A Longitudinal Analysis of the Impact of Digital Technologies on Sustainable Food Production and Consumption in the European Union
Abstract
:1. Introduction
2. The Literature Review
2.1. Digitalization in Agriculture
2.2. Sustainability and Innovation in the Food System
2.3. The Impact of the Agri-Food Chain on the Environment and GHG Emissions
3. Materials and Methods
4. Results
5. Discussion
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations and Further Research
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Morawicki, R.O.; González, D.J.D. Focus: Nutrition and Food Science: Food Sustainability in the Context of Human Behavior. Yale J. Biol. Med. 2018, 91, 191. [Google Scholar]
- Andrieu, N.; Sogoba, B.; Zougmore, R.; Howland, F.; Samake, O.; Bonilla-Findji, O.; Lizarazo, M.; Nowak, A.; Dembele, C.; Corner-Dolloff, C. Prioritizing investments for climate-smart agriculture: Lessons learned from Mali. Agric. Syst. 2017, 154, 13–24. [Google Scholar] [CrossRef]
- Shirsath, P.B.; Aggarwal, P.K. Trade-Offs between Agricultural Production, GHG Emissions, and Income in a Changing Climate, Technology, and Food Demand Scenario. Sustainability 2021, 13, 3190. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Hussain, S.; Zhang, S.; Khayyam, M.; Ihtisham, M.; Asongu, S.A. Potential Role of Technology Innovation in Transformation of Sustainable Food Systems: A Review. Agriculture 2021, 11, 984. [Google Scholar] [CrossRef]
- Frederico, G.F.; Garza-Reyes, J.A.; Anosike, A.; Kumar, V. Supply Chain 4.0: Concepts, maturity, and research agenda. Supply Chain Manag. Int. J. 2019, 25, 262–282. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A.; Kumar, V.; Kumar, A. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput. Oper. Res. 2020, 119, 104926. [Google Scholar] [CrossRef]
- Zekhnini, K.; Cherrafi, A.; Bouhaddou, I.; Benghabrit, Y.; Garza-Reyes, J.A. Supply chain management 4.0: A literature review and research framework. Benchmarking Int. J. 2020, 28, 465–501. [Google Scholar] [CrossRef]
- Ni, D.; Xiao, Z.; Lim, M.K. A systematic review of the research trends of machine learning in supply chain management. Int. J. Mach. Learn. Cybern. 2020, 11, 1463–1482. [Google Scholar] [CrossRef]
- Amentae, T.K.; Gebresenbet, G. Digitalization, and Future Agro-Food Supply Chain Management: A Literature-Based Implications. Sustainability 2021, 13, 12181. [Google Scholar] [CrossRef]
- Lindgren, E.; Harris, F.; Dangour, A.D.; Gasparatos, A.; Hiramatsu, M.; Javadi, F.; Loken, B.; Murakami, T.; Scheelbeek, P.; Haines, A. Sustainable food systems—A health perspective. Sustain. Sci. 2018, 13, 1505–1517. [Google Scholar] [CrossRef]
- Anastasiadis, F.; Tsolakis, N.; Srai, J.S. Digital Technologies Towards Resource Efficiency in the Agri-food Sector: Key Challenges in Developing Countries. Sustainability 2018, 10, 4850. [Google Scholar] [CrossRef]
- Deichmann, U.; Goyal, A.; Mishra, D. Will Digital Technologies Transform Agriculture in Developing Countries? World Bank Group: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Traitler, H.; Zilberman, D.; Heikes, K.; Petiard, V.; Dubois, M. Megatrends in Food and Agriculture: Technology, Water Use and Nutrition, 1st ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- FAO. e-Agriculture Summary Discussion e-Forum on ICTs and Open Data in Agriculture and Nutrition; FAO: Rome, Italy, 2018. [Google Scholar]
- Serbulova, N.; Kanurny, S.; Gorodnyanskaya, A.; Persiyanova, A. Sustainable food systems and agriculture: The role of information and communication technologies. IOP Conf. Ser. Earth Environ. Sci. 2019, 403, 012127. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Aiking, H.; de Boer, J. The next protein transition. Trends Food Sci. Technol. 2020, 105, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Chana, I.; Buyya, R. IoT Based Agriculture as a Cloud and Big Data Service: The Beginning of Digital India. J. Organ. End User Comput. 2017, 29, 1–23. [Google Scholar] [CrossRef]
