Moringa, Milk Thistle, and Jujube Seed Cold-Pressed Oils: Characteristic Profiles, Thermal Properties, and Oxidative Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Physico-Chemical Analysis
2.2.1. Water Activity
2.2.2. Color
2.2.3. Refractive Index
2.2.4. Density
2.2.5. Ultraviolet-Visible Spectrum
2.2.6. Dry Matter
2.2.7. Ash
2.2.8. Fat
2.2.9. Protein
2.2.10. Carbohydrate
2.2.11. Phenolic Compounds
2.2.12. Flavonoids
2.3. Oil Extraction Procedure
2.4. Bioactive Compounds of Seed Oil
2.4.1. Phenolic Compounds
2.4.2. Chlorophylls
2.4.3. Carotenoids
2.5. Antioxidant Activity
2.6. Quality Indicators
2.6.1. Acidity
2.6.2. Peroxide Value
2.6.3. Specific Extinction Values
2.6.4. Saponification Index
2.6.5. Iodine Index
2.7. Fatty Acids Profile
2.8. Thermal Profile
2.9. Oxidative Stability
2.10. Statistical Analysis
3. Results
3.1. Physico-Chemical Characterization of Seeds
3.2. Characteristic Profiles of Cold-Pressed Seed Oils
3.2.1. Physical Properties
3.2.2. Quality Indicators
3.2.3. Bioactive Compounds and Antioxidant Activity
3.2.4. Fatty Acid Profile
3.2.5. Thermal Profile
3.2.6. Oxidative Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsaknis, J.; Lalas, S.; Gergis, V.; Dourtoglou, V.; Spiliotis, V. Characterization of Moringa oleifera variety Mbololo seed oil of Kenya. J. Agric. Food Chem. 1999, 47, 4495–4499. [Google Scholar] [CrossRef]
- Anum, F.; Raja, I.; Ain, U.; Javed, U.; Yasmeen, F. Some Physio-Chemical Properties of Silybum marianum Seed Oil Extract. Curr. Trends Biomed. Eng. Biosci. 2018, 13, 91–98. [Google Scholar]
- Snoussi, A.; Koubaier, H.B.H.; Chouaibi, M.; Bouzouita, N. Comparative Study of the Fatty Acids and Tocopherol Profiles, Physical Properties, and Antioxidant Activities of Zizyphus lotus L. Seed Oils Based on the Geographical Origin. Chem. Afr. 2021, 5, 69–78. [Google Scholar] [CrossRef]
- Ogbunugafor, H.; Eneh, F.; Ozumba, A.; Igwo-Ezikpe, M.; Okpuzor, J.; Igwilo, I.; Adenekan, S.; Onyekwelu, O. Physico-chemical and antioxidant properties of Moringa oleifera seed oil. Pak. J. Nutr. 2011, 10, 409–414. [Google Scholar] [CrossRef]
- Shaker, E.; Mahmoud, H.; Mnaa, S. Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem. Toxicol. 2010, 48, 803–806. [Google Scholar] [CrossRef]
- El Hachimi, F.; Alfaiz, C.; Bendriss, A.; Cherrah, Y.; Alaoui, K. Activité anti-inflammatoire de l’huile des graines de Zizyphus lotus (L.) Desf. Phytothérapie 2017, 15, 147–154. [Google Scholar] [CrossRef]
- Gharsallah, K.; Rezig, L.; Msaada, K.; Chalh, A.; Soltani, T. Chemical composition and profile characterization of Moringa oleifera seed oil. South Afr. J. Bot. 2021, 137, 475–482. [Google Scholar] [CrossRef]
- Abd-El-hady, M.; Arafa, S. Morphological, chemical characteristics and antioxidant activity of Egypt grown wild milk thistle (Silybum marianum L.) seeds and evaluates their oil in fast frying process comparing with some vegetable oils. Middle East J. Appl. Sci. 2019, 9, 1198–1214. [Google Scholar]
