Chromatographic and Thermal Characteristics, and Hydrolytic and Oxidative Stability of Commercial Pomegranate Seed Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Determination of Acid and Peroxide Values
2.2.2. Determination of Fatty Acid Composition by Gas Chromatography
2.2.3. Distribution of Fatty Acids in Triacylglycerols Using Enzymatic Hydrolysis
2.2.4. Health Indicators of Oils
2.2.5. Determination of Oxidative Stability Using the PDSC Method
2.2.6. Determination of Melting Characteristics Using the DSC Method
2.2.7. Statistical Analysis
3. Results and Discussion
3.1. Acid and Peroxide Values
3.2. Fatty Acid Composition
3.3. Fatty Acid Composition in sn-2 and sn-1,3 Positions of Triacylglycerols
3.4. Oxidation Induction Time (OIT)
3.5. Melting Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhandari, P. Pomegranate (Punica granatum L). Ancient Seeds for Modern Cure? Review of Potential Therapeutic Applications. Int. J. Nutr. Pharmacol. Neurol. Dis. 2012, 2, 171. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.A. Pomegranate and Its Many Functional Components as Related to Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef]
- Larrosa, M.; González-Sarrías, A.; Yáñez-Gascón, M.J.; Selma, M.V.; Azorín-Ortuño, M.; Toti, S.; Tomás-Barberán, F.; Dolara, P.; Espín, J.C. Anti-Inflammatory Properties of a Pomegranate Extract and Its Metabolite Urolithin-A in a Colitis Rat Model and the Effect of Colon Inflammation on Phenolic Metabolism. J. Nutr. Biochem. 2010, 21, 717–725. [Google Scholar] [CrossRef]
- Lee, C.-J.; Chen, L.-G.; Liang, W.-L.; Wang, C.-C. Anti-Inflammatory Effects of Punica granatum Linne in Vitro and in Vivo. Food Chem. 2010, 118, 315–322. [Google Scholar] [CrossRef]
- Mirdehghan, S.H.; Rahemi, M. Seasonal Changes of Mineral Nutrients and Phenolics in Pomegranate (Punica granatum L.) Fruit. Sci. Hortic. 2007, 111, 120–127. [Google Scholar] [CrossRef]
- Tezcan, F.; Gültekin-Özgüven, M.; Diken, T.; Özçelik, B.; Erim, F.B. Antioxidant Activity and Total Phenolic, Organic Acid and Sugar Content in Commercial Pomegranate Juices. Food Chem. 2009, 115, 873–877. [Google Scholar] [CrossRef]
- Zero Waste International Allince. 2018. Available online: https://zwia.org/zero-waste-definition (accessed on 11 January 2024).
- Melo, I.L.P.D.; Carvalho, E.B.T.D.; Silva, A.M.D.O.E.; Yoshime, L.T.; Sattler, J.A.G.; Pavan, R.T.; Mancini-Filho, J. Characterization of Constituents, Quality and Stability of Pomegranate Seed Oil (Punica granatum L.). Food Sci. Technol. 2016, 36, 132–139. [Google Scholar] [CrossRef]
- Boroushaki, M.T.; Mollazadeh, H.; Afshari, A.R. Pomegranate seed oil: A comprehensive review on its therapeutic effects. Int. J. Pharm. Sci. Res. 2016, 7, 430–442. [Google Scholar] [CrossRef]
- Aruna, P.; Venkataramanamma, D.; Singh, A.K.; Singh, R.P. Health Benefits of Punicic Acid: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 16–27. [Google Scholar] [CrossRef]
- Wang, L.; Martins-Green, M. Pomegranate and Its Components as Alternative Treatment for Prostate Cancer. Int. J. Mol. Sci. 2014, 15, 14949–14966. [Google Scholar] [CrossRef]
