Development, Validation, and Application of High-Performance Liquid Chromatography with Diode-Array Detection Method for Simultaneous Determination of Ginkgolic Acids and Ginkgols in Ginkgo biloba
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Experimental Design
2.2.1. Comparison of GA Detection Methods between European Pharmacopoeia 7.0 and Chinese Pharmacopoeia 2015 Edition
2.2.2. GA and Ginkgol Extraction from GBLs
2.3. UV Absorption Spectrum for Ginkgolic Acids and Ginkgols
2.4. Method Validation for GA and Ginkgols
2.4.1. Chromatographic Conditions and System Suitability Test
2.4.2. Preparation of Test Samples and Reference Solution
2.4.3. Linear Range, Limit of Detection (LOD), and Limit of Quantification (LOQ)
2.4.4. Precision, Stability, and Repeatability
2.4.5. Recovery Rate
2.5. Usage of This Proposed Method on Processed GBL Products
- I.
- To make ginkgo black tea (BT), the GBLs were kneaded in a kneading machine with a rotation speed of 55 rpm (voltage 380 V, motor speed 1400 rpm) for 10 min and fermented in an incubator at 40 °C and 80% humidity for 8 h.
- II.
- To make ginkgo dark tea (DT), the GBLs were dried in an oven at 150 °C for 5 min, kneaded at 55 rpm for 10 min, and fermented in an incubator at 40 °C and 80% humidity for 72 h.
- III.
- When making ginkgo white tea (WT), the GBLs were spread flat and withered at 20 °C for 72 h.
- IV.
- To make ginkgo green tea (GT), the ginkgo leaves were dried at 150 °C for 5 min and kneaded at 55 rpm for 10 min. All the above-mentioned semi-finished ginkgo teas were dried in an oven at 70 °C until their moisture content was approximately 7%.
- V.
- For the freeze-dried (FD) control group, GBLs were frozen at −20 °C for 24 h and freeze-dried at −50 °C for 72 h. They were then crushed, passed through a 40-mesh sieve, and stored at −20 °C.
2.6. Data Analysis
3. Results and Discussion
3.1. Comparison of GA Detection Methods between European Pharmacopoeia 7.0 and Chinese Pharmacopoeia 2015 Edition
3.2. Selection of Wavelength for Detecting Ginkgol and GA
3.3. Methodological Validation
3.3.1. Linear Range, Limit of Detection, and Limit of Quantification
3.3.2. Precision and Repeatability Experiments
3.3.3. Stability Experiment
3.3.4. Recovery
3.4. Application of the Developed Method to Investigate Ginkgols and GA in Processed GBLs
3.5. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
GB | Ginkgo biloba |
EGb | Extract of Ginkgo biloba |
BT | Black tea |
GT | Green tea |
GA | Ginkgolic acid |
TFA | Trifluoroacetic acid |
LOQ | Limit of quantification |
TGA | Total ginkgolic acid |
HPLC | High-performance liquid chromatography |
LC-MS | Liquid chromatography–mass spectrometry |
GBLs | Ginkgo biloba leaves |
DT | Dark tea |
WT | White tea |
FD | Freeze-dried |
UV | Ultra-violet |
LOD | Limit of detection |
RSD | Relative standard deviation |
PCA | Principal component analysis |
References
- Boateng, I.D.; Soetanto, D.A.; Li, F.; Yang, X.; Li, Y. Separation and Purification of Polyprenols from Ginkgo biloba L. Leaves by Bulk Ionic Liquid Membrane and Optimizing Parameters. Ind. Crops Prod. 2021, 170, 113828. [Google Scholar] [CrossRef]
