A Characterization of Biological Activities and Bioactive Phenolics from the Non-Volatile Fraction of the Edible and Medicinal Halophyte Sea Fennel (Crithmum maritimum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Culture Media and Supplements
2.2. Plant Material and Sampling
2.3. Extraction and Fractionation
2.4. Estimation of Total Phenolic Content (TPC)
2.5. Antioxidant Activities
2.5.1. DPPH Scavenging Activity
2.5.2. Ferric Reducing Activity (FRAP)
2.5.3. ABTS Scavenging Activity
2.6. Anti-Ageing Activity
2.7. Neuroprotective Activity
2.8. Antidiabetic Activity
2.9. Anti-Inflammatory Activity
2.10. Solute Purification
2.11. NMR Analyses
2.12. Statistical Analyses
3. Results
3.1. Total Phenolic Content
3.2. Antioxidant Activities
3.3. Other Biological Activities
3.3.1. Anti-Ageing Activity
3.3.2. Anti-Inflammatory Activity
3.3.3. Neuroprotective Activity
3.3.4. Antidiabetic and Anti-Obesity Activities
3.4. Solute Identification
4. Discussion
- The fraction eluted with 40% MeOH showed the most significant antioxidant activity, as revealed by ABTS-scavenging and FRAP assays. NMR analyses of this fraction indicated the prevalence of 3,5-dicaffeoylquinic acid (syn. isochlorogenic acid). Such a compound has already been reported in C. maritimum [31], as well as in many other halophytic species [32]. Nevertheless, the literature on its antioxidant activity is still scarce [33], compared to that of its natural isomer chlorogenic acid. Here, we suggest that the abundance of 3,5-dicaffeoylquinic acid accounts for the very strong antioxidant capacity of the MeOH40 fraction, as it has been reported previously in another halophytic species [34]. Of note, this fraction also inhibited NO production by LPS-stimulated RAW 264.7 cells, confirming the potent anti-inflammatory action of isochlorogenic acid [35];
- The major compounds characterized in the MeOH60 fraction were four glycosylated quercetins: quercetin 3-O-glucoside, quercetin 3-O-robinobioside, quercetin 3-O-galactoside, and quercetin 3-O-rutinoside. Considering the strong antioxidant power of quercetin and its derivatives [36], these four flavonols are likely responsible for the marked antioxidant activity of this fraction. Quercetin 3-O-glucoside is widely represented in the plant kingdom, and in particular in halophytes [37]. Jallali et al. [18] have reported its presence in sea fennel, conferring acetonic extract with a strong antioxidant activity. Moreover, Kong et al. [38] reported the anti-obesity action of this flavonol isolated from the salt-marsh plant Salicornia herbacaea, which was not confirmed in our work with a lipase bioassay. Conversely to quercetin 3-O-glucoside, the 3-O-rutinoside derivative of quercetin (=rutin or rutoside) has been less documented in the literature, compared to that of kaempferol or luteolin. In halophytes, the presence of rutin was reported in Crithmum maritimum [18,39,40], as well as in Calystegia soldanella [41] and Carpobrotus edulis [42]. Quercetin 3-O-galactoside has been identified previously in other (non halophytic) members of the Apiaceae family [43,44], but never in sea fennel. Moreover, quercetin 3-O-robinobioside has only been found in three species belonging to Fabaceae, Lamiaceae, and Rosaceae [45,46,47], and is reported here for the first time in the Apiaceae family.
