Effects of Soaking and Germination Treatments on the Nutritional, Anti-Nutritional, and Bioactive Characteristics of Adzuki Beans (Vigna angularis L.) and Lima Beans (Phaseolus lunatus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Soaking and Germination Process
2.2.2. Physical and Functional Characteristics
2.2.3. Chemical Characteristics
2.2.4. FT-IR (Fourier Transform Infrared Spectroscopy) Analysis
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties
3.2. Functional Properties
3.3. Principal Component Analysis
3.4. Chemical Characteristics of Lima and Adzuki Beans
3.5. Effect of Processing Treatments on Nutritional, Anti-Nutritional, and Bioactive Characteristics
3.5.1. Nutritional Characteristics and In Vitro Protein Digestibility
3.5.2. Anti-Nutritional Components
3.5.3. Antioxidant Activity, Flavonoids, Phenols, Reducing Capacity, and Metal Chelating Activity
3.5.4. Mineral Contents
3.5.5. Fourier-Transform Infrared (FTIR) Spectroscopic Analysis
4. Conclusions and Future Aspects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhat, R.; Karim, A. Exploring the nutritional potential of wild and underutilized legumes. Compr. Rev. Food Sci. Food Saf. 2009, 8, 305–331. [Google Scholar] [CrossRef]
- Ogechukwu, C.O.; Ikechukwu, J.O. Effect of heat processing treatments on the chemical composition and functional properties of lima bean (Phaseolus lunatus) flour. Am. J. Food Sci. Nutr. 2017, 1, 14–24. [Google Scholar] [CrossRef]
- Yellavila, S.; Agbenorhevi, J.K.; Asibuo, J.; Sampson, G. Proximate composition, minerals content and functional properties of five lima bean accessions. J. Food Secur. 2015, 3, 69–74. [Google Scholar]
- Agarwal, S.; Chauhan, E.S. Adzuki beans-physical and nutritional characteristics of beans and its health benefits. Int. J. Health Sci. Res. 2019, 9, 304–310. [Google Scholar]
- Liu, R.; Zheng, Y.; Cai, Z.; Xu, B. Saponins and flavonoids from adzuki bean (Vigna angularis L.) ameliorate high-fat diet-induced obesity in ICR mice. Front. Pharmacol. 2017, 8, 687. [Google Scholar] [PubMed]
- Embaby, H.E. Effect of heat treatments on certain antinutrients and in vitro protein digestibility of peanut and sesame seeds. Food Sci. Technol. Res. 2010, 17, 31–38. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2017, 54, 858–870. [Google Scholar] [CrossRef] [PubMed]
- Kajihausa, O.; Fasasi, R.; Atolagbe, Y. Effect of different soaking time and boiling on the proximate composition and functional properties of sprouted sesame seed flour. Niger. Food J. 2014, 32, 8–15. [Google Scholar] [CrossRef]
- Rizvi, Q.U.E.H.; Kumar, K.; Ahmed, N.; Yadav, A.N.; Chauhan, D.; Thakur, P.; Jan, S.; Sheikh, I. Influence of soaking and germination treatments on the nutritional, anti-nutritional, and bioactive composition of pigeon pea (Cajanus cajan L.). J. Appl. Biol. Biotech. 2022, 10, 127–134. [Google Scholar] [CrossRef]
- Sangronis, E.; Machado, C. Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT-Food Sci. Technol. 2007, 40, 116–120. [Google Scholar] [CrossRef]