- Ferreira, B.; Iten, M.; Silva, R.G. Monitoring sustainable development by means of earth observation data and machine learning: A review. Environ. Sci. Eur. 2020, 32, 120. [Google Scholar] [CrossRef]
- Qin, T.; Wang, L.; Zhou, Y.; Guo, L.; Jiang, G.; Zhang, L. Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU. Agriculture 2022, 12, 297. [Google Scholar] [CrossRef]
- Clapp, J.; Ruder, S.-L. Precision Technologies for Agriculture: Digital Farming, Gene-Edited Crops, and the Politics of Sustainability. Glob. Environ. Politics 2020, 20, 49–69. [Google Scholar] [CrossRef]
- Klerkx, L.; Begemann, S. Supporting food systems transformation: The what, why, who, where and how of mission-oriented agricultural innovation systems. Agric. Syst. 2020, 184, 102901. [Google Scholar] [CrossRef]
- El Bilali, H.; Allahyari, M.S. Transition towards sustainability in agriculture and food systems: Role of information and communication technologies. Inf. Process. Agric. 2018, 5, 456–464. [Google Scholar] [CrossRef]
- Bolfe, É.L.; Jorge, L.A.D.C.; Sanches, I.D.; Luchiari Júnior, A.; da Costa, C.C.; Victoria, D.D.C.; Inamasu, R.Y.; Grego, C.R.; Ferreira, V.R.; Ramirez, A.R. Precision and digital agriculture: Adoption of technologies and perception of Brazilian farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020, 9, 6305–6324. [Google Scholar] [CrossRef]
- Meshram, V.; Patil, K.; Meshram, V.; Hanchate, D.; Ramkteke, S.D. Machine learning in agriculture domain: A state-of-art survey. Artif. Intell. Life Sci. 2021, 1, 100010. [Google Scholar] [CrossRef]
- Feng, X.; Yan, F.; Liu, X. Study of wireless communication technologies on Internet of Things for precision agriculture. Wirel. Pers. Commun. 2019, 108, 1785–1802. [Google Scholar] [CrossRef]
- Obade, V.D.P.; Gaya, C. Digital technology dilemma: On unlocking the soil quality index conundrum. Bioresourc. Bioprocess. 2021, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Scown, M.W.; Winkler, K.J.; Nicholas, K.A. Aligning research with policy and practice for sustainable agricultural land systems in Europe. Proc. Natl. Acad. Sci. USA 2019, 116, 4911–4916. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Zambrano, P.V.; Tierra Pérez, L.P.; Ureta Valdez, R.E.; Flores Orozco, A.P. Technological Innovations for Agricultural Production from an Environmental Perspective: A Review. Sustainability 2023, 15, 16100. [Google Scholar] [CrossRef]
- Eli-Chukwu, N.C. Applications of artificial intelligence in agriculture: A review. Eng. Technol. Appl. Sci. Res. 2019, 9, 4377–4383. [Google Scholar] [CrossRef]
- Yin, X.; Chen, J.; Li, J. Rural innovation system: Revitalize the countryside for a sustainable development. J. Rural. Stud. 2022, 93, 471–478. [Google Scholar] [CrossRef]
- Wang, W.; Mei, T. Research on the Effect of Digital Economy Development on the Carbon Emission Intensity of Agriculture. Sustainability 2024, 16, 1457. [Google Scholar] [CrossRef]
- Fears, R.; Canales, C. The Role of Science, Technology and Innovation for Transforming Food Systems Globally. Cent. Dev. Res. (ZEF) Coop. Sci. Group UN Food Syst. Summit, 2021; 1–20. [Google Scholar] [CrossRef]
- Bumpus, A.; Comello, S. Emerging clean energy technology investment trends. Nat. Clim. Change 2017, 7, 382–385. [Google Scholar] [CrossRef]
- Ozdogan, B.; Gacar, A.; Aktas, H. Digital Agriculture Practices in the Context of Agriculture 4.0. J. Econ. Financ. Account. 2017, 4, 184–191. [Google Scholar] [CrossRef]
- Wijerathna-Yapa, A.; Pathirana, R. Sustainable Agro-Food Systems for Addressing Climate Change and Food Security. Agriculture 2022, 12, 1554. [Google Scholar] [CrossRef]
- Mittra, B. COVID-19 Pandemic Presents Opportunities for Innovation. In TCI Blog; Tata-Cornell Institute for Agriculture and Nutrition: Ithaca, NY, USA, 2020; Volume 2021. [Google Scholar]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Bodirsky, B.L.; Pradhan, P.; Barrett, C.B.; Benton, T.G.; Hall, A.; Pikaar, I.; et al. Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planet. Health 2021, 5, e50–e62. [Google Scholar] [CrossRef] [PubMed]
