 164.0471 | 86.48 |
11 | Quinic acid | C7H12O6 | 192.0629 | 97.79 |
12 | Shikimic acid | C7H10O5 | 174.0526 | 94.58 |
13 | Syring acid | C9H10O5 | 198.0531 | 97.57 |
14 | trans-p-Coumaric acid-4-glucoside | C15H18O8 | 326.0992 | 89.13 |
15 | Vanillic acid | C8H8O4 | 168.0421 | 90.81 |
Flavonoids | ||||
16 | Kaempferol | C15H10O6 | 286.0464 | 75.89 |
17 | Epicatechin | C15H14O6 | 290.0783 | 97.19 |
18 | Quercetin | C15H10O7 | 302.0443 | 89.32 |
19 | trans-Resveratrol | C14H12O3 | 228.0787 | 70.37 |
Xanthone | ||||
20 | Isogentisin | C14H10O5 | 258.0542 | 87.97 |
Secoiridoids | ||||
21 | Amarogentin | C29H30O13 | 586.1710 | 80.19 |
Extraction Time (min) | Protein Recovery (mg/g CS) | Decrease in Protein Concentration (mg/mL) | Increase in Peptide Concentration (mg/mL) | Increase in Antioxidant Activity (µmole TE/mL) | ||
---|---|---|---|---|---|---|
ABTS | DPPH | FRAP | ||||
Conventional alkaline extraction (CAE) * | ||||||
240 | 12.26 ± 0.96 d | 0.730 ± 0.017 b | 0.261 ± 0.006 a | 0.834 ± 0.016 a | 0.891 ± 0.015 a | 0.615 ± 0.001 a |
Ultrasound-assisted alkaline extraction (UAE) ** | ||||||
10 | 13.06 ± 0.71 d | 0.879 ± 0.005 ab | 0.269 ± 0.009 a | 1.073 ± 0.015 a | 1.038 ± 0.008 a | 0.607 ± 0.009 a |
25 | 18.31 ± 0.22 c | 0.733 ± 0.011 b | 0.240 ± 0.004 b | 0.752 ± 0.081 b | 0.640 ± 0.012 b | 0.224 ± 0.007 b |
40 | 18.60 ± 0.36 c | 0.679 ± 0.010 c | 0.177 ± 0.052 c | 0.507 ± 0.030 c | 0.264 ± 0.009 c | 0.041 ± 0.006 c |
Microwave-assisted alkaline extraction (MAE) *** | ||||||
2 | 12.19 ± 0.39 d | 0.902 ± 0.090 a | 0.357 ± 0.020 a | 1.418 ± 0.002 a | 1.258 ± 0.051 a | 0.858 ± 0.052 a |
5 | 20.06 ± 0.39 b | 0.701 ± 0.016 b | 0.247 ± 0.008 b | 1.028 ± 0.028 b | 0.877 ± 0.051 b | 0.521 ± 0.002 b |
10 | 21.77 ± 0.32 a | 0.512 ± 0.042 d | 0.144 ± 0.001 d | 1.007 ± 0.035 b | 0.806 ± 0.006 b | 0.451 ± 0.021 b |
Peptide Sequence | ALC (%) * | Local Confidence (%) | m/z | Molecular Weight (Da) |
---|---|---|---|---|
Protease_SE5 | ||||
Fraction 3 | ||||
FLGY | 90 | 93 84 88 93 | 499.2525 | 498.2478 |
FGGGF | 94 | 92 86 96 97 98 | 484.2185 | 483.2118 |
FDYGKY | 98 | 97 98 98 95 98 99 | 396.6815 | 791.3489 |
FYDTYY | 93 | 80 89 96 96 99 99 | 436.1788 | 870.3436 |
YSYAYDDR | 99 | 98 99 99 99 99 98 98 99 | 526.7186 | 1051.4246 |
Fraction 4 | ||||
YTRPY | 98 | 99 99 99 98 97 | 350.1793 | 698.3387 |
YTEYAF | 96 | 90 92 98 97 99 99 | 397.1747 | 792.3330 |
FDFVWVQ | 96 | 92 95 79 83 99 99 99 | 397.1747 | 792.3330 |
Alcalase | ||||
Fraction 3 | ||||
YTDHGAF | 98 | 99 99 99 98 97 98 99 | 405.6722 | 809.3344 |
FGGGGSFPP | 91 | 96 93 99 99 98 99 82 62 90 | 411.6886 | 821.3708 |
Fraction 4 | ||||
FGGY | 91 | 95 86 90 93 | 443.1905 | 442.1852 |
FDYLR | 93 | 94 96 93 90 93 | 357.1833 | 712.3544 |