- Similar analyses allowed us to elucidate the antioxidant activity of the MeOH20 fraction. The major constituent detected here was chlorogenic acid, a widely recognized antioxidant compound previously reported in C. maritimum [21]. Additionally, this fraction exhibited a remarkable anti-glucosidase activity. Chlorogenic acid has been shown to stimulate glucose uptake in skeletal muscle, thus improving glucose metabolism and preventing diabetes manifestations [50]. Our results are consistent with such observations and, owing to the richness of sea fennel in chlorogenic acid, reinforce the potential antidiabetic effect of dietary sea fennel. However, interestingly, that fraction did not exhibit any anti-lipase activity though chlorogenic acid has been reported earlier to prevent obesity manifestations [51];
- The sea-fennel extract fraction eluted with 80% methanol showed a strong antioxidant activity as well as a marked inhibition of glucosidase. The constituents of this fraction have not been completely elucidated, but its NMR spectrum suggests the presence of less polar phenolics and compounds with short aliphatic chains.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
References
- Riso, P.; Klimis-Zacas, D.; Del Bo, C.; Martini, D.; Campolo, J.; Vendrame, S.; Møller, P.; Loft, S.; De Maria, R.; Porrini, M. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function with cardiovascular risk factors. Eur. J. Nutr. 2013, 52, 949–961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed]
- Ksouri, R.; Megdiche, W.; Jallali, I.; Debez, H.; Magné, C.; Isoda, H.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2012, 32, 289–326. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.J.; Gangadhar, K.N.; Vizetto-Duarte, C.; Wubshet, S.G.; Nyberg, N.T.; Barreira, L.; Varela, J.; Custódio, L. Maritime halophyte species from southern Portugal as sources of bioactive molecules. Mar. Drugs 2014, 12, 2228–2244. [Google Scholar] [CrossRef]
- Jdey, A.; Falleh, H.; Jannet, S.B.; Hammi, K.M.; Dauvergne, X.; Magné, C.; Ksouri, R. Anti-aging activities of extracts from Tunisian medicinal halophytes and their aromatic constituents. EXCLI J. 2017, 16, 755–769. [Google Scholar] [PubMed]
- Djeridane, A.; Yousfi, M.; Brunel, J.M.; Stocker, P. Isolation and characterization of a new steroid derivative as a powerful antioxidant from Cleome arabica in screening the in vitro antioxidant capacity of 18 Algerian medicinal plants. Food Chem. Toxicol. 2010, 48, 2599–2606. [Google Scholar] [CrossRef]
- Ksouri, R.; Falleh, H.; Megdiche, W.; Trabelsi, N.; Hamdi, B.; Chaieb, K.; Bakrouf, A.; Magné, C.; Abdelly, C. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem. Toxicol. 2009, 47, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- Falleh, H.; Trabelsi, N.; Bonenfant-Magné, M.; Le Floch, G.; Abdelly, C.; Magné, C.; Ksouri, R. Polyphenol content and biological activities of Mesembryanthemum edule organs after fractionation. Ind. Crops Prod. 2013, 42, 145–152. [Google Scholar] [CrossRef]
- Megdiche Ksouri, W.; Medini, F.; Mkadmini, K.; Legault, J.; Magné, C.; Abdelly, C.; Ksouri, R. LC–ESI-TOF–MS identification of bioactive secondary metabolites involved in the antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Zygophyllum album Desf. Food Chem. 2013, 139, 1073–1080. [Google Scholar] [CrossRef]
- Guil Guerrero, J.L.; Torija Isasa, M.E.; Gimenez Martinez, J.J. Composition nutricional del hinojo marino (Crithmum maritimum L.). Alimentaria 1996, 34, 65–72. [Google Scholar]
- Ben Amor, N.; Ben Hamed, K.; Debez, A.; Grignon, C.; Abdelly, C. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum L. to salinity. Plant Sci. 2005, 168, 889–899. [Google Scholar] [CrossRef]
- Cunsolo, F.; Ruberto, G. Bioactive metabolites from Sicilian marine fennel (Crithmum maritimum L.). J. Nat. Prod. 1993, 56, 1598–1600. [Google Scholar] [CrossRef] [PubMed]