- Chauhan, D.; Kumar, K.; Ahmed, N.; Thakur, P.; Rizvi, Q.U.E.H.; Jan, S.; Yadav, A.N. Impact of soaking, germination, fermentation, and roasting treatments on nutritional, anti-nutritional, and bioactive composition of black soybean (Glycine max L.). J. Appl. Biol. Biotech. 2022, 10, 186–192. [Google Scholar] [CrossRef]
- Egli, I.; Davidsson, L.; Juillerat, M.; Barclay, D.; Hurrell, R. The influence of soaking and germination on the phytase activity and phytic acid content of grains and seeds potentially useful for complementary feedin. J. Food Sci. 2002, 67, 3484–3488. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists; Approved Methods Committee. Approved Methods of the American Association of Cereal Chemists; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Huang, S.; Shiau, C.; Liu, T.; Chu, C.; Hwang, D.F. Effects of rice bran on sensory and physico-chemical properties of emulsified pork meatballs. Meat Sci. 2005, 70, 613–619. [Google Scholar] [CrossRef]
- Jones, D.; Chinnaswamy, R.; Tan, Y.; Hanna, M. Physiochemical properties of ready-to-eat breakfast cereals. Cereal Foods World 2000, 45, 164–168. [Google Scholar]
- Sosulski, F. The centrifuge method for determining flour absorption in hard red spring wheats. Cereal Chem. 1962, 39, 344–350. [Google Scholar]
- Kaur, M.; Sandhu, K.S.; Arora, A.; Sharma, A. Gluten free biscuits prepared from buckwheat flour by incorporation of various gums: Physicochemical and sensory properties. LWT-Food Sci. Technol. 2015, 62, 628–632. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; İbanoğlu, E.; İbanoğlu, Ş. Cauliflower by-products as a new source of dietary fibre, antioxidants and proteins in cereal based ready-to-eat expanded snacks. J. Food Eng. 2008, 87, 554–563. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Ranganna, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products; Tata McGraw-Hill Education: Noida, India, 1986. [Google Scholar]
- WHO. Energy and Protein Requirements; WHO Technical Report Series no 522 and FAO Nutrition Meeting Report Series no 52 Geneva; World Health Organization: Geneva, Switzerland, 1973. [Google Scholar]
- Shastry, M.; John, E. Biochemical changes and in-vitro protein digestibility of the endosperm of germinating dolichos lablab. J. Sci. Food Agric. 1991, 55, 529–538. [Google Scholar] [CrossRef]
- Lahlou, F.A.; Hmimid, F.; Loutfi, M.; Bourhim, N. Antioxidant activity and quantification of phenolic compounds of Euphorbia echinus. Int. J. Pharm. Sci. 2014, 6, 357–360. [Google Scholar]
- Bouaziz, M.; Fki, I.; Jemai, H.; Ayadi, M.; Sayadi, S. Effect of storage on refined and husk olive oils composition: Stabilization by addition of natural antioxidants from Chemlali olive leaves. Food Chem. 2008, 108, 253–262. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S. Effect of sand roasting and microwave cooking on antioxidant activity of barley. Food Res. Int. 2011, 44, 235–240. [Google Scholar] [CrossRef]