- Hora, J.J.; Maydew, E.R.; Lansky, E.P.; Dwivedi, C. Chemopreventive Effects of Pomegranate Seed Oil on Skin Tumor Development in CD 1 Mice. J. Med. Food 2003, 6, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Baradaran Rahimi, V.; Ghadiri, M.; Ramezani, M.; Askari, V.R. Antiinflammatory and Anti-cancer Activities of Pomegranate and Its Constituent, Ellagic Acid: Evidence from Cellular, Animal, and Clinical Studies. Phytother. Res. 2020, 34, 685–720. [Google Scholar] [CrossRef] [PubMed]
- Hassani Moghadam, E.; Shaaban, M.; Sepahvand, A. Medicinal Properties of Pomegranate. Herb. Med. J. 2020, 4, 127–139. [Google Scholar] [CrossRef]
- Vroegrijk, I.O.C.M.; Van Diepen, J.A.; Van Den Berg, S.; Westbroek, I.; Keizer, H.; Gambelli, L.; Hontecillas, R.; Bassaganya-Riera, J.; Zondag, G.C.M.; Romijn, J.A.; et al. Pomegranate Seed Oil, a Rich Source of Punicic Acid, Prevents Diet-Induced Obesity and Insulin Resistance in Mice. Food Chem. Toxicol. 2011, 49, 1426–1430. [Google Scholar] [CrossRef] [PubMed]
- Duba, K.S.; Fiori, L. Supercritical CO2 Extraction of Grape Seed Oil: Effect of Process Parameters on the Extraction Kinetics. J. Supercrit. Fluids 2015, 98, 33–43. [Google Scholar] [CrossRef]
- Popis, E.; Ratusz, K.; Krygier, K. Ocena jakości wybranych olejów rzepakowych rafinowanych i tłoczonych na zimno dostępnych na polskim rynku. Apar. Badaw. i Dydakt. 2014, 19, 251–258. [Google Scholar]
- Kłopotek, K.; Ocieczek, A.; Palka, A. Wpływ temperatury przechowywania na wybrane parametry jakości olejów orzechów. Zesz. Nauk. Akad. Mor. Gdyni 2017, 99, 34–47. [Google Scholar]
- Pardauil, J.J.R.; Souza, L.K.C.; Molfetta, F.A.; Zamian, J.R.; Rocha Filho, G.N.; da Costa, C.E.F. Determination of the Oxidative Stability by DSC of Vegetable Oils from the Amazonian Area. Bioresour. Technol. 2011, 102, 5873–5877. [Google Scholar] [CrossRef]
- Sharma, B.K.; Stipanovic, A.J. Development of a New Oxidation Stability Test Method for Lubricating Oils Using High-Pressure Differential Scanning Calorimetry. Thermochim. Acta 2003, 402, 1–18. [Google Scholar] [CrossRef]
- AOCS Official Method Te 1a-64; Acid Value Official Methods and Recommended Practices of the AOCS. AOCS: Urbana, IL, USA, 2009.
- AOCS Official Method Cd 8b-90; Peroxide Value Acetic Acid-Isooctane Method Official methods and Recommended Practices of the AOCS. AOCS: Urbana, IL, USA, 2009.
- PN-EN ISO 5509:2001; Vegetable and Animal Oils and Fats. Preparation of Fatty Acid Methyl Esters. Polish Committee for Standardization: Warsaw, Poland, 2001.
- Bryś, J.; Flores, L.F.V.; Górska, A.; Wirkowska-Wojdyła, M.; Ostrowska-Ligęza, E.; Bryś, A. Use of GC and PDSC Methods to Characterize Human Milk Fat Substitutes Obtained from Lard and Milk Thistle Oil Mixtures. J. Therm. Anal. Calorim. 2017, 130, 319–327. [Google Scholar] [CrossRef]
- Hamulka, J.; Bryś, J.; Górska, A.; Janaszek-Mańkowska, M.; Górnicka, M. The Quality and Composition of Fatty Acids in Adipose Tissue-Derived from Wild Animals; A Pilot Study. Appl. Sci. 2021, 11, 10029. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs: II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Dolatowska-Żebrowska, K.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A. Characterization of Thermal Properties of Goat Milk Fat and Goat Milk Chocolate by Using DSC, PDSC and TGA Methods. J. Therm. Anal. Calorim. 2019, 138, 2769–2779. [Google Scholar] [CrossRef]
- Codex-ALINORM 09/32/17; Codex Alimentarius 2009. Codex Standard for Named Vegetable Oils. Codex Alimentarius Commission: Rome, Italy, 2009.