- Pateira, L.; Noguiera, T.; Antunes, A.; Venancio, F.; Taveres, R.; Capelo, J. Two chemotypes of Crithmum maritimum L. from Portugal. Flavour Fragr. J. 1999, 14, 333–342. [Google Scholar] [CrossRef]
- Ruberto, G.; Baratta, M.T.; Deans, S.G.; Dorman, H.J. Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med. 2000, 66, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Males, Z.; Blazevic, N.; Plazibat, M. Variations of essential oil yield and composition of Crithmum maritimum L. Acta Pharm. 2001, 51, 81–84. [Google Scholar]
- Jallali, I.; Zaouali, Y.; Missaoui, I.; Smaoui, A.; Abdelly, C.; Ksouri, R. Variability of antioxidant and antibacterial effects of essential oils and acetonic extracts of two edible halophytes: Crithmum maritimum L. and Inula crithmoїdes L. Food Chem. 2014, 145, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Politeo, O.; Ćurlin, P.; Brzović, P.; Auzende, K.; Magné, C.; Generalić Mekinić, I. Volatiles from French and Croatian Sea Fennel Ecotypes: Chemical Profiles and the Antioxidant, Antimicrobial and Antiageing Activity of Essential Oils and Hydrolates. Foods 2024, 13, 695. [Google Scholar] [CrossRef] [PubMed]
- Jallali, I.; Megdiche, W.; M‘Hamdi, B.; Oueslati, S.; Smaoui, A.; Abdelly, C.; Ksouri, R. Changes in phenolic composition and antioxidant activities of the edible halophyte Crithmum maritimum L. with physiological stage and extraction method. Acta Physiol. Plant. 2012, 34, 1451–1459. [Google Scholar] [CrossRef]
- Pereira, C.G.; Barreira, L.; da Rosa Neng, N.; Nogueira, J.M.F.; Marques, C.; Santos, T.F.; Varela, J.; Custódio, L. Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L. Food Chem. Toxicol. 2017, 107, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Correia, I.; Antunes, M.; Tecelão, C.; Neves, M.; Pires, C.L.; Cruz, P.F.; Rodrigues, M.; Peralta, C.C.; Pereira, C.D.; Reboredo, F.; et al. Nutritive Value and Bioactivities of a Halophyte Edible Plant: Crithmum maritimum L. (Sea Fennel). Plants 2024, 13, 427. [Google Scholar] [CrossRef]
- Méot-Duros, L.; Magné, C. Antioxidant activity and phenolic content of Crithmum maritimum L. leaves. Plant Physiol. Biochem. 2009, 47, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow, C.J. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef]
- Marwah, R.G.; Fatope, M.O.; Mahrooqi, R.A.; Varma, G.B.; Abadi, H.A.; Al-Burtamani, S.K.S. Antioxidant capacity of some edible and wound healing plants in Oman. Food Chem. 2007, 101, 465–470. [Google Scholar] [CrossRef]
- Bolanos de la Torre, A.A.S.; Henderson, T.; Nigam, P.S.; Owusu-Apenten, R.K. A universally calibrated microplate ferric reducing antioxidant power (FRAP) assay for foods and applications to Manuka honey. Food Chem. 2015, 174, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Yamashita, D.; Takeda, Y.; Yonemori, S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem. 2005, 69, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Bouzaiene, N.N.; Chaabane, F.; Sassi, A.; Chekir-Ghedira, L.; Ghedira, K. Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci. 2016, 144, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Custódio, L.; Soares, F.; Pereira, H.; Rodrigues, M.J.; Barreira, L.; Rauter, A.P.; Alberício, F.; Varela, J. Botryococcus braunii and Nanochloropsis oculata extracts inhibit cholinesterases and protect human dopaminergic SH-SY5Y cells from H2O2-induced cytotoxicity. J. Appl. Phycol. 2015, 27, 839–848. [Google Scholar] [CrossRef]
- Zengin, G. A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: New sources of natural inhibitors for public health problems. Ind. Crops Prod. 2016, 83, 39–43. [Google Scholar] [CrossRef]
- McDougall, G.J.; Kulkarni, N.N.; Stewart, D. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem. 2009, 115, 193–199. [Google Scholar] [CrossRef]
- Siracusa, L.; Kulisic-Bilusic, T.; Politeo, O.; Krause, I.; Dejanovic, B.; Ruberto, G. Phenolic composition and antioxidant activity of aqueous infusions from Capparis spinosa L. and Crithmum maritimum L. before and after submission to a two-step in vitro digestion model. J. Agric. Food Chem. 2011, 59, 12453–12459. [Google Scholar] [CrossRef] [PubMed]