- Saxena, V.; Mishra, G.; Saxena, A.; Vishwakarma, K. A comparative study on quantitative estimation of tannins in Terminalia chebula, Terminalia belerica, Terminalia arjuna and Saraca indica using spectrophotometer. Asian J. Pharm. Clin. Res. 2013, 6, 148–149. [Google Scholar]
- Kakade, M.; Rackis, J.; McGhee, J.; Puski, G. Determination of trypsin inhibitor activity of soy products: A collaborative analysis of an improved procedure. Cereal Chem. 1974, 51, 376–382. [Google Scholar]
- Gao, Y.; Shang, C.; Maroof, M.S.; Biyashev, R.; Grabau, E.; Kwanyuen, P.; Burton, J.; Buss, G. A modified colorimetric method for phytic acid analysis in soybean. Crop Sci. 2007, 47, 1797–1803. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Farinde, E.O.; Olanipekun, O.T.; Olasupo, R.B. Nutritional composition and antinutrients content of raw and processed lima bean (Phaseolus lunatus). Ann. Food Sci. Technol 2018, 19, 250–264. [Google Scholar]
- Daba, H.G.; Delele, M.A.; Fanta, S.W.; Habtu, N.G.; Abera, M.K.; Worku, A.F. Effects of Initial Moisture Content and Storage Duration on Physical and Chemical Characteristics of Stored Maize (Zea mays L.) Grain. In Advancement of Science and Technology in Sustainable Manufacturing and Process Engineering; Springer: Cham, Switzerland, 2023; pp. 109–117. ISBN 978-3-031-41172-4. [Google Scholar]
- Purwanti, E.; Fauzi, A. The morphological characteristics of Phaseolus lunatus L. in different areas of East Java, Indonesia. In IOP Conference Series: Earth and Environmental Science, Proceedings of the International Conference on Life Sciences and Technology, Malang, Indonesia, 4 September 2018; IOP Publishing: Bristol, UK, 2019; Volume 276, p. 012017. [Google Scholar]
- Wu, W.; Zhou, L.; Chen, J.; Qiu, Z.; He, Y. Gain, TKW: A measurement system of thousand kernel weight based on the android platform. Agronomy 2018, 8, 178. [Google Scholar] [CrossRef]
- Yadav, U.; Singh, N.; Kaur, A.; Thakur, S. Physico-chemical, hydration, cooking, textural and pasting properties of different adzuki bean (Vigna angularis) accessions. J. Food Sci. Technol. 2018, 55, 802–810. [Google Scholar] [CrossRef]
- Siddiq, M.; Ravi, R.; Harte, J.; Dolan, K. Physical and functional characteristics of selected dry bean (Phaseolus vulgaris L.) flours. LWT-Food Sci. Technol. 2010, 43, 232–237. [Google Scholar] [CrossRef]
- Woo, K.S.; Song, S.B.; Ko, J.Y.; Kim, Y.B.; Kim, W.H.; Jeong, H.S. Antioxidant properties of adzuki beans, and quality characteristics of sediment according to cultivated methods. Korean J. Food Nutri. 2016, 29, 134–143. [Google Scholar] [CrossRef]
- Yu-Wei, L.; Wang, Q. Effect of processing on phenolic content and antioxidant activity of four commonly consumed pulses in China. J. Hortic. 2015, 2, 130–132. [Google Scholar]