- Bahn, R.A.; Yehya, A.A.K.; Zurayk, R. Digitalization for Sustainable Agri-Food Systems: Potential, Status, and Risks for the MENA Region. Sustainability 2021, 13, 3223. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- OECD. Digital Opportunities for Better Agricultural Policies; OECD Publishing: Paris, France, 2019. [Google Scholar]
- World Bank. Future of Food: Harnessing Digital Technologies to Improve Food System Outcomes; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J.; Dumas, P.; Matthews, E.; Klirs, C. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050. Final Report; WRI: Washington, DC, USA, 2019. [Google Scholar]
- Steiner, A.; Aguilar, G.; Bomba, K.; Bonilla, J.P.; Campbell, A.; Echeverria, R.; Gandhi, R.; Hedegaard, C.; Holdorf, D.; Ishii, N.; et al. Actions to Transform Food Systems under Climate Change; CGIAR: Montpellier, France, 2020. [Google Scholar]
- Kok, K.P.; Den Boer, A.C.; Cesuroglu, T.; Van Der Meij, M.G.; de Wildt-Liesveld, R.; Regeer, B.J.; Broerse, J.E. Transforming research and innovation for sustainable food systems—A coupled-systems perspective. Sustainability 2019, 11, 7176. [Google Scholar] [CrossRef]
- Barrett, C.B.; Benton, T.G.; Fanzo, J.; Herrero, M.; Nelson, R.; Bageant, E.; Buckler, E.; Cooper, K.A.; Culotta, I.; Fan, S.; et al. Socio-Technical Innovation Bundles for Agri-Food Systems Transformation; Cornell Atkinson Center for Sustainability: Ithaca, NY, USA; Springer Nature: London, UK, 2020. [Google Scholar]
- Calicioglu, O.; Flammini, A.; Bracco, S.; Bellú, L.; Sims, R. The future challenges of food and agriculture: An integr„ated analysis of trends and solutions. Sustainability 2019, 11, 222. [Google Scholar] [CrossRef]
- Van Berkum, S.; Dengerink, J.; Ruben, R. The Food Systems Approach: Sustainable Solutions for a Sufficient Supply of Healthy Food; Wageningen Economic Research: Den Haag, The Netherlands, 2018. [Google Scholar]
- Tomiyama, J.-M.; Takagi, D.; Kantar, M.B. The Effect of Acute and Chronic Food Shortage on Human Population Equilibrium in a Subsistence Setting. Agric. Food Secur. 2020, 9, 6. [Google Scholar] [CrossRef]
- Chardigny, J.-M.; Walrand, S. Plant protein for food: Opportunities and bottlenecks. OCL Oilseeds Fats Crops Lipids 2016, 23, D404. [Google Scholar] [CrossRef]
- Niva, M.; Vainio, A.; Jallinoja, P. Barriers to increasing plant protein consumption in Western populations. In Vegetarian and Plant-Based Diets in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2017; pp. 157–171. [Google Scholar] [CrossRef]
- Dong, Y.; Ahmad, S.F.; Irshad, M.; Al-Razgan, M.; Ali, Y.A.; Awwad, E.M. The Digitalization Paradigm: Impacts on Agri-Food Supply Chain Profitability and Sustainability. Sustainability 2023, 15, 15627. [Google Scholar] [CrossRef]
- Erokhin, V.; Diao, L.; Du, P. Sustainability-Related Implications of Competitive Advantages in Agricultural Value Chains: Evidence from Central Asia—China Trade and Investment. Sustainability 2020, 12, 1117. [Google Scholar] [CrossRef]
- Abideen, A.Z.; Sundram, V.P.K.; Pyeman, J.; Othman, A.K.; Sorooshian, S. Food Supply Chain Transformation through Technology and Future Research Directions—A Systematic Review. Logistics 2021, 5, 83. [Google Scholar] [CrossRef]
- Mushi, G.E.; Di Marzo Serugendo, G.; Burgi, P.-Y. Digital Technology and Services for Sustainable Agriculture in Tanzania: A Literature Review. Sustainability 2022, 14, 2415. [Google Scholar] [CrossRef]
- Tarigan, Z.J.H.; Siagian, H.; Jie, F. Impact of Enhanced Enterprise Resource Planning (ERP) on Firm Performance through Green Supply Chain Management. Sustainability 2021, 13, 4358. [Google Scholar] [CrossRef]
- Kumar, M.; Raut, R.D.; Jagtap, S.; Choubey, V.K. Circular economy adoption challenges in the food supply chain for sustainable development. Bus. Strateg. Environ. 2023, 32, 1334–1356. [Google Scholar] [CrossRef]