- Chouaibi, M.; Mahfoudhi, N.; Rezig, L.; Donsì, F.; Ferrari, G.; Hamdi, S. Nutritional composition of Zizyphus lotus L. seeds. J. Sci. Food Agric. 2012, 92, 1171–1177. [Google Scholar] [CrossRef]
- El Hachimi, F.; El Antari, A.; Boujnah, M.; Bendrisse, A.; Alfaiz, C. Comparaison des huiles des graines et de la teneur en acides gras de différentes populations marocaines de jujubier, de grenadier et de figuier de barbarie. J. Mater. Environ. Sci. 2015, 6, 1488–1502. [Google Scholar]
- Nde, D.B.; Foncha, A.C. Optimization methods for the extraction of vegetable oils: A review. Processes 2020, 8, 209. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Dautant, F.; Simancas, K.; Sandoval, A.; Müller, A. Effect of temperature, moisture and lipid content on the rheological properties of rice flour. J. Food Eng. 2007, 78, 1159–1166. [Google Scholar] [CrossRef]
- Besbes, S.; Blecker, C.; Deroanne, C.; Drira, N.-E.; Attia, H. Date seeds: Chemical composition and characteristic profiles of the lipid fraction. Food Chem. 2004, 84, 577–584. [Google Scholar] [CrossRef]
- Kchaou, W.; Abbès, F.; Blecker, C.; Attia, H.; Besbes, S. Effects of extraction solvents on phenolic contents and antioxidant activities of Tunisian date varieties (Phoenix dactylifera L.). Ind. Crops Prod. 2013, 45, 262–269. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Cicco, N.; Lanorte, M.T.; Paraggio, M.; Viggiano, M.; Lattanzio, V. A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- Gutfinger, T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- Isabel Minguez-Mosquera, M.; Rejano-Navarro, L.; Gandul-Rojas, B.; SanchezGomez, A.H.; Garrido-Fernandez, J. Color-pigment correlation in virgin olive oil. J. Am. Oil Chem. Soc. 1991, 68, 332–336. [Google Scholar]
- Bersuder, P.; Hole, M.; Smith, G. Antioxidants from a heated histidine-glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. J. Am. Oil Chem. Soc. 1998, 75, 181–187. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Guillén, M.D.; Ruiz, A. Formation of hydroperoxy- and hydroxyalkenals during thermal oxidative degradation of sesame oil monitored by proton NMR. Eur. J. Lipid Sci. Technol. 2004, 106, 680–687. [Google Scholar] [CrossRef]
- Man, Y.C.; Swe, P. Thermal analysis of failed-batch palm oil by differential scanning calorimetry. J. Am. Oil Chem. Soc. 1995, 72, 1529–1532. [Google Scholar] [CrossRef]
- Azabou, S.; Sebii, H.; Taheur, F.B.; Abid, Y.; Jridi, M.; Nasri, M. Phytochemical profile and antioxidant properties of tomato by-products as affected by extraction solvents and potential application in refined olive oils. Food Biosci. 2020, 36, 100664. [Google Scholar] [CrossRef]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Moringa oleifera seeds and oil: Characteristics and uses for human health. Int. J. Mol. Sci. 2016, 17, 2141. [Google Scholar] [CrossRef]