DYFYY | 92 | 88 81 95 97 99 | 385.6546 | 769.2959 |
WDAFHPT | 93 | 89 93 95 98 97 92 88 | 437.1962 | 872.3817 |
Peptide Sequence | Key Constituent Antioxidative Amino Acids (%) | Peptide Ranker * | BIOPEP | ||||||
---|---|---|---|---|---|---|---|---|---|
Cys | His | Met | Phe | Trp | Tyr | Biological Activity ** | Toxicity *** | ||
Protease_SE5 | |||||||||
Fraction 3 | |||||||||
FLGY | 0 | 0 | 0 | 16.7 | 0 | 16.7 | 0.91 | ACE inhibitor, dipeptidyl peptidase IV inhibitor | Non-toxic |
FGGGF | 0 | 0 | 0 | 33.4 | 0 | 0 | 0.98 | ACE inhibitor, dipeptidyl peptidase IV inhibitor | Non-toxic |
FDYGKY | 0 | 0 | 0 | 16.7 | 0 | 33.4 | 0.67 | ACE inhibitor | Non-toxic |
FYDTYY | 0 | 0 | 0 | 16.7 | 0 | 33.4 | 0.60 | ACE inhibitor, dipeptidyl peptidase IV inhibitor | Non-toxic |
Fraction 4 | |||||||||
FDFVWVQ | 0 | 0 | 0 | 33.4 | 16.7 | 0 | 0.68 | ACE inhibitor, dipeptidyl peptidase IV inhibitor, antioxidant | Non-toxic |
Alcalase | |||||||||
Fraction 3 | |||||||||
YTDHGAF | 0 | 16.7 | 0 | 16.7 | 0 | 16.7 | 0.40 | dipeptidyl peptidase IV inhibitor | Non-toxic |
FGGGGSFPP | 0 | 0 | 0 | 33.4 | 0 | 0 | 0.84 | ACE inhibitor, dipeptidyl peptidase IV inhibitor | Non-toxic |
Fraction 4 | |||||||||
FGGY | 0 | 0 | 0 | 16.7 | 0 | 16.7 | 0.95 | ACE inhibitor | Non-toxic |
FDYLR | 0 | 0 | 0 | 16.7 | 0 | 16.7 | 0.81 | ACE inhibitor | Non-toxic |
DYFYY | 0 | 0 | 0 | 16.7 | 0 | 50.1 | 0.84 | ACE inhibitor, antioxidant | Non-toxic |
WDAFHPT | 0 | 16.7 | 0 | 16.7 | 16.7 | 0 | 0.84 | ACE inhibitor, dipeptidyl peptidase IV inhibitor | Non-toxic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jirarat, W.; Kaewsalud, T.; Yakul, K.; Rachtanapun, P.; Chaiyaso, T. Sustainable Valorization of Coffee Silverskin: Extraction of Phenolic Compounds and Proteins for Enzymatic Production of Bioactive Peptides. Foods 2024, 13, 1230. https://doi.org/10.3390/foods13081230
Jirarat W, Kaewsalud T, Yakul K, Rachtanapun P, Chaiyaso T. Sustainable Valorization of Coffee Silverskin: Extraction of Phenolic Compounds and Proteins for Enzymatic Production of Bioactive Peptides. Foods. 2024; 13(8):1230. https://doi.org/10.3390/foods13081230
Chicago/Turabian StyleJirarat, Wilasinee, Tanyawat Kaewsalud, Kamon Yakul, Pornchai Rachtanapun, and Thanongsak Chaiyaso. 2024. "Sustainable Valorization of Coffee Silverskin: Extraction of Phenolic Compounds and Proteins for Enzymatic Production of Bioactive Peptides" Foods 13, no. 8: 1230. https://doi.org/10.3390/foods13081230
APA StyleJirarat, W., Kaewsalud, T., Yakul, K., Rachtanapun, P., & Chaiyaso, T. (2024). Sustainable Valorization of Coffee Silverskin: Extraction of Phenolic Compounds and Proteins for Enzymatic Production of Bioactive Peptides. Foods, 13(8), 1230. https://doi.org/10.3390/foods13081230