- Yang, X.M.; Wang, Y.F.; Li, Y.Y.; Ma, H. Le Thermal Stability of Ginkgolic Acids from Ginkgo biloba and the Effects of Ginkgol C17:1 on the Apoptosis and Migration of SMMC7721 Cells. Fitoterapia 2014, 98, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Boateng, I.D.; Yang, X.; Li, Y. Extraction, Purification, and Elucidation of Six Ginkgol Homologs from Ginkgo biloba Sarcotesta and Evaluation of Their Anticancer Activities. Molecules 2022, 27, 7777. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Cheng, K.C.; Hsu, R.J.; Hsieh, C.W.; Wang, H.T.; Ting, Y. Enzymatic Degradation of Ginkgolic Acid by Laccase Immobilized on Novel Electrospun Nanofiber Mat. J. Sci. Food Agric. 2020, 100, 2705–2712. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Chen, J.; Ding, Y.; Cheng, J.; Yang, S.; Ding, Z.; Dai, Q.; Ding, Z. In Vitro Antioxidant and Immunostimulating Activities of Polysaccharides from Ginkgo biloba Leaves. Int. J. Biol. Macromol. 2019, 124, 972–980. [Google Scholar] [CrossRef]
- Liu, X.-G.; Lu, X.; Gao, W.; Li, P.; Yang, H. Structure, Synthesis, Biosynthesis, and Activity of the Characteristic Compounds from Ginkgo biloba L. Nat. Prod. Rep. 2022, 3, 474–511. [Google Scholar] [CrossRef]
- Li, F.; Boateng, I.D.; Chen, S.; Yang, X.M.; Soetanto, D.A.; Liu, W. Pulsed Light Irradiation Improves Degradation of Ginkgolic Acids and Retainment of Ginkgo Flavonoids and Terpene Trilactones in Ginkgo biloba Leaves. Ind. Crops Prod. 2023, 204, 117297. [Google Scholar] [CrossRef]
- Boateng, I.D. A Critical Review of Current Technologies Used to Reduce Ginkgotoxin, Ginkgotoxin-5′-Glucoside, Ginkgolic Acid, Allergic Glycoprotein, and Cyanide in Ginkgo biloba L. Seed. Food Chem. 2022, 382, 132408. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Committee. Ginkgo Leaves Extract; China Medical Science and Technology Press: Beijing, China, 2020; Volume 1. [Google Scholar]
- Boateng, I.D. Ginkgols and Bilobols in Ginkgo biloba L. A Review of Their Extraction and Bioactivities. Phyther. Res. 2023, 37, 3211–3223. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Zhang, J.; Wang, S. Advances in the Chemical Constituents and Chemical Analysis of Ginkgo biloba Leaf, Extract, and Phytopharmaceuticals. J. Pharm. Biomed. Anal. 2021, 193, 113704. [Google Scholar] [CrossRef]
- Jianbiao, Y.; Ling, F.; Wang, R. Comparative Study on the Limit Detection Methods of Ginkgolic Acid in Ginkgo Leaf Extracts from the Chinese Pharmacopoeia and the European Pharmacopoeia. J. Pharm. Anal. 2012, 32, 2055–2059. [Google Scholar]
- European Pharmacopoeia Commission. European Pharmacopoeia, 7th ed.; EDQM: Strasbourg, France, 2012. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Press: Beijing, China, 2010. [Google Scholar]
- Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia; China Medical Science Press: Beijing, China, 2015. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Press: Beijing, China, 2020. [Google Scholar]
- Weihong, T.; Zhaobang, S.; Wang, C. Isolation and Identification of Alkylphenol Compounds in Ginkgo Leaves. Chem. Ind. For. Prod. 2001, 4, 1–6. [Google Scholar]
- Liu, P. Isolation, Identification and Analysis Method Establishment of Ginkgol Monomers; Jiangsu University: Zhenjiang, China, 2016. [Google Scholar]