- Abdeddaim, S.; Betka, A.; Drid, S.; Becherif, M. Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine. Energy Convers. Manag. 2014, 79, 281–288. [Google Scholar] [CrossRef]
- Abdoul-Azize, S. Potential benefits of jujube (Zizyphus Lotus L.) bioactive compounds for nutrition and health. J. Nutr. Metab. 2016, 2016, 2867470. [Google Scholar] [CrossRef]
- Ettalibi, F.; El Antari, A.; Hamouda, A.; Gadhi, C.; Harrak, H. Comparative assessment of physical and chemical characteristics of prickly pear seed oil from Opuntia ficus-indica and Opuntia megacantha Varieties. J. Food Qual. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Ghazghazi, H.; Aouadhi, C.; Riahi, L.; Maaroufi, A.; Hasnaoui, B. Fatty acids composition of Tunisian Ziziphus lotus L.(Desf.) fruits and variation in biological activities between leaf and fruit extracts. Nat. Prod. Res. 2014, 28, 1106–1110. [Google Scholar] [CrossRef]
- Ghannouchi, F.M.; Hammi, O.; Helaoui, M. Behavioral Modeling and Predistortion of Wideband Wireless Transmitters; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Delgado Ospina, J.; Grande Tovar, C.D.; Menjívar Flores, J.C.; Sánchez Orozco, M.S. Relación Entre el Indice de Refracción y la Concentración de Timol en Aceites Esenciales de Lippia origanoides Kunth. Chil. J. Agric. Anim. Sci. 2016, 32, 127–133. [Google Scholar] [CrossRef]
- Ogunsina, B.S.; Indira, T.; Bhatnagar, A.; Radha, C.; Debnath, S.; Gopala Krishna, A. Quality characteristics and stability of Moringa oleifera seed oil of Indian origin. J. Food Sci. Technol. 2014, 51, 503–510. [Google Scholar] [CrossRef]
- Fadhil, A.B.; Ahmed, K.M.; Dheyab, M.M. Silybum marianum L. seed oil: A novel feedstock for biodiesel production. Arab. J. Chem. 2017, 10, S683–S690. [Google Scholar] [CrossRef]
- Chouaibi, M.; Rezig, L.; Gaout, N.; Daoued, K.B.; Msaada, K.; Hamdi, S. Cold Pressed Pistacia lentiscus Seed Oils, in Cold Pressed Oils; Elsevier: Amsterdam, The Netherlands, 2020; pp. 373–384. [Google Scholar]
- Yang, M.; Fu, Z.; Lin, F.; Zhu, X. Incident angle dependence of absorption enhancement in plasmonic solar cells. Opt. Express 2011, 19, A763–A771. [Google Scholar] [CrossRef]
- Oomah, B.D.; Ladet, S.; Godfrey, D.V.; Liang, J.; Girard, B. Characteristics of raspberry (Rubus idaeus L.) seed oil. Food Chem. 2000, 69, 187–193. [Google Scholar] [CrossRef]
- El-haak, M.A.; Atta, B.M.; Abd Rabo, F.F. Seed yield and important seed constituents for naturally and cultivated milk thistle (Silybum marianum) plants. Egypt. J. Exp. Biol. 2015, 11, 141–146. [Google Scholar]
- Anwar, F.; Ashraf, M.; Bhanger, M.I. Interprovenance variation in the composition of Moringa oleifera oilseeds from Pakistan. J. Am. Oil Chem. Soc. 2005, 82, 45–51. [Google Scholar] [CrossRef]