- Sufiyan, M.; Haleem, A.; Khan, S.; Khan, M.I. Evaluating food supply chain performance using hybrid fuzzy MCDM technique. Sustain. Prod. Consum. 2019, 20, 40–57. [Google Scholar] [CrossRef]
- Jagtap, S.; Rahimifard, S. The digitization of food manufacturing to reduce waste-Case study of a ready meal factory. Waste Manag. 2019, 87, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Kollia, I.; Stevenson, J.; Kollias, S. AI-Enabled Efficient and Safe Food Supply Chain. Electronics 2021, 10, 1223. [Google Scholar] [CrossRef]
- Annosi, M.C.; Brunetta, F.; Bimbo, F.; Kostoula, M. Digitalization within food supply chains to prevent food waste. Drivers, barriers, and collaboration practices. Ind. Mark. Manag. 2021, 93, 208–220. [Google Scholar] [CrossRef]
- Moraes, N.V.; Lermen, F.H.; Echeveste, M.E.S. A systematic literature review on food waste/loss prevention and minimization methods. J. Environ. Manag. 2021, 286, 112268. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, C.; Dhir, A.; Akram, M.U.; Salo, J. Food loss and waste in food supply chains. A systematic literature review and framework development approach. J. Clean. Prod. 2021, 295, 126438. [Google Scholar] [CrossRef]
- Bhakta, I.; Phadikar, S.; Majumder, K. State-of-the-art technologies in precision agriculture: A systematic review. J. Sci. Food Agric. 2019, 99, 4878–4888. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.S.; Islam, S.; Ali, M.; Chowdhury, M.; Chung, S.O.; Noh, D.H. Environmental sensing and remote communication for smart farming: A review. Precis Agric. 2022, 4, 82. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Abdollahi, A.; Zailani, S.; Iranmanesh, M.; Ghobakhloo, M. Digitalization in Food Supply Chains: A Bibliometric Review and Key-Route Main Path Analysis. Sustainability 2022, 14, 83. [Google Scholar] [CrossRef]
- Singh, A.; Kumari, S.; Malekpoor, H.; Mishra, N. Big Data Cloud Computing Framework for Low Carbon Supplier Selection in the Beef Supply Chain. J. Clean. Prod. 2018, 202, 139–149. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Parekh, H.; Joshi, S. Modeling the Internet of Things Adoption Barriers in Food Retail Supply Chains. J. Retail. Consum. Serv. 2019, 48, 154–168. [Google Scholar] [CrossRef]
- Zamora-Izquierdo, M.A.; Santa, J.; Martinez, J.A.; Martinez, V.; Skarmeta, A.F. Smart Farming IoT Platform Based on Edge and Cloud Computing. Biosyst. Eng. 2019, 177, 4–17. [Google Scholar] [CrossRef]
- Tantalaki, N.; Souravlas, S.; Roumeliotis, M. Data-Driven Decision Making in Precision Agriculture: The Rise of Big Data in Agricultural Systems. J. Agric. Food Inf. 2019, 20, 344–380. [Google Scholar] [CrossRef]
- Shadrin, D.; Menshchikov, A.; Somov, A.; Bornemann, G.; Hauslage, J.; Fedorov, M. Enabling Precision Agriculture through Embedded Sensing with Artificial Intelligence. IEEE Trans. Instrum. Meas. 2019, 69, 4103–4113. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, A.; Luthra, S.; Joshi, S.; Upadhyay, A. The impact of environmental dynamism on low-carbon practices and digital supply chain networks to enhance sustainable performance: An empirical analysis. Bus. Strategy Environ. 2022, 31, 1776–1788. [Google Scholar] [CrossRef]
- Khan, P.W.; Byun, Y.-C.; Park, N. IoT-Blockchain Enabled Optimized Provenance System for Food Industry 4.0 Using Advanced Deep Learning. Sensors 2020, 20, 2990. [Google Scholar] [CrossRef]
- Mahroof, K.; Omar, A.; Rana, N.P.; Sivarajah, U.; Weerakkody, V. Drone as a Service (DaaS) in Promoting Cleaner Agricultural Production and Circular Economy for Ethical Sustainable Supply Chain Development. J. Clean. Prod. 2021, 287, 125522. [Google Scholar] [CrossRef]
- Kittipanya-Ngam, P.; Tan, K.H. A Framework for Food Supply Chain Digitalization: Lessons from Thailand. Prod. Plan. Control 2020, 31, 158–172. [Google Scholar] [CrossRef]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef]