- Alonso, R.; Aguirre, A.; Marzo, F. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Khang, D.T.; Dung, T.N.; Elzaawely, A.A.; Xuan, T.D. Phenolic profiles and antioxidant activity of germinated legumes. Foods 2016, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Sombié, P.A.E.D.; Compaoré, M.; Coulibaly, A.Y.; Ouédraogo, J.T.; Tignégré, J.-B.D.L.S.; Kiendrébéogo, M. Antioxidant and phytochemical studies of 31 cowpeas (Vigna unguiculata (L. Walp.)) genotypes from Burkina Faso. Foods 2018, 7, 143. [Google Scholar] [CrossRef]
- Adeparusi, E. Effect of processing on the nutrients and anti-nutrients of lima bean (Phaseolus lunatus L.) flour. Food/Nahrung 2001, 45, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Granito, M.; Brito, Y.; Torres, A. Chemical composition, antioxidant capacity and functionality of raw and processed Phaseolus lunatus. J. Sci. Food Agric. 2007, 87, 2801–2809. [Google Scholar] [CrossRef]
- Jayalaxmi, B.; Vijayalakshmi, D.; Usha, R.; Revanna, M.; Chandru, R.; Gowda, P. Effect of different processing methods on proximate, mineral and antinutrient content of lima bean (Phaseolus lunatus) seeds. Legume Res.-Int. J. 2016, 39, 543–549. [Google Scholar] [CrossRef]
- Mubarak, A. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem. 2005, 89, 489–495. [Google Scholar] [CrossRef]
- Nonogaki, H.; Bassel, G.W.; Bewley, J.D. Germination—Still a mystery. Plant Sci. 2010, 179, 574–581. [Google Scholar] [CrossRef]
- Ejigui, J.; Savoie, L.; Marin, J.; Desrosiers, T. Influence of traditional processing methods on the nutritional composition and antinutritional factors of red peanuts (Arachis hypogea) and small red kidney beans (Phaseolus vulgaris). J. Biol. Sci. 2005, 5, 597–605. [Google Scholar]
- Devi, C.B.; Kushwaha, A.; Kumar, A. Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata). J. Food Sci. Technol. 2015, 52, 6821–6827. [Google Scholar] [CrossRef] [PubMed]
- Laxmi, G.; Chaturvedi, N.; Richa, S. The impact of malting on nutritional composition of foxtail millet, wheat and chickpea. J. Nutr. Food Sci. 2015, 5, 5. [Google Scholar]
- Kavitha, S.; Parimalavalli, R. Effect of processing methods on proximate composition of cereal and legume flours. J. Hum. Nutr. Food Sci. 2014, 2, 1051. [Google Scholar]
- Vidal-Valverde, C.; Frias, J.; Sierra, I.; Blazquez, I.; Lambein, F.; Kuo, Y.-H. New functional legume foods by germination: Effect on the nutritive value of beans, lentils and peas. Eur. Food Res. Technol. 2002, 215, 472–477. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, A.; Singh, B. Characterization of in vitro antioxidant activity, bioactive components, and nutrient digestibility in pigeon pea (Cajanus cajan) as influenced by germination time and temperature. J. Food Biochem. 2019, 43, e12706. [Google Scholar] [CrossRef]
- Sinha, R.; Kawatra, A.; Sehgal, S. Saponin content and trypsin inhibitor activity of cowpea: Varietal differences and effects of processing and cooking methods. J. Food Sci. Technol. 2005, 42, 182–185. [Google Scholar]
- Yasmin, A.; Zeb, A.; Khalil, A.W.; Paracha, G.M.; Khattak, A.B. Effect of processing on anti-nutritional factors of red kidney bean (Phaseolus vulgaris) grains. Food Bioproc. Tech. 2008, 1, 415–419. [Google Scholar] [CrossRef]