- Campas-Baypoli, O.; Sánchez-Machado, D.; Bueno-Solano, C.; Escárcega-Galaz, A.; López-Cervantes, J. Biochemical composition and physicochemical properties of Moringa oleifera seed oil. Acta Aliment. 2014, 43, 538–546. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; Guillaume, D.; Roudani, A.; Boulbaroud, S.; Ibrahimi, M.; Ahmad, M.; Sultana, S.; Hadda, T.B.; Chafchaouni-Moussaoui, I. Chemical investigation of Nigella sativa L. seed oil produced in Morocco. J. Saudi Soc. Agric. Sci. 2015, 14, 172–177. [Google Scholar] [CrossRef]
- Anwar, F.; Bhanger, M. Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J. Agric. Food Chem. 2003, 51, 6558–6563. [Google Scholar] [CrossRef]
- Boukandoul, S.; Casal, S.; Cruz, R.; Pinho, C.; Zaidi, F. Algerian Moringa oleifera whole seeds and kernels oils: Characterization, oxidative stability, and antioxidant capacity. Eur. J. Lipid Sci. Technol. 2017, 119, 1600410. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Krishna, A.G. Natural antioxidants of the Jaffna variety of Moringa oleifera seed oil of Indian origin as compared to other vegetable oils. Grasas Aceites 2013, 64, 537–545. [Google Scholar]
- Kachel, M.; Krajewska, M.; Stryjecka, M.; Ślusarczyk, L.; Matwijczuk, A.; Rudy, S.; Domin, M. Comparative Analysis of Phytochemicals and Antioxidant Properties of Borage Oil (Borago officinalis L.) and Milk Thistle (Silybum marianum Gaertn). Appl. Sci. 2023, 13, 2560. [Google Scholar] [CrossRef]
- Chougui, N.; Tamendjari, A.; Hamidj, W.; Hallal, S.; Barras, A.; Richard, T.; Larbat, R. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food Chem. 2013, 139, 796–803. [Google Scholar] [CrossRef]
- Chtourou, F.; Valli, E.; Ben Mansour, A.; Bendini, A.; Gallina Toschi, T.; Bouaziz, M. Characterization of virgin olive oils obtained from minor Tunisian varieties for their valorization. J. Food Meas. Charact. 2021, 15, 5060–5070. [Google Scholar] [CrossRef]
- Sarawong, C.; Schoenlechner, R.; Sekiguchi, K.; Berghofer, E.; Ng, P.K. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chem. 2014, 143, 33–39. [Google Scholar] [CrossRef]
- Javeed, A.; Ahmed, M.; Sajid, A.R.; Sikandar, A.; Aslam, M.; Hassan, T.u.; Dogar, S.; Nazir, Z.; Ji, M.; Li, C. Comparative Assessment of Phytoconstituents, Antioxidant Activity and Chemical Analysis of Different Parts of Milk Thistle Silybum marianum L. Molecules 2022, 27, 2641. [Google Scholar] [CrossRef]
- Lalas, S.; Tsaknis, J. Characterization of Moringa oleifera seed oil variety “Periyakulam 1”. J. Food Compos. Anal. 2002, 15, 65–77. [Google Scholar] [CrossRef]
- El-Mallah, M.H.; Mumi, T.; El-Shami, S. New trends in determining the authenticity of corn oil. Grasas Aceites 1999, 50, 7–15. [Google Scholar] [CrossRef]