- El Bilall, H. Relation between innovation and sustainability in the agro-food system. Ital. J. Food Sci. 2018, 30, 200–225. [Google Scholar] [CrossRef]
- Manocha, P.; Srai, J.S. Exploring Environmental Supply Chain Innovation in M&A. Sustainability 2020, 12, 10105. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the Adoption and Diffusion of Technological Innovations for Climate-Smart Agriculture in Europe: Evidence from The Netherlands, France, Switzerland, and Italy. J. Clean. Prod. 2016, 112, 9–21. [Google Scholar] [CrossRef]
- Brandt, P.; Kvakic, M.; Butterbach-Bahl, K.; Rufino, M.C. How to target climate-smart agriculture? Concept and application of the consensus-driven decision support framework “targetCSA”. Agric. Syst. 2017, 151, 234–245. [Google Scholar] [CrossRef]
- Shirsath, P.B.; Aggarwal, P.K.; Thornton, P.K.; Dunnett, A. Prioritizing climate-smart agricultural land use options at a regional scale. Agric. Syst. 2017, 151, 174–183. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Jarvis, A.; Campbell, B.M.; Zougmore, R.B.; Khatri-Chhetri, A.; Vermeulen, S.J.; Loboguerrero, A.M.; Sebastian, L.S.; Kinyangi, J.; Bonilla-Findji, O.; et al. The climate-smart village approach: Framework of an integrative strategy for scaling up adaptation options in agriculture. Ecol. Soc. 2018, 23, 14. [Google Scholar] [CrossRef]
- Dunnett, A.; Shirsath, P.B.; Aggarwal, P.K.; Thornton, P.; Joshi, P.K.; Pal, B.D.; Khatri-Chhetri, A.; Ghosh, J. Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions. Ecol. Modell. 2018, 381, 23–35. [Google Scholar] [CrossRef]
- Li, M.; Singh, V.P.; Fu, Q.; Liu, D.; Li, T.; Zhou, Y. Optimization of agricultural water-food-energy nexus in a random environment: An integrated modelling approach. Stoch. Environ. Res. Risk Assess. 2019, 35, 3–19. [Google Scholar] [CrossRef]
- Bieber, N.; Ker, J.H.; Wang, X.; Triantafyllidis, C.; van Dam, K.H.; Koppelaar, R.H.E.M.; Shah, N. Sustainable planning of the energy-water-food nexus using decision-making tools. Energy Policy 2018, 113, 584–607. [Google Scholar] [CrossRef]
- Gil, J.D.B.; Garrett, R.D.; Rotz, A.; Daioglou, V.; Valentim, J.; Pires, G.F.; Costa, M.H.; Lopes, L.; Reis, J.C. Tradeoffs in the quest for climate-smart agricultural intensification in Mato Grosso, Brazil. Environ. Res. Lett. 2018, 13, 064025. [Google Scholar] [CrossRef]
- Nyborg, K.; Anderies, J.M.; Dannenberg, A.; Lindahl, T.; Schill, C.; Schlüter, M.; Adger, W.N.; Arrow, K.J.; Barrett, S.; Carpenter, S. Social norms as solutions. Science 2016, 354, 42–43. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global Greenhouse Gas Emissions from Animal-Based Foods Are Twice Those of Plant-Based Foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Kabange, N.R.; Lee, S.M.; Shin, D.; Lee, J.Y.; Kwon, Y.; Kang, J.W.; Cha, J.K.; Park, H.; Alibu, S.; Lee, J.H. Multiple Facets of Nitrogen: From Atmospheric Gas to Indispensable Agricultural Input. Life 2022, 12, 1272. [Google Scholar] [CrossRef] [PubMed]
- Kabange, N.R.; Kwon, Y.; Lee, S.-M.; Kang, J.-W.; Cha, J.-K.; Park, H.; Dzorkpe, G.D.; Shin, D.; Oh, K.-W.; Lee, J.-H. Mitigating Greenhouse Gas Emissions from Crop Production and Management Practices, and Livestock: A Review. Sustainability 2023, 15, 15889. [Google Scholar] [CrossRef]
- Latake, P.T.; Pawar, P.; Ranveer, A.C. The Greenhouse Effect and Its Impacts on Environment. Int. J. Innov. Res. Creat. Technol 2015, 1, 333–337. [Google Scholar]
- Mikhaylov, A.; Moiseev, N.; Aleshin, K.; Burkhardt, T. Global Climate Change and Greenhouse Effect. Entrep. Sustain. Issues 2020, 7, 2897–2913. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.G.; Kirk, G.J.D.; Jones, P.J.; Williams, A.G. The Greenhouse Gas Impacts of Converting Food Production in England and Wales to Organic Methods. Nat. Commun. 2019, 10, 4641. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme. Emissions Gap Report 2022: The Closing Window—Climate Crisis Calls for Rapid Transformation of Societies; UN: New York, NY, USA, 2022.