- PN-EN ISO 3960:2017-03; Vegetable and Animal Oils and Fats. Determination of Peroxide Number (Reference Method). Polish Committee for Standardization: Warsaw, Poland, 2017.
- Drinić, Z.; Mudrić, J.; Zdunić, G.; Bigović, D.; Menković, N.; Šavikin, K. Effect of Pomegranate Peel Extract on the Oxidative Stability of Pomegranate Seed Oil. Food Chem. 2020, 333, 127501. [Google Scholar] [CrossRef] [PubMed]
- Białek, A.; Białek, M.; Lepionka, T.; Tober, E.; Czauderna, M. The Quality Determination of Selected Commercial Online Purchase Edible Pomegranate Seed Oils with New Argentometric Liquid Chromatography Method. J. Diet. Suppl. 2021, 18, 351–371. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.M.M.; Silva, L.O.; Torres, A.G. Chemical Composition of Commercial Cold-Pressed Pomegranate (Punica granatum) Seed Oil from Turkey and Israel, and the Use of Bioactive Compounds for Samples’ Origin Preliminary Discrimination. J. Food Compos. Anal. 2019, 75, 8–16. [Google Scholar] [CrossRef]
- Symoniuk, E.; Wroniak, M.; Napiórkowska, K.; Brzezińska, R.; Ratusz, K. Oxidative Stability and Antioxidant Activity of Selected Cold-Pressed Oils and Oils Mixtures. Foods 2022, 11, 1597. [Google Scholar] [CrossRef] [PubMed]
- Gumus, Z.P.; Ustun Argon, Z.; Celenk, V.U. Chapter 53—Cold Pressed Pomegranate (Punica granatum) Seed Oil. In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 597–609. [Google Scholar] [CrossRef]
- Paul, A.; Radhakrishnan, M. Pomegranate Seed Oil in Food Industry: Extraction, Characterization, and Applications. Trends Food Sci. Technol. 2020, 105, 273–283. [Google Scholar] [CrossRef]
- Tan, C.P.; Che Man, Y.B. Differential Scanning Calorimetric Analysis of Edible Oils: Comparison of Thermal Properties and Chemical Composition. J. Am. Oil Chem. Soc. 2000, 77, 143–155. [Google Scholar] [CrossRef]
- Uncu, O.; Napiórkowska, A.; Szajna, T.K.; Ozen, B. Evaluation of Three Spectroscopic Techniques in Determination of Adulteration of Cold Pressed Pomegranate Seed Oils. Microchem. J. 2020, 158, 105128. [Google Scholar] [CrossRef]
- Dadashi, S.; Mousazadeh, M.; Emam-Djomeh, Z.; Mousavi, S.M. Pomegranate (Punica granatum L.) Seed: A Comparative Study on Biochemical Composition and Oil Physicochemical Characteristics. Int. J. Adv. Biol. Biomed. Res. 2016, 4, 334–342. [Google Scholar] [CrossRef]
- Yurchenko, S.; Sats, A.; Tatar, V.; Kaart, T.; Mootse, H.; Jõudu, I. Fatty Acid Profile of Milk from Saanen and Swedish Landrace Goats. Food Chem. 2018, 254, 326–332. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Górska, A.; Piasecka, I.; Wirkowska-Wojdyła, M.; Bryś, J.; Kienc, K.; Brzezińska, R.; Ostrowska-Ligęza, E. Berry Seeds—A By-Product of the Fruit Industry as a Source of Oils with Beneficial Nutritional Characteristics. Appl. Sci. 2023, 13, 5114. [Google Scholar] [CrossRef]