- Hasanlou, T.; Bahmani, M.; Sepehrifar, R.; Kalantari, F. Determination of tocopherols and fatty acids in seeds of Silybum marianum (L.) gaerth. J. Med. Plants 2008, 7, 69–76. [Google Scholar]
- Harwood, J.; Aparicio, R. Handbook of Olive Oil: Analysis and Properties; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- COI, 2019: Applicable Commercial Standard with Olive Oils and Olive Pomace Oils. Available online: https://www.oliveoiltimes.com/media/2020/05/Olive-Oils-and-Olive-Pomace-Oils-Proposed-Standard-of-Identity-Petition-5.22.20.pdf (accessed on 11 April 2024).
- Sonntag, N. Analytical methods. Bailey’s Ind. Oil Fat Prod. 1982, 2, 407–527. [Google Scholar]
- Herrera, M.; Anon, M. Crystalline fractionation of hydrogenated sunflowerseed oil. II. Differential scanning calorimetry (DSC). J. Am. Oil Chem. Soc. 1991, 68, 799–803. [Google Scholar] [CrossRef]
- Ben Thabet, I.; Besbes, S.; Attia, H.; Deroanne, C.; Francis, F.; Drira, N.-E.; Blecker, C. Physicochemical characteristics of date sap “lagmi” from Deglet Nour palm (Phoenix dactylifera L.). Int. J. Food Prop. 2009, 12, 659–670. [Google Scholar] [CrossRef]
- Bouaziz, M.; Sayadi, S. Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. Eur. J. Lipid Sci. Technol. 2005, 107, 497–504. [Google Scholar] [CrossRef]
- Mudau, F.N.; Soundy, P.; Du Toit, E.S.; Olivier, J. Variation in polyphenolic content of Athrixia phylicoides (L.) (bush tea) leaves with season and nitrogen application. South Afr. J. Bot. 2006, 72, 398–402. [Google Scholar] [CrossRef]
- Lecerf, J.-M. Les huiles végétales: Particularités et utilités: Vegetable oils: Particularities and usefulness. Médecine Mal. Métaboliques 2011, 5, 257–262. [Google Scholar] [CrossRef]
- Mensink, R.P.; Katan, M.B. Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N. Engl. J. Med. 1990, 323, 439–445. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Wang, S.; Liu, H.; Li, B.-Z.; Che, L. Constituents and thermal properties of milk thistle seed oils extracted with three methods. LWT 2020, 126, 109282. [Google Scholar] [CrossRef]
- Aguilera, M.P.; Beltrán, G.; Ortega, D.; Fernández, A.; Jiménez, A.; Uceda, M. Characterisation of virgin olive oil of Italian olive cultivars: Frantoio’ and Leccino’, grown in Andalusia. Food Chem. 2005, 89, 387–391. [Google Scholar] [CrossRef]
- Ayadi, M.; Grati-Kamoun, N.; Attia, H. Physico-chemical change and heat stability of extra virgin olive oils flavoured by selected Tunisian aromatic plants. Food Chem. Toxicol. 2009, 47, 2613–2619. [Google Scholar] [CrossRef]
- Zribi, A.; Gargouri, B.; Jabeur, H.; Rebaï, A.; Abdelhedi, R.; Bouaziz, M. Enrichment of pan-frying refined oils with olive leaf phenolic-rich extract to extend the usage life. Eur. J. Lipid Sci. Technol. 2013, 115, 1443–1453. [Google Scholar] [CrossRef]
Parameters | MOS | SMS | ZLS |
---|---|---|---|
aw | 0.568 ± 0.001 c | 0.511 ± 0.04 a | 0.535 ± 0.001 b |