- Tsochatzis, E.D.; Alberto Lopes, J.; Gika, H.; Kastrup Dalsgaard, T.; Theodoridis, G. Development and Validation of an UHPLC-QTOF-MS Method for the Quantification of Cyclic Polyesters Oligomers in Pasta by Applying a Modified QuEChERS Clean-Up. Food Chem. 2021, 347, 129040. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Ahuja, S.; Dong, M.W. Handbook of Pharmaceutical Analysis by HPLC; Elsevier Inc.: Amsterdam, The Netherlands, 2005; Volume 6. [Google Scholar]
- Barimah, A.O.; Chen, P.; Yin, L.; El-seedi, H.R.; Zou, X.; Guo, Z. SERS Nanosensor of 3-Aminobenzeneboronic Acid Labeled Ag for Detecting Total Arsenic in Black Tea Combined with Chemometric Algorithms. J. Food Compos. Anal. 2022, 110, 104588. [Google Scholar] [CrossRef]
- Lee, H.; Lim, H.; Yang, J.; Hong, J. Rapid Determination of Ginkgolic Acids in Ginkgo biloba Leaf Using Online Column Switching High-Performance Liquid Chromatography-Diode Array Detection and Confirmation by Liquid Chromatography-Tandem Mass Spectrometry. Bull. Korean Chem. Soc. 2013, 34, 3629–3634. [Google Scholar] [CrossRef]
- Li, F.; Boateng, I.D.; Yang, X.M.; Li, Y.; Liu, W. Effects of Processing Methods on Quality, Antioxidant Capacity, and Cytotoxicity of Ginkgo biloba Leaf Tea Product. J. Sci. Food Agric. 2023, 103, 4993–5003. [Google Scholar] [CrossRef]
- Kadjo, A.F.; Dasgupta, P.K.; Su, J.; Liu, S.; Kraiczek, K.G. Width Based Quantitation of Chromatographic Peaks: Principles and Principal Characteristics. Anal. Chem. 2017, 89, 3884–3892. [Google Scholar] [CrossRef]
- van Beek, T.A.; Montoro, P. Chemical Analysis and Quality Control of Ginkgo biloba Leaves, Extracts, and Phytopharmaceuticals. J. Chromatogr. A 2009, 1216, 2002–2032. [Google Scholar] [CrossRef]
- VanBeek, T.A. Ginkgo Biloba, 1st ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Wilson, R.E.; Groskreutz, S.R.; Weber, S.G. Improving the Sensitivity, Resolution, and Peak Capacity of Gradient Elution in Capillary Liquid Chromatography with Large-Volume Injections by Using Temperature-Assisted On-Column Solute Focusing. Anal. Chem. 2016, 88, 5112–5121. [Google Scholar] [CrossRef]
- Wageed, M.; Mahdy, H.M.; Kalaba, M.H.; Kelany, M.A.; Soliman, M. Development of LC-MS/MS Analytical Method for the Rapid Determination of Diquat in Water and Beverages. Food Chem. 2023, 438, 137869. [Google Scholar] [CrossRef]
- Barimah, A.O.; Guo, Z.; Agyekum, A.A.; Guo, C.; Chen, P.; El-Seedi, H.R.; Zou, X.; Chen, Q. Sensitive Label-Free Cu2O/Ag Fused Chemometrics SERS Sensor for Rapid Detection of Total Arsenic in Tea. Food Control 2021, 130, 108341. [Google Scholar] [CrossRef]
- European Medicines Agency ICH Q2 (R1): Validation of Analytical Procedures: Text and Methodology. Int. Conf. Harmon. 2005, 2, 1–15.
- European Commission. Guidance Document on Pesticide Analytical Methods for Risk Assessment and Post-Approval Control and Monitoring Purposes SANTE/2020/12830. Sante/2020/12830 2020, 1–50. Available online: https://food.ec.europa.eu/document/download/022e0538-7fcd-4fa3-8b99-f3ba2afc4c3d_en?filename=pesticides_ppp_app-proc_guide_res_mrl-guidelines-2020-12830.pdf (accessed on 6 March 2024).
- Chen, X.M.; Ma, Z.; Kitts, D.D. Effects of Processing Method and Age of Leaves on Phytochemical Profiles and Bioactivity of Coffee Leaves. Food Chem. 2018, 249, 143–153. [Google Scholar] [CrossRef]