- Patterson, C.A.; Curran, J.; Der, T. Effect of processing on antinutrient compounds in pulses. Cereal Chem. 2017, 94, 2–10. [Google Scholar] [CrossRef]
- Olika, E.; Abera, S.; Fikre, A. Physicochemical properties and effect of processing methods on mineral composition and antinutritional factors of improved chickpea (Cicer arietinum L.) varieties grown in Ethiopia. Int. J. Food Sci. 2019, 2019, 9614570. [Google Scholar] [CrossRef]
- Khattak, A.B.; Zeb, A.; Bibi, N.; Khalil, S.A.; Khattak, M.S. Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicer arietinum L.) sprouts. Food Chem. 2007, 104, 1074–1079. [Google Scholar] [CrossRef]
- Shimelis, E.A.; Rakshit, S.K. Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chem. 2007, 103, 161–172. [Google Scholar]
- Chauhan, O.; Chauhan, G. Development of anti-nutrients free soy beverage using germinated soybean. J. Food Sci. Technol. 2007, 44, 62–65. [Google Scholar]
- Uchegbu, N.N.; Ishiwu, C.N. Germinated Pigeon Pea (Cajanus cajan): A novel diet for lowering oxidative stress and hyperglycemia. Food Sci. Nutr. 2016, 4, 772–777. [Google Scholar] [CrossRef]
- Kaur, D.; Dhawan, K.; Rasane, P.; Singh, J.; Kaur, S.; Gurumayum, S.; Singhal, S.; Mehta, C.; Kumar, V. Effect of different pre-treatments on antinutrients and antioxidants of rice bean (Vigna umbellata). Acta Univ. Cinbinesis Ser. E Food Technol. 2020, 24, 25–38. [Google Scholar] [CrossRef]
- James, S.; Nwabueze, T.U.; Ndife, J.; Onwuka, G.I.; Usman, M.A.A. Influence of fermentation and germination on some bioactive components of selected lesser legumes indigenous to Nigeria. J. Agric. Food Res. 2020, 2, 100086. [Google Scholar] [CrossRef]
- Sharma, S.; Sahni, P. Dynamics of germination behaviour, protein secondary structure, technofunctional properties, antinutrients, antioxidant capacity and mineral elements in germinated dhaincha. Food Technol. Biotechnol. 2021, 59, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Randhir, R.; Lin, Y.T.; Shetty, K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem. 2004, 39, 637–646. [Google Scholar] [CrossRef]
- Kajla, P.; Sharma, A.; Sood, D.R. Effect of germination on proximate principles, minerals and anti nutrients of flaxseeds. Asian J. Dairy Food Res. 2017, 36, 52–57. [Google Scholar] [CrossRef]
- Obizoba, I.C. Effect of sprouting on the nitrogenous constituents and mineral composition of pigeon pea (Cajanus cajan) seeds. Plant Foods Hum. Nutr. 1991, 41, 21–26. [Google Scholar] [CrossRef]
Parameters | Lima Beans | Adzuki Beans |
---|---|---|
Moisture (%) | 7.29 ± 0.07 b | 12.32 ± 0.08 a |
Length (mm) | 13.26 ± 0.16 a | 4.32 ± 0.03 b |
Width (mm) | 9.87 ± 0.12 a | 2.73 ± 0.32 b |
Thickness (mm) | 9.16 ± 0.06 a | 2.36 ± 0.06 b |
1000 Grain Wt. (g) | 699.65 ± 0.64 a | 61.27 ± 1.05 b |
Bulk density (g/cm3) | 0.93 ± 0.06 a | 0.86 ± 0.01 a |
Tap density (g/cm3) | 1.26 ± 0.05 a | 1.16 ± 0.03 a |
Water Absorption Capacity (mL/g) | 2.21 ± 0.05 a | 2.89 ± 0.11 a |