- Manzano, P.; del Prado, A.; Pardo, G. Comparable GHG emissions from animals in wildlife and livestock-dominated savannas. NPJ Clim. Atmos. Sci. 2023, 6, 27. [Google Scholar] [CrossRef]
- European Commission. The Digital Economy and Society Index (DESI). Available online: https://digital-strategy.ec.europa.eu/en/policies/desi (accessed on 22 February 2024).
- Eurostat. Economic Accounts for Agriculture—Values at Constant Prices (2010 = 100). Available online: https://ec.europa.eu/eurostat/databrowser/view/aact_eaa07__custom_10475106/default/table?lang=en (accessed on 5 March 2024).
- Sachs, D.; Lafortune, G.; Fuller, G.; Drumm, E. Sustainable Development Report 2023. Available online: https://dashboards.sdgindex.org/static/downloads/files/SDR2023-data.xlsx (accessed on 22 February 2024).
- Eurostat. Air Emissions Accounts by NACE Rev. 2 Activity. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_ac_ainah_r2__custom_10475061/default/table?lang=en (accessed on 6 March 2024).
- Garson, D. Partial Least Squares (PLS-SEM). Available online: https://www.smartpls.com/resources/ebook_on_pls-sem.pdf (accessed on 14 February 2024).
- Dash, G.; Paul, J. CB-SEM vs. PLS-SEM methods for research in social sciences and technology forecasting. Technol. Forecast. Soc. Change 2021, 173, 121092. [Google Scholar] [CrossRef]
- Ankamah, J.; Kodua, T.T.; Addae, M. Structural equation modelling of perception for sustainable agriculture as climate change mitigation strategy in Ghana. Environ. Syst. Res. 2021, 10, 26. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Li, Z.; Qiao, Y.; Du, K.; Yue, Z.; Tian, C.; Leng, P.; Cheng, H.; Chen, G.; et al. Different responses of agroecosystem greenhouse gas emissions to tillage practices in a Chinese wheat–maize cropping system. Carbon Res. 2023, 2, 7. [Google Scholar] [CrossRef]
- Barati, A.A.; Azadi, H.; Movahhed Moghaddam, S.; Scheffran, J.; Pour, M.D. Agricultural expansion and its impacts on climate change: Evidence from Iran. Environ. Dev. Sustain. 2024, 26, 5089–5115. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Ray, S. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed.; Sage: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 4. Monheim am Rhein, Germany: SmartPLS. Available online: https://www.smartpls.com (accessed on 12 February 2024).
- Shmueli, G.; Ray, S.; Estrada, J.M.V.; Chatla, S.B. The elephant in the room: Predictive performance of PLS models. J. Bus. Res. 2016, 69, 4552–4564. [Google Scholar] [CrossRef]
- Dijkstra, T.K.; Henseler, J. Consistent and asymptotically normal PLS estimators for linear structural equations. Comput. Stat. Data Anal. 2015, 81, 10–23. [Google Scholar] [CrossRef]
- Altshul, H.J.; McMillan, L.; Hall, A. The role of public research agencies in building agri-food bioscience impact and innovation capacity in sub-Saharan Africa: The challenge beyond science capability. Int. J. Technol. Manag. Sustain. Dev. 2019, 18, 105–125. [Google Scholar] [CrossRef]
- Spendrup, S.; Fernqvist, F. Innovation in agri-food systems-a systematic mapping of the literature. Int. J. Food Syst. Dyn. 2019, 10, 402–427. [Google Scholar] [CrossRef]
- Anderson, C.R.; Bruil, J.; Chappell, M.J.; Kiss, C.; Pimbert, M.P. From transition to domains of transformation: Getting to sustainable and just food systems through agroecology. Sustainability 2019, 11, 5272. [Google Scholar] [CrossRef]
- Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Secur. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Basso, B.; Antle, J. Digital Agriculture to Design Sustainable Agricultural Systems. Nat. Sustain. 2020, 3, 254–256. [Google Scholar] [CrossRef]
- Tang, F.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of Pesticide Pollution at the Global Scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Lajoie-O’Malley, A.; Bronson, K.; van der Burg, S.; Klerkx, L. The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. Int. J. Prod. Econ. 2020, 219, 179–194. [Google Scholar] [CrossRef]