- Kaufman, M.; Wiesman, Z. Pomegranate Oil Analysis with Emphasis on MALDI-TOF/MS Triacylglycerol Fingerprinting. J. Agric. Food Chem. 2007, 55, 10405–10413. [Google Scholar] [CrossRef] [PubMed]
- Bryś, J.; Wirkowska, M. Znaczenie struktury triacylogliceroli w projektowaniu lipidów strukturyzowanych. Postępy Tech. Przetw. Spoż. 2010, 2, 86–89. [Google Scholar]
- Brys, J.; Wirkowska, M.; Gorska, A.; Gajda, K.; Brys, A. Charakterystyka i porównanie wybranych parametrów tłuszczu mleka modyfikowanego początkowego i tłuszczu mleka kobiecego. Postępy Tech. Przetw. Spoż. 2012, 22, 13–17. [Google Scholar]
- Guan, M.; Chen, H.; Xiong, X.; Lu, X.; Li, X.; Huang, F.; Guan, C. A Study on Triacylglycerol Composition and the Structure of High-Oleic Rapeseed Oil. Engineering 2016, 2, 258–262. [Google Scholar] [CrossRef]
- Cichosz, G.; Czeczot, H. Stabilność oksydacyjna tłuszczów jadalnych—Konsekwencje zdrowotne. Bromatol. Chem. Toksykol. 2011, 44, 50–60. [Google Scholar]
- Ratusz, K.; Popis, E.; Ciemniewska-Żytkiewicz, H.; Wroniak, M. Oxidative Stability of Camelina (Camelina sativa L.) Oil Using Pressure Differential Scanning Calorimetry and Rancimat Method. J. Therm. Anal. Calorim. 2016, 126, 343–351. [Google Scholar] [CrossRef]
- Siraj, N.; Shabbir, M.A.; Khan, M.R.; Rehman, K.U. Preventing Oxidation of Canola and Sunflower Oils by Addition of Pomegranate Seed Oil. Acta Aliment. 2019, 48, 18–27. [Google Scholar] [CrossRef]
- Ciemniewska-Żytkiewicz, H.; Ratusz, K.; Bryś, J.; Reder, M.; Koczoń, P. Determination of the Oxidative Stability of Hazelnut Oils by PDSC and Rancimat Methods. J. Therm. Anal. Calorim. 2014, 118, 875–881. [Google Scholar] [CrossRef]
- Tan, C.P.; Che Man, Y.B.; Selamat, J.; Yusoff, M.S.A. Comparative Studies of Oxidative Stability of Edible Oils by Differential Scanning Calorimetry and Oxidative Stability Index Methods. Food Chem. 2002, 76, 385–389. [Google Scholar] [CrossRef]
- Symoniuk, E.; Ratusz, K.; Krygier, K. Comparison of the Oxidative Stability of Cold-pressed Rapeseed Oil Using Pressure Differential Scanning Calorimetry and Rancimat Methods. Eur. J. Lipid Sci. Technol. 2017, 119, 1600182. [Google Scholar] [CrossRef]
- Wijesundera, C. The Influence of Triacylglycerol Structure on the Oxidative Stability of Polyunsaturated Oils. Lipid Technol. 2008, 20, 199–202. [Google Scholar] [CrossRef]
- Khoddami, A.; Man, Y.B.C.; Roberts, T.H. Physico-chemical Properties and Fatty Acid Profile of Seed Oils from Pomegranate (Punica granatum L.) Extracted by Cold Pressing. Eur. J. Lipid Sci. Technol. 2014, 116, 553–562. [Google Scholar] [CrossRef]