Oil Absorption Capacity (mL/g) | 1.66 ± 0.05 a | 1.81 ± 0.11 a |
Water Solubility Index (%) | 20.23 ± 0.10 b | 23.23 ± 0.09 a |
Swelling Capacity (%) | 82.70 ± 0.46 a | 70.06 ± 0.03 b |
L value | 82.34 ± 0.07 a | 44.14 ± 0.80 b |
a* value | −0.56 ± 0.07 b | 4.33 ± 0.10 a |
b* value | 8.07 ± 0.03 a | 0.86 ± 0.04 b |
Factor Number | Lima Beans | Adzuki Beans | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
Initial eigenvalues | 11.245 | 6.06 | 0.000 | 0.000 | 11.344 | 4.66 | 0.000 | 0.000 |
% of variance | 0.937 | 0.050 | 0.006 | 0.000 | 0.945 | 0.039 | 0.000 | 0.000 |
Cumulative % | 93.70 | 98.80 | 100 | 100 | 94.50 | 98.40 | 100 | 100 |
Factor Loadings | ||||||||
Moisture content (%) | −0.291 | 0.166 | −0.510 | 0.503 | 0.288 | 0.310 | 0.297 | 0.097 |
Fat content (%) | 0.275 | 0.452 | −0.576 | −0.191 | −0.291 | 0.053 | −0.384 | 0.632 |
Fiber content (%) | −0.282 | −0.395 | −0.089 | 0.416 | 0.294 | 0.078 | −0.301 | −0.034 |
Ash content (%) | −0.296 | −0.130 | 0.029 | −0.274 | 0.253 | −0.753 | 0.247 | 0.069 |
Protein content (%) | −0.283 | 0.356 | 0.446 | 0.290 | 0.286 | 0.363 | −0.225 | −0.095 |
Carbohydrate (%) | 0.287 | −0.341 | 0.058 | 0.294 | 0.289 | −0.241 | −0.283 | 0.420 |
Calorific value (Kcal/100 g) | 0.296 | 0.081 | 0.043 | 0.423 | −0.296 | 0.066 | 0.000 | 0.086 |
In vitro protein digestibility (%) | −0.292 | 0.227 | 0.244 | −0.148 | 0.295 | 0.088 | 0.220 | −0.100 |
Phytic acid (mg/100 g) | 0.291 | −0.274 | 0.097 | −0.057 | −0.292 | −0.150 | −0.302 | −0.574 |
Tannin contents (mg/100 g) | 0.278 | 0.446 | 0.342 | 0.204 | −0.293 | −0.061 | 0.451 | 0.157 |
Trypsin-inhibitor activity (TIU/100 g) | 0.296 | −0.136 | 0.086 | −0.106 | −0.291 | 0.238 | 0.332 | 0.138 |
Antioxidant activity (% DPPH scavenging capacity) | −0.296 | −0.037 | −0.044 | −0.188 | 0.293 | 0.207 | 0.170 | 0.095 |
Parameters | Time (h) | |||||
---|---|---|---|---|---|---|
Soaking | Germination | |||||
0 | 12 | 24 | 24 | 48 | 72 | |
Moisture content (%) | 7.29 ± 0.07 d | 7.31 ± 0.01 d | 7.38 ± 0.01 c | 7.43 ± 0.01 c | 7.57 ± 0.02 b | 7.74 ± 0.05 a |
Protein content (%) | 18.59 ± 0.61 e | 18.24 ± 0.01 e | 19.15 ± 0.01 d | 20.07 ± 0.05 c | 20.94 ± 0.04 b | 21.92 ± 0.04 a |
Fat content (%) | 1.47 ± 0.25 a | 1.36 ± 0.30 a | 1.28 ± 0.11 ab | 1.23 ± 0.08 ab | 1.19 ± 0.08 ab | 1.03 ± 0.01 b |
Ash content (%) | 3.78 ± 0.06 b | 4.26 ± 0.63 a b | 4.29 ± 0.08 ab | 4.34 ± 0.28 a | 4.41 ± 0.06 a | 4.49 ± 0.06 a |
Fiber content (%) | 6.55 ± 0.03 e | 6.79 ± 0.04 d | 6.88 ± 0.06 d | 7.37 ± 0.15 c | 7.66 ± 0.14 b | 7.94 ± 0.05 a |
Carbohydrate content (%) | 62.03 ± 0.46 a | 62.04 ± 0.61 b | 61.02 ± 0.11 c | 59.56 ± 0.43 d | 58.21 ± 0.26 e | 56.89 ± 0.05 f |
Calorific value (kcal/100 g) | 350.96 ± 1.48 a | 345.86 ± 3.90 b | 344.50 ± 0.72 bc | 341.67 ± 1.12 cd | 339.14 ± 0.46 d | 335.95 ± 0.13 e |
Phytic acid (mg/100 g) | 20.48 ± 0.13 a | 19.20 ± 0.06 b | 18.07 ± 0.02 c | 17.67 ± 0.42 c | 14.58 ± 0.41 d | 12.68 ± 0.42 e |