- Annovazzi-Jakab, L. Cutting Food Loss Where It Matters: Leveraging Digital Solutions for Greener Trade and Less Waste—UNECE’s Impact Initiatives. In Proceedings of the UN-ESCWA Regional Meeting on Promoting Food and Water Security in the Arab Region, Amman, Jordan, 27–28 November 2019. [Google Scholar]
- Agrawal, R.; Majumdar, A.; Majumdar, K.; Raut, R.D.; Narkhede, B.E. Attaining sustainable development goals (SDGs) through supply chain practices and business strategies: A systematic review with bibliometric and network analyses. Bus. Strategy Environ. 2022, 31, 3669–3687. [Google Scholar] [CrossRef]
- Mustofa, M.A.; Suseno, B.D.; Basrowi, B. Technological innovation and the environmentally friendly building material supply chain: Implications for sustainable environment. Uncertain Supply Chain Manag. 2023, 11, 1405–1416. [Google Scholar] [CrossRef]
- Tombe, R.; Smuts, H. Agricultural Social Networks: An Agricultural Value Chain-Based Digitalization Framework for an Inclusive Digital Economy. Appl. Sci. 2023, 13, 6382. [Google Scholar] [CrossRef]
- Pradhan, R.P.; Arvin, M.B.; Nair, M.; Bennett, S.E. Sustainable economic growth in the European Union: The role of ICT, venture capital, and innovation. Rev. Financ. Econ. 2019, 38, 34–62. [Google Scholar] [CrossRef]
- Trendov, N.M.; Varas, S.; Zeng, M. Digital Technologies in Agriculture and Rural Areas—Status Report; FAO: Rome, Italy, 2019. [Google Scholar]
- Bene, C.; Oosterveer, P.; Lamotte, L.; Brouwer, I.D.; de Haan, S.; Prager, S.D.; Talsma, E.F.; Khoury, C.K. When food systems meet sustainability—Current narratives and implications for actions. World Dev. 2019, 113, 116–130. [Google Scholar] [CrossRef]
- Nordmark, L.; Skjöldebrand, C.; Johansson, C.; Segerström, M.; Tahir, I.; Gilbertsson, M.; Ellner, F.; Oskarsson, M.; Hydbom, O.; Jensen, J. Launch of IoT and artificial intelligence to increase the competitiveness in Swedish apple and grapevine production. Proc. ISHS Acta Hortic. 2021, 1, 235–240. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital Livestock Farming. Sens. Bio-Sens. Res. 2021, 32, 100408. [Google Scholar] [CrossRef]
- Mishakov, V.Y.; Daitov, V.V.; Gordienko, M.S. Impact of Digitalization on Economic Sustainability in Developed and Developing Countries. In Sustainable Development of Modern Digital Economy; Springer: Berlin/Heidelberg, Germany, 2021; pp. 265–274. [Google Scholar] [CrossRef]
- Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gomez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.; Prasad, K.A.; et al. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Sci. Total Environ. 2021, 794, 148539. [Google Scholar] [CrossRef]
Digital Technology Implementation | Benefits | Obstacles |
---|---|---|
Smart irrigation systems, drones for crop monitoring, and digital platforms for access to agricultural information [31,32] |
|
|
IoT, AI, drones, and autonomous vehicles [35,36] |
|
|
Integration of digital technologies into the agri-food system [37,38] |
|
|
Adoption of digital technologies during the COVID-19 pandemic [38,39,40] |
|
|
Integrated digital technologies in agriculture [34,41,42,43,44] |
|
|
Benefits | Challenges |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
Variables | Data | Measures | Sources |
---|---|---|---|
DPSs | Digital Public Services | Score | [98] |
IDT | Integration of Digital Technology | Score | [98] |
CRO | Crop output | Million purchasing power standards (PPS) | [99] |
ANO | Animal output | Million purchasing power standards (PPS) | [99] |
SDG12 | Sustainable consumption and production | Score | [100] |
SDG12_msw | Municipal solid waste (kg/capita/day) | kg/capita/day | [100] |
CH4_CO2 | Methane (CO2 equivalent) | Thousand tonnes | [101] |
NO2_CO2 | Nitrous oxide (CO2 equivalent) | Thousand tonnes | [101] |
VIF | |
---|---|
ANO | 2.921 |
CRO | 2.921 |
DPS | 1.203 |
IDT | 1.203 |
CH4_CO2 | 2.676 |
NO2_CO2 | 2.676 |
SDG12 | 1.000 |
SDG12_msw | 1.000 |