- Habibnia, M.; Ghavami, M.; Ansaripour, M.; Vosough, S. Chemical Evaluation of Oils Extracted from Five Different Varieties of Iranian Pomegranate Seeds. J. Food Biosci. Technol. 2012, 2, 35–40. [Google Scholar]
- Yoshime, L.T.; Melo, I.L.P.d.; Sattler, J.A.G.; Torres, R.P.; Mancini-Filho, J. Bioactive Compounds and the Antioxidant Capacities of Seed Oils from Pomegranate (Punica granatum L.) and Bitter Gourd (Momordica charantia L.). Food Sci. Technol. 2018, 39, 571–580. [Google Scholar] [CrossRef]
- Pietrzyk, C. Wpływ Stęzenia Inhibitorów na Szybkość Autooksydacji tłuszczów Jadalnych. Zesz. Nauk. Politech. Szczecińskiej-Prace Monogr. 1962, 37, 1–52. [Google Scholar]
- Kowalski, B. Evaluation of Activities of Antioxidants in Rapeseed Oil Matrix by Pressure Differential Scanning Calorimetry. Thermochim. Acta 1993, 213, 135–146. [Google Scholar] [CrossRef]
- Van Wetten, I.A.; van Herwaarden, A.W.; Splinter, R.; van Ruth, S.M. Oil Analysis by Fast DSC. Procedia Eng. 2014, 87, 280–283. [Google Scholar] [CrossRef]
- Smiddy, M.A.; Huppertz, T.; van Ruth, S.M. Triacylglycerol and Melting Profiles of Milk Fat from Several Species. Int. Dairy J. 2012, 24, 64–69. [Google Scholar] [CrossRef]
- Kardas, M.; Grochowska-Niedworok, E. Roznicowa kalorymetria skaningowa jako metoda termoanalityczna stosowana w farmacji i analizie zywnosci. Bromatol. Chem. Toksykol. 2009, 42, 224–230. [Google Scholar]
- Teh, S.-S.; Birch, J. Physicochemical and Quality Characteristics of Cold-Pressed Hemp, Flax and Canola Seed Oils. Food Compos. Anal. 2013, 30, 26–31. [Google Scholar] [CrossRef]
- Paciulli, M.; Difonzo, G.; Conte, P.; Flamminii, F.; Piscopo, A.; Chiavaro, E. Physical and Thermal Evaluation of Olive Oils from Minor Italian Cultivars. Foods 2021, 10, 1004. [Google Scholar] [CrossRef]
Oil | Storage (Month) | Acid Value (mg KOH/g Oil) | Peroxide Value (meq O2 /kg Oil) |
---|---|---|---|
A | 0 | 1.97 a ± 0.01 | 10.92 b ± 0.61 |
1 | 2.01 a ± 0.05 | 35.5 f ± 0.06 | |
B | 0 | 2.72 b ± 0.03 | 6.34 a ± 0.05 |
1 | 2.82 b ± 0.03 | 18.2 c ± 0.21 | |
C | 0 | 1.76 a ± 0.02 | 12.08 b ± 0.3 |
1 | 1.88 a ± 0.03 | 37.42 g ± 0.38 | |
D | 0 | 6.12 c ± 0.20 | 19.31 d ± 0.23 |
1 | 6.25 c ± 0.10 | 24.85 c ± 0.17 |
Composition after Opening (%) | Composition after Storage (%) | |||||||
---|---|---|---|---|---|---|---|---|
Fatty Acid | Oil A | Oil B | Oil C | Oil D | Oil A | Oil B | Oil C | Oil D |
C16:0 | 4.28 ± 0.04 | 3.81 ± 0.00 | 4.50 ± 0.01 | 5.02 ± 0.06 | 4.22 ± 0.02 | 3.21 ± 0.01 | 4.34 ± 0.02 | 4.52 ± 0.40 |