- Krakowska-Sieprawska, A.; Kiełbasa, A.; Rafińska, K.; Ligor, M.; Buszewski, B. Modern Methods of Pre-Treatment of Plant Material for the Extraction of Bioactive Compounds. Molecules 2022, 27, 730. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, Y.; Zhang, X.; Shao, S.; Han, Y.; Chu, D.T.; Xie, G.; Ye, X. Metabolic Profile of Ginkgo Kernel Juice Fermented with Lactic Aicd Bacteria: A Potential Way to Degrade Ginkgolic Acids and Enrich Terpene Lactones and Phenolics. Process Biochem. 2019, 76, 25–33. [Google Scholar] [CrossRef]
- Boasiako, T.A.; Yinka, A.A.; Yuqing, X.; Boateng, I.D.; Ma, Y. Tri-Cultured Lactic-Acetic Acid Co-Fermentation Improves Stored Jujube Puree Functionality, Physicochemical, Volatile Compounds, and Sensory Characteristics. Food Biosci. 2024, 57, 103534. [Google Scholar] [CrossRef]
- Adainoo, B.; Thomas, A.L.; Krishnaswamy, K. Correlations between Color, Textural Properties and Ripening of the North American Pawpaw (Asimina Triloba) Fruit. Sustain. Food Technol. 2023, 1, 263–274. [Google Scholar] [CrossRef]
Standard Solution Precision Test | Standard Solution | Ginkgol C13:0 (mg/mL) | Ginkgol C15:1 (mg/mL) | Ginkgol C17:1 (mg/mL) | Total Ginkgol (mg/mL) |
1 | 0.0244 | 0.0295 | 0.0430 | 0.0969 | |
2 | 0.0245 | 0.0297 | 0.0431 | 0.0972 | |
3 | 0.0245 | 0.0297 | 0.0431 | 0.0973 | |
4 | 0.0246 | 0.0297 | 0.0432 | 0.0975 | |
5 | 0.0245 | 0.0295 | 0.0433 | 0.0974 | |
6 | 0.0246 | 0.0298 | 0.0430 | 0.0974 | |
Average value | 0.0245 | 0.0297 | 0.0431 | 0.0973 | |
RSD | 0.27% | 0.33% | 0.29% | 0.20% | |
Sample solution stability test | Time (h) | Ginkgol C13:0 (mg/g) | Ginkgol C15:1 (mg/g) | Ginkgol C17:1 (mg/g) | Total ginkgol (mg/g) |
0 | 0.0259 | 0.3344 | 0.6511 | 1.0110 | |
4 | 0.0276 | 0.3351 | 0.6328 | 0.9981 | |
8 | 0.0278 | 0.3542 | 0.6570 | 1.0389 | |
12 | 0.0265 | 0.3540 | 0.6518 | 1.0324 | |
16 | 0.0285 | 0.3572 | 0.6390 | 1.0247 | |
20 | 0.0275 | 0.3591 | 0.5866 | 0.9731 | |
Average value | 0.0273 | 0.3490 | 0.6364 | 1.0130 | |
RSD | 3.06% | 2.93% | 3.73% | 2.21% | |
Sample solution repeatability test | Sample | Ginkgol C13:0 (mg/g) | Ginkgol C15:1 (mg/g) | Ginkgol C17:1 (mg/g) | Total ginkgol (mg/g) |
1 | 0.0272 | 0.3572 | 0.6390 | 1.0247 | |
2 | 0.0264 | 0.3598 | 0.6459 | 1.0321 | |
3 | 0.0249 | 0.3518 | 0.6505 | 1.0272 | |
4 | 0.0244 | 0.3477 | 0.6252 | 0.9973 | |
5 | 0.0254 | 0.3367 | 0.6115 | 0.9735 | |
6 | 0.0251 | 0.3370 | 0.6138 | 0.9736 | |
Average value | 0.0256 | 0.3484 | 0.6310 | 1.0047 | |
RSD | 3.76% | 2.58% | 2.40% | 2.45% |
C13:0 | Sample | Sample Amount (g) | C13:0 (mg) | Added Amount (mg) | Theoretical Value (mg) | Actual Value (mg) | Total Recovery Rate (%) | Average Value (%) | RSD (%) |
1 | 0.5014 | 0.0147 | 0.0556 | 0.0703 | 0.0643 | 91.50 | 95.82 | 3.93 | |
2 | 0.4985 | 0.0146 | 0.0556 | 0.0702 | 0.0669 | 95.29 | |||
3 | 0.5015 | 0.0147 | 0.0556 | 0.0703 | 0.0708 | 100.67 | |||
4 | 0.5046 | 0.0148 | 0.0667 | 0.0815 | 0.0798 | 97.91 | 96.41 | 2.90 | |
5 | 0.5010 | 0.0147 | 0.0667 | 0.0814 | 0.0804 | 98.83 | |||
6 | 0.5011 | 0.0147 | 0.0667 | 0.0814 | 0.0753 | 92.48 | |||
7 | 0.5018 | 0.0147 | 0.0834 | 0.0981 | 0.0927 | 94.49 | 95.60 | 3.72 | |
8 | 0.5020 | 0.0147 | 0.0834 | 0.0981 | 0.0985 | 100.40 | |||
9 | 0.4999 | 0.0146 | 0.0834 | 0.0980 | 0.0901 | 91.91 | |||
C15:1 | Sample | Sample amount (g) | C15:1 (mg) | Added amount (mg) | Theoretical value (mg) | Actual value (mg) | Total recovery (%) | Average value (%) | RSD (%) |
1 | 0.5014 | 0.1756 | 0.0795 | 0.2551 | 0.2501 | 98.01 | 94.52 | 3.24 | |