- Stanković, M.; Jakovljevićc, D.; Stojadinov, M.; Stevanović, Z.D. Halophyte species as a source of secondary metabolites with antioxidant activity. In Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes; Hasanuzzaman, M., Nahar, K., Öztürk, M., Eds.; Springer: Singapore, 2019; pp. 289–312. [Google Scholar] [CrossRef]
- Hong, S.; Joo, T.; Jhoo, J.W. Antioxidant and anti-inflammatory activities of 3,5-dicaffeoylquinic acid isolated from Ligularia fischeri leaves. Food Sci. Biotechnol. 2015, 24, 257–263. [Google Scholar] [CrossRef]
- Kim, J.Y.; Cho, J.Y.; Ma, J.K.; Park, K.Y.; Lee, S.H.; Ham, K.S.; Lee, H.J.; Park, K.H.; Moon, J.H. Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chem. 2011, 125, 55–62. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Murota, K.; Terao, J. Antioxidative flavonoid quercetin: Implications of its intestinal absorption and metabolism. Arch. Biochem. Biophys. 2003, 417, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Stanković, M.; Jakovljević, D. Phytochemical Diversity of Halophytes. In Handbook of Halophytes; Grigore, M.N., Ed.; Springer Nature: Cham, Switzerland, 2021; pp. 2089–2114. [Google Scholar] [CrossRef]
- Kong, C.-S.; Lee, J.L.; Kim, Y.A.; Kim, J.-A.; Bak, S.S.; Hong, J.W.; Park, H.Y.; Yea, S.S.; Seo, Y. Evaluation on anti-adipogenic activity of flavonoid glucopyranosides from Salicornia herbacea. Process Biochem. 2012, 47, 1073–1078. [Google Scholar] [CrossRef]
- Saleh, N.; El-Negoumy, I.; El-Hadidi, N.; Hosni, M.; Hosni, H. Comparative study of the flavonoids of some local members of the Umbellifereae. Phytochemistry 1983, 22, 1417–1420. [Google Scholar] [CrossRef]
- Bartnik, M.; Wierzchowska Renke, K.; Głowniak, P.; Głowniak, K. Phenolic acids in Crithmum maritimum L. (Apiaceae) after Tytanit fertilization. Acta Soc. Bot. Pol. 2017, 86, 3560. [Google Scholar] [CrossRef]
- Murai, Y.; Setoguchi, H.; Ono, E.; Iwashina, T. Flavonoids and their qualitative variation in Calystegia soldanella and related species (Convolvulaceae). Nat. Prod. Commun. 2015, 15, 429–432. [Google Scholar] [CrossRef]
- Van der Watt, E.; Pretorius, J.C. Purification and identification of active antibacterial components in Carpobrotus edulis L. J. Ethnopharmacol. 2001, 76, 87–91. [Google Scholar] [CrossRef]
- Harborne, J.B.; Boardley, M. Use of high-performance liquid chromatography in the separation of flavonol glycosides and flavonol sulphates. J. Chromatogr. A 1984, 299, 377–385. [Google Scholar] [CrossRef]
- Parejo, I.; Jauregui, O.; Sánchez-Rabaneda, F.; Viladomat, F.; Bastida, J.; Codina, C. Separation and Characterization of Phenolic Compounds in Fennel (Foeniculum vulgare) Using Liquid Chromatography-Negative Electrospray Ionization Tandem Mass Spectrometry. J. Agric. Food Chem. 2004, 52, 3679–3687. [Google Scholar] [CrossRef]
- Ozga, J.A.; Saeed, A.; Wismer, W.; Reinecke, D.M. Characterization of Cyanidin- and Quercetin-Derived Flavonoids and Other Phenolics in Mature Saskatoon Fruits (Amelanchier alnifolia Nutt.). J. Agric. Food Chem. 2007, 55, 10414–10424. [Google Scholar] [CrossRef] [PubMed]
- Cong, Y.; Guo, J.; Wang, T.; Li, M.; Li, K.; Wang, J.; Li, Q. Chemical constituents and antitumor activity on leukemia K562 cell of Leonurus heterophyllus. Zhongguo Zhong Yao Za Zhi 2009, 34, 1816–1818. [Google Scholar] [PubMed]
- Joubert, E.; De Beer, D. Antioxidants of Rooibos beverages: Role of plant composition and processing. In Processing and Impact on Antioxidants in Beverages; Preedy, V.R., Ed.; Academic Press: London, UK, 2014; Chapter 14; pp. 131–144. [Google Scholar]
- Feng, J.; Wang, Y.; Yi, X.; Yang, W.; He, X. Phenolics from Durian exert pronounced NO inhibitory and antioxidant activities. J. Agric. Food Chem. 2016, 64, 4273–4279. [Google Scholar] [CrossRef]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Tabassum Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.W.; Hsu, A.; Tan, B.K. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem. Pharmacol. 2013, 85, 1341–1351. [Google Scholar] [CrossRef]