C18:0 | 3.05 ± 0.01 | 2.87 ± 0.13 | 3.11 ± 0.01 | 2.67 ± 0.01 | 2.98 ± 0.03 | 2.64 ± 0.01 | 3.09 ± 0.01 | 2.68 ± 0.04 |
C18:1 n-9 | 18.92 ± 0.06 | 7.65 ± 0.53 | 19.95 ± 0.08 | 17.35 ± 0.06 | 18.74 ± 0.06 | 6.91 ± 0.06 | 19.63 ± 0.02 | 17.30 ± 0.34 |
C18:2 n-6 | 27.47 ± 0.06 | 8.40 ± 1.17 | 29.01 ± 0.09 | 31.53 ± 0.17 | 27.34 ± 0.05 | 7.15 ± 0.01 | 28.62 ± 0.02 | 30.67 ± 0.71 |
C18:3 n-3 | 0.15 ± 0.01 | 0.02 ± 0.01 | 0.04 ± 0.01 | 0.81 ± 0.01 | 0.15 ± 0.01 | 0.02 ± 0.01 | 0.04 ± 0.01 | 0.78 ± 0.08 |
C20:0 | 0.47 ± 0.01 | 0.57 ± 0.06 | 0.44 ± 0.01 | 0.43 ± 0.01 | 0.46 ±0.01 | 0.56 ± 0.00 | 0.45 ± 0.01 | 0.60 ± 0.21 |
C20:1 n-9 | 0.61 ± 0.01 | 0.81 ± 0.06 | 0.56 ± 0.01 | 0.59 ± 0.01 | 0.59 ± 0.01 | 0.87 ± 0.01 | 0.56 ± 0.01 | 0.70 ± 0.12 |
C20:3 n-3 | 0.49 ± 0.01 | 0.10 ± 0.05 | 0.42 ± 0.02 | 0.35 ± 0.05 | 0.44 ± 0.03 | 0.13 ± 0.01 | 0.45 ± 0.01 | 0.35 ± 0.16 |
C18:3 (9c, 11t, 13c) | 41.68 ± 0.15 | 67.36 ± 1.07 | 39.82 ± 0.16 | 27.03 ± 0.14 | 42.12 ± 0.34 | 69.74 ± 0.17 | 40.48 ± 0.11 | 27.41 ± 0.47 |
Other 1 | 2.51 ± 0.01 | 6.83 ± 0.43 | 1.85 ± 0.01 | 8.74 ± 0.06 | 2.56 ± 0.10 | 7.02 ± 0.25 | 2.04 ± 0.03 | 9.09 ± 0.03 |
Other 2 | 0.41 ± 0.01 | 1.61 ± 0.15 | 0.29 ± 0.01 | 5.51 ± 0.05 | 0.43 ± 0.02 | 1.78 ± 0.01 | 0.33 ± 0.01 | 7.59 ± 2.15 |
Σ MUFA | 19.50 c | 8.45 a | 20.51 d | 17.94 b | 19.33 c | 7.77 a | 20.19 cd | 17.00 b |
Σ PUFA * | 28.1 b | 8.51 a | 29.46 b | 32.67 c | 27.92 b | 7.29 a | 29.10 b | 31.80 c |
Σ SFA | 7.8 cd | 7.25 b | 8.05 cd | 8.11 d | 7.66 c | 6.40 a | 7.87 cd | 7.80 cd |
CLnA | 41.68 c | 67.36 d | 39.84 b | 27.03 a | 42.10 c | 69.74 e | 40.48 bc | 27.41 a |
Σ other | 2.92 | 8.43 | 2.14 | 14.25 | 2.99 | 8.8 | 2.36 | 15.99 |
Health Indices | ||||||||
AI | 0.15 | 0.45 | 0.15 | 0.15 | 0.15 | 0.44 | 0.14 | 0.14 |
TI | 0.06 | 0.19 | 0.06 | 0.06 | 0.07 | 0.20 | 0.07 | 0.06 |
h/H | 13.01 | 4.44 | 13.00 | 12.95 | 13.13 | 4.50 | 13.31 | 13.99 |
Fatty Acid | Composition (%) | ||||
---|---|---|---|---|---|
Oil A | Oil B | Oil C | Oil D | ||
C16:0 | TAG | 4.28 ± 0.04 b | 3.81 ± 0.01 a | 4.50 ± 0.01 c | 5.02 ± 0.06 d |
sn-2 | 3.22 ± 0.66 ab | 3.75 ± 0.26 b | 2.36 ± 0.08 a | 2.76 ± 0.05 ab | |
sn-1,3 | 4.81 ± 0.33 b | 3.84 ± 0.13 a | 5.57 ± 0.04 c | 6.15 ± 0.02 d | |
C18:0 | TAG | 3.05 ± 0.01 bc | 2.87 ± 0.13 b | 3.11 ± 0.03 c | 2.67 ± 0.01 a |
sn-2 | 1.5 ± 0.13 a | 2.10 ± 0.03 b | 1.32 ± 0.01 a | 1.42 ± 0.04 a | |
sn-1,3 | 3.83 ± 0.07 b | 3.26 ± 0.01 a | 4.01 ± 0.01 c | 3.30 ± 0.02 a | |
C18:1 n-9 | TAG | 18.92 ± 0.06 c | 7.65 ± 0.53 a | 19.95 ± 0.08 d | 17.35 ± 0.06 b |
sn-2 | 18.59 ± 1.29 c | 10.33 ± 0.25 a | 18.14 ± 0.15 c | 15.88 ± 0.08 b | |
sn-1,3 | 19.09 ± 0.65 c | 6.31 ± 0.13 a | 20.86 ± 0.07 d | 18.09 ± 0.04 b | |