Dry matter (%) | 93.21 ± 0.28 b | 94.49 ± 0.12 c | 92.82 ± 0.57 a |
Total proteins (% DM) | 31.33 ± 0.92 b | 17.19 ± 0.69 a | 32.17 ± 0.61 c |
Lipids (% DM) | 36.39 ± 2.8 c | 27.99 ± 2.36 b | 26.66 ± 0.10 a |
Ash (% DM) | 3.21 ± 0.07 b | 4.69 ± 0.17 c | 3.06 ± 0.06 a |
Carbohydrates (% DM) | 29.07 ± 0.25 a | 50.13 ± 0.58 c | 38.11 ± 0.61 b |
Total phenols (mg GA/100 g DM) | 359.23 ± 1.94 b | 403.91 ± 25.25 c | 310.04 ± 2.15 a |
Flavonoids (mg EQ/100 g DM) | 0.604 ± 0.02 a | 1.24 ± 0.01 c | 1.09 ± 0.02 b |
Color parameters: Cie Lab | |||
L* | 83.04 ± 0.14 c | 38.575 ± 3.04 a | 44.16 ± 0.02 b |
a* | 2.27 ± 0.21 a | 4.285 ± 0.09 b | 6.27 ± 0.01 c |
b* | 16.25 ± 1.62 c | 8.86 ± 0.63 a | 10.63 ± 0.00 b |
C* | 16.40 ± 1.64 c | 13.11 ± 0.97 b | 12.35 ± 0.0 a |
h° | 82.10 ± 0.38 b | 65.95 ± 3.65 a | 59.48 ± 0.06 |
Parameters | MOO | SMO | ZLO |
---|---|---|---|
Yield (g/100 g seed) | 17.27 ± 0.45 b | 14.39 ± 1.12 a | 17.66 ± 0.32 b |
Yield (g/100 g Fat) | 47.45 ± 0.51 a | 51.41 ± 0.98 b | 66.24 ± 0.47 c |
Color parameters: Cie lab | |||
L* | 52.01 ± 0.77 c | 43.28 ± 0.16 b | 38.41 ± 0.03 a |
a* | 1.70 ± 0.27 a | 5.23 ± 0.02 c | 4.09 ± 0.1 b |
b* | 70.69 ± 0.74 c | 47.71 ± 0.21 b | 22.88 ± 0.23 a |
C* | 70.93 ± 0.72 c | 47.74 ± 0.22 b | 23.24 ± 0.24 a |
H° | 85.28 ± 0.00 b | 87.95 ± 0.01 c | 79.87 ± 0.18 a |
Density (g/mL) | 0.904 ± 0.02 c | 0.820 ± 0.02 b | 0.860 ± 0.02 a |
Refraction Index | 1.469 ± 0.005 a | 1.471 ± 0.003 a | 1.470 ± 0.002 a |
Acidity (%) | 1.03 ± 0.06 b | 1.08 ± 0.02 b | 0.762 ± 0.03 a |
K232 | 1.08 ± 0.08 b | 2.03 ± 0.10 c | 0.97 ± 0.01 a |
K270 | 0.02 ± 0.002 a | 0.30 ± 0.03 c | 0.12 ± 0.00 b |
Peroxide Value (Meq O2/Kg) | 1.48 ± 0.05 b | 2.57 ± 0.13 c | 0.98 ± 0.05 a |
Iodine Index (g I2/100 g) | 52.7 ± 2.68 a | 66.7 ± 4.48 b | 90.98 ± 1.45 c |
Saponification Index (mgKOH/g) | 189.33 ± 0.93 b | 192.84 ± 6.94 c | 182.51 ± 4.48 a |
Polyphenols (ppm) | 94.04 ± 9.16 a | 105.42 ± 8.89 b | 425.3 ± 7.90 c |
Carotenoids (ppm) | 16.36 ± 0.07 c | 8.21 ± 0.41 b | 1.24 ± 0.02 a |
Chlorophyll (ppm) | 5.85 ± 0.01 c | 0.24 ± 0.04 b | 0.12 ± 0.01 a |
Scavenging Activity (%) * | 59.98 ± 2.00 a | 68.14 ± 1.09 b | 90.90 ± 0.45 c |
Percentage (%) | MOO | SMO | ZLO |
---|---|---|---|
Myristic acid C14:0 | 0.01 ± 0.002 a | 0.09 ± 0.006 b | 0.09 ± 0.056 b |
Palmitic acid C16:0 | 5.92 ± 0.018 a | 9.04 ± 0.04 b | 10.04 ± 0.07 c |
Heptadecanoic acid C17:0 | 0.06 ± 0.002 b | 0.08 ± 0.001 c | 0.05 ± 0.001 a |
Stearic acid C18:0 | 5.22 ± 0.015 b | 5.82 ± 0.07 c | 4.56 ± 0.05 a |
Arachidic acid C20:0 | 0.67 ± 0.001 b | 3.39 ± 0.05 c | 0.25 ± 0.02 a |
Behenic acid C22:0 | 6.27 ± 0.02 c | 2.3 ± 0.04 a | 1.3 ± 0.06 b |
Lignoceric acid C24:0 | 1.12 ± 0.003 c | 0.60 ± 0.003 b | 0.56 ± 0.002 a |
Palmitoleic acid C16:1 | 1.36 ± 0.004 c | 0.08 ± 0.004 a | 0.17 ± 0.002 b |
Heptadecenoic acid C17:1 | 0.04 ± 0.001 b | 0.03 ± 0.001 a | 0.05 ± 0.001 c |