Original Sample | Sample Mean | Standard Deviation | T Statistics | p Value Significance | |
---|---|---|---|---|---|
ANO → Food from agricultural output | 0.521 | 0.531 | 0.148 | 3.526 | 0.000 < 0.05 |
CRO → Food from agricultural output | 0.530 | 0.516 | 0.151 | 3.514 | 0.000 < 0.05 |
DPS → Digital technologies | 0.698 | 0.688 | 0.140 | 4.974 | 0.000 < 0.05 |
IDT → Digital technologies | 0.485 | 0.480 | 0.159 | 3.041 | 0.002 < 0.05 |
CH4_CO2 → Greenhouse gases from agriculture | 0.561 | 0.564 | 0.162 | 3.455 | 0.001 < 0.05 |
NO2_CO2 → Greenhouse gases from agriculture | 0.496 | 0.488 | 0.168 | 2.955 | 0.003 < 0.05 |
SDG12 → Goal 12 Sustainable consumption and production | 1 000 | 1 000 | 0.000 | ||
SDG12_msw → Municipal solid waste | 1 000 | 1 000 | 0.000 |
Saturated Model | Estimated Model | |
---|---|---|
SRMR | 0.032 < 0.08 | 0.033 < 0.08 |
d_ULS | 0.037 | 0.040 |
d_G | 0.036 | 0.038 |
Chi-Square | 28.402 | 29.877 |
NFI | 0.961 > 0.9 | 0.959 > 0.9 |
Original Sample | Sample Mean | Standard Deviation | T Statistics | p Value Significance | |
---|---|---|---|---|---|
Digital technologies → Goal 12 Sustainable consumption and production | −0.252 | −0.261 | 0.074 | 3.386 | 0.001 < 0.05 |
Digital technologies → Municipal solid waste | −0.360 | −0.366 | 0.059 | 6.064 | 0.000 < 0.05 |
Food from agricultural output → Goal 12 Sustainable consumption and production | 0.164 | 0.162 | 0.057 | 2.898 | 0.004 < 0.05 |
Food from agricultural output → Greenhouse gases from agriculture | 0.914 | 0.920 | 0.019 | 48.872 | 0.000 < 0.05 |
Food from agricultural output → Municipal solid waste | 0.193 | 0.190 | 0.043 | 4.493 | 0.000 < 0.05 |
Goal 12 Sustainable consumption and production → Greenhouse gases from agriculture | −0.093 | −0.091 | 0.037 | 2.538 | 0.011 < 0.05 |
Municipal solid waste → Goal 12 Sustainable consumption and production | 0.269 | 0.266 | 0.089 | 3.004 | 0.003 < 0.05 |
Original Sample | Sample Mean | Standard Deviation | T Statistics | p Values | |
---|---|---|---|---|---|
Digital technologies → Goal 12 Sustainable consumption and production | −0.349 | −0.357 | 0.075 | 4.621 | 0.000 < 0.05 |
Digital technologies → Municipal solid waste | −0.360 | −0.366 | 0.059 | 6.064 | 0.000 < 0.05 |
Digital technologies → Greenhouse gases from agriculture | 0.032 | 0.032 | 0.015 | 2.209 | 0.027 < 0.05 |
Food from agricultural output → Goal 12 Sustainable consumption and production | 0.216 | 0.213 | 0.059 | 3.644 | 0.000 < 0.05 |
Food from agricultural output → Greenhouse gases from agriculture | 0.893 | 0.900 | 0.020 | 44.155 | 0.000 < 0.05 |
Food from agricultural output → Municipal solid waste | 0.193 | 0.190 | 0.043 | 4.493 | 0.000 < 0.05 |
Goal 12 Sustainable consumption and production → Greenhouse gases from agriculture | −0.093 | −0.091 | 0.037 | 2.538 | 0.011 < 0.05 |
Municipal solid waste → Goal 12 Sustainable consumption and production | 0.269 | 0.266 | 0.089 | 3.004 | 0.003 < 0.05 |
Municipal solid waste → Greenhouse gases from agriculture | −0.025 | −0.024 | 0.013 | 1.996 | 0.046 < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bocean, C.G. A Longitudinal Analysis of the Impact of Digital Technologies on Sustainable Food Production and Consumption in the European Union. Foods 2024, 13, 1281. https://doi.org/10.3390/foods13081281
Bocean CG. A Longitudinal Analysis of the Impact of Digital Technologies on Sustainable Food Production and Consumption in the European Union. Foods. 2024; 13(8):1281. https://doi.org/10.3390/foods13081281
Chicago/Turabian StyleBocean, Claudiu George. 2024. "A Longitudinal Analysis of the Impact of Digital Technologies on Sustainable Food Production and Consumption in the European Union" Foods 13, no. 8: 1281. https://doi.org/10.3390/foods13081281
APA StyleBocean, C. G. (2024). A Longitudinal Analysis of the Impact of Digital Technologies on Sustainable Food Production and Consumption in the European Union. Foods, 13(8), 1281. https://doi.org/10.3390/foods13081281