C18:2 n-6 | TAG | 27.47 ± 0.06 b | 8.40 ± 0.06 a | 29.01 ± 0.09 c | 31.53 ± 0.17 d |
sn-2 | 32.24 ± 1.35 b | 17.43 ± 0.46 a | 31.84 ± 0.50 b | 33.09 ± 0.17 b | |
sn-1,3 | 25.09 ± 0.68 b | 3.89 ± 0.23 a | 27.60 ± 0.25 c | 30.75 ± 0.08 d | |
C18:3 (9c, 11t, 13c) | TAG | 41.68 ± 0.15 c | 67.36 ± 1.07 d | 39.82 ± 0.16 b | 27.03 ± 0.14 a |
sn-2 | 29.72 ± 1.66 a | 48.67 ± 0.54 c | 35.49 ± 0.34 b | 29.41 ± 0.30 a | |
sn-1,3 | 47.66 ± 0.83c | 76.71 ± 0.27 d | 41.99 ± 0.17 b | 25.84 ± 0.15 a |
Oil | Storage (Month) | Oxidation Induction Time (Min) |
---|---|---|
A | 0 | 2.16 e ± 0.04 |
1 | 1.69 de ± 0.33 | |
B | 0 | 0.90 bc ± 0.01 |
1 | 0.30 ab ± 0.09 | |
C | 0 | 2.24 e ± 0.15 |
1 | 1.13 cd ± 0.17 | |
D | 0 | 0.52 abc ± 0.19 |
1 | 0.19 a ± 0.02 |
Oil. | Peak 1 | Peak 2 | ||||
---|---|---|---|---|---|---|
tonset (°C) | tm (°C) | toffset (°C) | tonset (°C) | tm (°C) | toffset (°C) | |
A | −79.94 a ± 0.05 | −66.92 a ± 0.01 | −42.30 a ± 0.31 | −29.44 a ± 0.25 | −22.80 a ± 0.43 | −15.42 d ± 0.54 |
B | −79.80 a ± 0.13 | −72.37 d ± 0.33 | −57.75 d ± 0.19 | −53.52 d ± 0.06 | −30.65 c ± 0.40 | −14.99 c ± 0.08 |
C | −79.94 a ± 0.07 | −67.00 b ± 0.04 | −46.55 c ± 0.01 | −31.96 b ± 0.12 | −23.72 b ± 0.01 | −14.59 b ± 0.04 |
D | −79.92 a ± 0.04 | −68.51 c ± 0.16 | −44.68 b ± 0.06 | −39.75 c ± 0.16 | −22.77 a ± 0.22 | −4.68 a ± 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siol, M.; Dudek, A.; Bryś, J.; Mańko-Jurkowska, D.; Gruczyńska-Sękowska, E.; Makouie, S.; Palani, B.K.; Obranović, M.; Koczoń, P. Chromatographic and Thermal Characteristics, and Hydrolytic and Oxidative Stability of Commercial Pomegranate Seed Oil. Foods 2024, 13, 1370. https://doi.org/10.3390/foods13091370
Siol M, Dudek A, Bryś J, Mańko-Jurkowska D, Gruczyńska-Sękowska E, Makouie S, Palani BK, Obranović M, Koczoń P. Chromatographic and Thermal Characteristics, and Hydrolytic and Oxidative Stability of Commercial Pomegranate Seed Oil. Foods. 2024; 13(9):1370. https://doi.org/10.3390/foods13091370
Chicago/Turabian StyleSiol, Marta, Agnieszka Dudek, Joanna Bryś, Diana Mańko-Jurkowska, Eliza Gruczyńska-Sękowska, Sina Makouie, Bharani Kumar Palani, Marko Obranović, and Piotr Koczoń. 2024. "Chromatographic and Thermal Characteristics, and Hydrolytic and Oxidative Stability of Commercial Pomegranate Seed Oil" Foods 13, no. 9: 1370. https://doi.org/10.3390/foods13091370
APA StyleSiol, M., Dudek, A., Bryś, J., Mańko-Jurkowska, D., Gruczyńska-Sękowska, E., Makouie, S., Palani, B. K., Obranović, M., & Koczoń, P. (2024). Chromatographic and Thermal Characteristics, and Hydrolytic and Oxidative Stability of Commercial Pomegranate Seed Oil. Foods, 13(9), 1370. https://doi.org/10.3390/foods13091370