- Cho, A.S.; Jeon, S.M.; Kim, M.J.; Yeo, J.; Seo, K.I.; Choi, M.S.; Lee, M.K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. 2010, 48, 937–943. [Google Scholar] [CrossRef]
- Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef]
- Lee, S.-G.; Karadeniz, F.; Seo, Y.; Kong, C.-S. Anti-Melanogenic Effects of Flavonoid Glycosides from Limonium tetragonum (Thunb.) Bullock via Inhibition of Tyrosinase and Tyrosinase-Related Proteins. Molecules 2017, 22, 1480. [Google Scholar] [CrossRef]
- Choi, H.K.; Lim, Y.S.; Kim, Y.S.; Park, S.Y.; Lee, C.H.; Hwang, K.W. Free-radical-scavenging and tyrosinase-inhibition activities of Cheonggukjang samples fermented for various times. Food Chem. 2008, 106, 564–568. [Google Scholar] [CrossRef]
- Lee, K.H.; Abdel Aziz, F.H.; Syahida, A.; Abas, F.; Shaari, K.; Israf, D.A. Synthesis and biological evaluation of curcumin-like diarylpentanoid analogues for anti-inflammatory, antioxidant and anti-tyrosinase activities. Eur. J. Med. Chem. 2009, 44, 3195–3200. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Beg, S.; Lohan, S.; Kapil, R. Crossing blood-brain barriers using drug delivery: A successful venture using lipidic nanostructured systems. Pharm Rev. 2013, 21, 41–47. [Google Scholar]
- Generalić Mekinić, I.; Blažević, I.; Mudnić, I.; Burčul, F.; Grga, M.; Skroza, D.; Jerčić, I.; Ljubenkov, I.; Boban, M.; Miloš, M.; et al. Sea fennel (Crithmum maritimum L.): Phytochemical profile, antioxidative, cholinesterase inhibitory and vasodilatory activity. J. Food Sci. Technol. 2016, 53, 3104–3112. [Google Scholar] [CrossRef]
- Seo, S.M.; Jung, C.S.; Kang, J.; Lee, H.R.; Kim, S.W.; Hyun, J.; Park, I.K. Larvicidal and Acetylcholinesterase Inhibitory Activities of Apiaceae Plant Essential Oils and Their Constituents against Aedes albopictus and Formulation Development. J. Agric. Food Chem. 2015, 63, 9977–9986. [Google Scholar] [CrossRef]
Anti-Tyrosinase (mgKAE/gDW) | NO Inhibition (IC50, μg/mL) | Anti-α Glucosidase (IC50, mg/mL) | |
---|---|---|---|
Raw extract | 234.29 ± 48.56 c | ND | ND |
MeOH20 | 151.12 ± 74.89 c | ND | 0.02 ± 0.01 b |
MeOH40 | 226.37 ± 91.23 c | 89.54 ± 2.16 a | ND |
MeOH60 | 531.46 ± 68.42 b | 6.41 ± 0.37 c | ND |
MeOH80 | 563.14 ± 26.94 b | ND | 0.04 ± 0.00 b |
MeOH100 | 637.02 ± 29.23 a | ND | ND |
EtAc | 626.19 ± 41.13 a | ND | ND |
L-NAME | 27.81 ± 1.93 b | ||
Acarbose | 3.14 ± 0.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemoine, C.; Rodrigues, M.J.; Dauvergne, X.; Cérantola, S.; Custódio, L.; Magné, C. A Characterization of Biological Activities and Bioactive Phenolics from the Non-Volatile Fraction of the Edible and Medicinal Halophyte Sea Fennel (Crithmum maritimum L.). Foods 2024, 13, 1294. https://doi.org/10.3390/foods13091294
Lemoine C, Rodrigues MJ, Dauvergne X, Cérantola S, Custódio L, Magné C. A Characterization of Biological Activities and Bioactive Phenolics from the Non-Volatile Fraction of the Edible and Medicinal Halophyte Sea Fennel (Crithmum maritimum L.). Foods. 2024; 13(9):1294. https://doi.org/10.3390/foods13091294
Chicago/Turabian StyleLemoine, Clément, Maria João Rodrigues, Xavier Dauvergne, Stéphane Cérantola, Luísa Custódio, and Christian Magné. 2024. "A Characterization of Biological Activities and Bioactive Phenolics from the Non-Volatile Fraction of the Edible and Medicinal Halophyte Sea Fennel (Crithmum maritimum L.)" Foods 13, no. 9: 1294. https://doi.org/10.3390/foods13091294
APA StyleLemoine, C., Rodrigues, M. J., Dauvergne, X., Cérantola, S., Custódio, L., & Magné, C. (2024). A Characterization of Biological Activities and Bioactive Phenolics from the Non-Volatile Fraction of the Edible and Medicinal Halophyte Sea Fennel (Crithmum maritimum L.). Foods, 13(9), 1294. https://doi.org/10.3390/foods13091294