Oleic acid C18:1 | 73.29 ± 5.80 c | 25.06 ± 0.07 a | 61.06 ± 0.09 b |
Linoleic acid C18:2 | 2.44 ± 0.01 a | 52.52 ± 0.02 c | 18.41 ± 0.02 b |
Linolenic acid C18:3 | 3.48 ± 0.01 c | 0.85 ± 0.1 a | 1.33 ± 0.1 b |
Gadoleic acid C20:1 | 0.08 ± 0.003 a | 0.15 ± 0.01 b | 3.66 ± 0.01 c |
C18:1T Trans oleic acid+ | 0.02 ± 0 b | 0.01 ± 0 a | 0.01 ± 0 a |
C18:2T Trans linoleic acid+ C18:3T Trans linolenic acid | 0.02 ± 0 b | 0.01 ± 0 a | 0.02 ± 0 b |
Parameters | MOO | SMO | ZLO |
---|---|---|---|
Transition temperature (°C) | |||
Tpeak 1 (°C) | −7.81 ± 0.17 a | −31.90 ± 0.09 c | −21.02 ± 0.2 b |
Tpeak 2 (°C) | −1.63 ± 0.17 a | −23.58 ± 0.10 c | −8.1 ± 0.70 b |
Tpeak 3 (°C) | 11.39 ± 0.07 a | −15.08 ± 0.22 b | - |
Tpeak 4 (°C) | 18.71 ± 0.12 b | 2.82 ± 0.15 a | - |
Onset temperature (°C) | −11.72 ± 0.26 a | −27.11 ± 0.08 c | −15.78 ± 0.07 b |
Offset temperature (°C) | 23.8 ± 0.40 c | 9.06 ± 0.25 a | 11.46 ± 0.25 b |
Peak (°C) | −1.63 ± 0.17 a | −23.58 ± 0.10 c | −8.1 ± 0.70 b |
Melting enthalpy (j/g) | 74.01 ± 2.42 c | 58.82 ± 1.02 a | 62.47 ± 012 b |
MOO | SMO | ZLO | ||||
---|---|---|---|---|---|---|
Storage Time (d) | 0 | 60 | 0 | 60 | 0 | 60 |
SFA (%) | 19.27 ± 0.2 a | 22.55 ± 2.2 b | 21.32 ± 1.8 a | 25.25 ± 1.2 b | 14.92 ± 1.8 a | 16.22 ± 2.3 b |
USFA (%) | 80.73 ± 4.70 b | 72.58 ± 2.8 a | 79.71 ± 3.15 b | 71.52 ± 3.45 a | 85.08 ± 3.15 b | 79.58 ± 1.20 a |
C18:2/C16:0 | 0.41 ± 0.01 b | 0.24 ± 0.01 a | 5.80 ± 0.01 b | 2.11 ± 0.02 a | 1.83 ± 0.01 b | 1.45 ± 0.01 a |
Polyphenols (ppm) | 94.04 ± 9.16 b | 20.23 ± 1.2 a | 105.22 ± 8.89 b | 15.87 ± 2.4 a | 425.3 ± 7.90 b | 99.25 ± 3.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebii, H.; Karra, S.; Ghribi, A.M.; Danthine, S.; Blecker, C.; Attia, H.; Besbes, S. Moringa, Milk Thistle, and Jujube Seed Cold-Pressed Oils: Characteristic Profiles, Thermal Properties, and Oxidative Stability. Foods 2024, 13, 1402. https://doi.org/10.3390/foods13091402
Sebii H, Karra S, Ghribi AM, Danthine S, Blecker C, Attia H, Besbes S. Moringa, Milk Thistle, and Jujube Seed Cold-Pressed Oils: Characteristic Profiles, Thermal Properties, and Oxidative Stability. Foods. 2024; 13(9):1402. https://doi.org/10.3390/foods13091402
Chicago/Turabian StyleSebii, Haifa, Sirine Karra, Abir Mokni Ghribi, Sabine Danthine, Christophe Blecker, Hamadi Attia, and Souhail Besbes. 2024. "Moringa, Milk Thistle, and Jujube Seed Cold-Pressed Oils: Characteristic Profiles, Thermal Properties, and Oxidative Stability" Foods 13, no. 9: 1402. https://doi.org/10.3390/foods13091402
APA StyleSebii, H., Karra, S., Ghribi, A. M., Danthine, S., Blecker, C., Attia, H., & Besbes, S. (2024). Moringa, Milk Thistle, and Jujube Seed Cold-Pressed Oils: Characteristic Profiles, Thermal Properties, and Oxidative Stability. Foods, 13(9), 1402. https://doi.org/10.3390/foods13091402