2 | 0.4985 | 0.1746 | 0.0795 | 0.2541 | 0.2414 | 95.01 | |||
3 | 0.5015 | 0.1757 | 0.0795 | 0.2552 | 0.2311 | 90.56 | |||
4 | 0.5046 | 0.1768 | 0.0954 | 0.2722 | 0.2621 | 96.32 | 98.52 | 2.86 | |
5 | 0.5010 | 0.1755 | 0.0954 | 0.2709 | 0.2777 | 102.50 | |||
6 | 0.5011 | 0.1755 | 0.0954 | 0.2709 | 0.2621 | 96.75 | |||
7 | 0.5018 | 0.1758 | 0.1193 | 0.2950 | 0.2966 | 100.55 | 96.61 | 2.97 | |
8 | 0.5020 | 0.1759 | 0.1193 | 0.2951 | 0.2768 | 93.80 | |||
9 | 0.4999 | 0.1751 | 0.1193 | 0.2944 | 0.2811 | 95.50 | |||
C17:1 | Sample | Sample amount (g) | C17:1 (mg) | Added amount (m) | Theoretical value (mg) | Actual value (mg) | Total recovery (%) | Average value (%) | RSD (%) |
1 | 0.5014 | 0.3153 | 0.3470 | 0.6623 | 0.6371 | 96.21 | 97.45 | 1.81 | |
2 | 0.4985 | 0.3134 | 0.3470 | 0.6604 | 0.6601 | 99.95 | |||
3 | 0.5015 | 0.3153 | 0.3470 | 0.6623 | 0.6371 | 96.20 | |||
4 | 0.5046 | 0.3173 | 0.4164 | 0.7337 | 0.6831 | 93.11 | 97.49 | 3.44 | |
5 | 0.5010 | 0.3150 | 0.4164 | 0.7314 | 0.7176 | 98.11 | |||
6 | 0.5011 | 0.3151 | 0.4164 | 0.7315 | 0.7406 | 101.25 | |||
7 | 0.5018 | 0.3155 | 0.5205 | 0.8360 | 0.8683 | 103.86 | 103.94 | 1.94 | |
8 | 0.5020 | 0.3156 | 0.5205 | 0.8361 | 0.8900 | 106.44 | |||
9 | 0.4999 | 0.3143 | 0.5205 | 0.8348 | 0.8475 | 101.52 | |||
Total ginkgol | Sample | Sample amount (g) | Total ginkgol (mg) | Added amount (mg) | Theoretical sum (mg) | Actual sum (mg) | Total recovery rate (%) | Average value (%) | RSD (%) |
1 | 0.5014 | 0.5056 | 0.4821 | 0.9877 | 0.9515 | 96.34 | 96.58 | 1.40 | |
2 | 0.4985 | 0.5027 | 0.4821 | 0.9848 | 0.9685 | 98.34 | |||
3 | 0.5015 | 0.5057 | 0.4821 | 0.9878 | 0.9390 | 95.06 | |||
4 | 0.5046 | 0.5088 | 0.5785 | 1.0873 | 1.0250 | 94.27 | 97.67 | 2.46 | |
5 | 0.5010 | 0.5052 | 0.5785 | 1.0837 | 1.0757 | 99.26 | |||
6 | 0.5011 | 0.5053 | 0.5785 | 1.0838 | 1.0780 | 99.46 | |||
7 | 0.5018 | 0.5060 | 0.7232 | 1.2291 | 1.2518 | 102.32 | 101.52 | 1.56 | |
8 | 0.5020 | 0.5062 | 0.7232 | 1.2293 | 1.2653 | 102.93 | |||
9 | 0.4999 | 0.5041 | 0.7232 | 1.2272 | 1.2187 | 99.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boateng, I.D.; Li, F.; Yang, X.-M. Development, Validation, and Application of High-Performance Liquid Chromatography with Diode-Array Detection Method for Simultaneous Determination of Ginkgolic Acids and Ginkgols in Ginkgo biloba. Foods 2024, 13, 1250. https://doi.org/10.3390/foods13081250
Boateng ID, Li F, Yang X-M. Development, Validation, and Application of High-Performance Liquid Chromatography with Diode-Array Detection Method for Simultaneous Determination of Ginkgolic Acids and Ginkgols in Ginkgo biloba. Foods. 2024; 13(8):1250. https://doi.org/10.3390/foods13081250
Chicago/Turabian StyleBoateng, Isaac Duah, Fengnan Li, and Xiao-Ming Yang. 2024. "Development, Validation, and Application of High-Performance Liquid Chromatography with Diode-Array Detection Method for Simultaneous Determination of Ginkgolic Acids and Ginkgols in Ginkgo biloba" Foods 13, no. 8: 1250. https://doi.org/10.3390/foods13081250
APA StyleBoateng, I. D., Li, F., & Yang, X. -M. (2024). Development, Validation, and Application of High-Performance Liquid Chromatography with Diode-Array Detection Method for Simultaneous Determination of Ginkgolic Acids and Ginkgols in Ginkgo biloba. Foods, 13(8), 1250. https://doi.org/10.3390/foods13081250