Tannin content (mg/100 g) | 10.70 ± 0.08 a | 9.85 ± 0.05 b | 9.05 ± 0.04 c | 6.57 ± 0.12 d | 5.49 ± 0.06 e | 4.35 ± 0.12 f |
Phenolic content (mgGAE/100) | 110.43 ± 0.16 f | 115.27 ± 0.04 e | 120.59 ± 0.04 d | 125.41 ± 0.07 c | 130.32 ± 1.17 b | 139.74 ± 0.12 a |
Antioxidant activity (% DPPH scavenging capacity) | 35.48 ± 0.16 f | 36.70 ± 0.08 e | 38.59 ± 0.07 d | 40.28 ± 0.06 c | 43.71 ± 0.02 b | 47.36 ± 0.08 a |
Trypsin inhibitor (TIU/100 g) | 20.41 ± 0.36 f | 14.40 ± 0.34 e | 13.13 ± 0.12 d | 7.68 ± 0.27 c | 5.53 ± 0.01 b | 3.22 ± 0.09 a |
Flavonoid content (mgQE/100 g) | 20.16 ± 0.05 f | 21.49 ± 0.07 e | 23.19 ± 0.10 d | 28.63 ± 0.26 c | 30.62 ± 0.30 b | 33.63 ± 0.14 a |
Reducing capacity (%) | 30.55 ± 0.05 f | 33.66 ± 0.09 e | 35.19 ± 0.16 d | 39.74 ± 0.16 c | 42.21 ± 0.06 b | 45.68 ± 0.12 a |
Metal chelating activity (%) | 35.51 ± 0.07 f | 39.06 ± 0.71 e | 42.88 ± 0.11 d | 47.48 ± 0.16 c | 51.80 ± 0.17 b | 55.42 ± 0.07 a |
In vitro protein digestibility (%) | 67.85 ± 0.09 f | 69.84 ± 0.09 e | 70.80 ± 0.25 d | 72.42 ± 0.09 c | 74.65 ± 0.08 b | 77.86 ± 0.05 a |
Zinc (ppm) | 2.45 ± 0.03 bcd | 2.33 ± 0.02 cd | 2.25 ± 0.04 d | 2.57 ± 0.04 abc | 2.66 ± 0.03 ab | 2.76 ± 0.32 a |
Iron (ppm) | 4.04 ± 0.04 e | 4.15 ± 0.03 d | 4.25 ± 0.03 c | 4.46 ± 0.09 b | 4.52 ± 0.08 b | 4.96 ± 0.03 a |
Copper (ppm) | 4.17 ± 0.02 d | 4.05 ± 0.03 e | 3.97 ± 0.03 f | 4.25 ± 0.04 c | 4.94 ± 0.03 b | 5.27 ± 0.02 a |
Manganese (ppm) | 2.36 ± 0.03 f | 2.16 ± 0.03 e | 2.27 ± 0.02 d | 3.17 ± 0.02 c | 3.34 ± 0.03 b | 3.55 ± 0.04 a |
Parameters | Time (h) | |||||
---|---|---|---|---|---|---|
Soaking | Germination | |||||
0 | 12 | 24 | 24 | 48 | 72 | |
Moisture content (%) | 12.32 ± 0.08 f | 12.87 ± 0.02 e | 13.43 ± 0.06 d | 13.59 ± 0.12 c | 13.92 ± 0.06 b | 14.57 ± 0.03 a |
Protein content (%) | 19.56 ± 0.03 f | 20.96 ± 0.04 e | 21.26 ± 0.03 d | 22.76 ± 0.03 c | 22.97 ± 0.03 b | 23.46 ± 0.02 a |
Fat content (%) | 3.16 ± 0.02 c | 3.26 ± 0.03 b | 3.35 ± 0.04 a | 2.85 ± 0.03 d | 2.54 ± 0.02 e | 1.95 ± 0.03 f |
Ash content (%) | 3.29 ± 0.07 e | 3.34 ± 0.04 e | 3.41 ± 0.04 d | 3.54 ± 0.03 c | 3.75 ± 0.02 b | 3.90 ± 0.06 a |
Fiber content (%) | 5.79 ± 0.09 d | 5.80 ± 0.06 d | 5.91 ± 0.08 d | 6.19 ± 0.08 c | 6.59 ± 0.08 b | 7.47 ± 0.06 a |
Carbohydrate content (%) | 55.87 ± 0.17 a | 53.77 ± 0.06 b | 52.48 ± 0.08 c | 51.24 ± 0.07 d | 49.57 ± 0.09 e | 49.32 ± 0.06 f |
Calorific value (kcal/100 g) | 341.69 ± 0.75 a | 339.38 ± 0.33 b | 335.94 ± 0.71 c | 332.14 ± 0.45 d | 323.22 ± 0.21 e | 318.42 ± 0.35 f |
In vitro protein digestibility | 70.56 ± 0.23 f | 72.16 ± 0.06 e | 73.62 ± 0.16 d | 75.89 ± 0.07 c | 77.54 ± 0.05 b | 78.31 ± 0.06 a |
Phytic acid (mg/100 g) | 7.12 ± 0.03 a | 6.15 ± 0.04 b | 5.34 ± 0.02 c | 4.66 ± 0.03 d | 3.98 ± 0.01 e | 3.45 ± 0.03 f |
Tannin content (mg/100 g) | 6.36 ± 0.01 a | 6.22 ± 0.01 a | 6.09 ± 0.09 a | 5.91 ± 0.04 a | 4.20 ± 0.25 b | 2.47 ± 0.53 c |
Trypsin inhibitor (TIU/100 g) | 35.23 ± 0.11 a | 30.57 ± 0.04 b | 25.21 ± 0.06 c | 20.64 ± 0.10 d | 15.54 ± 0.09 e | 10.21 ± 0.06 f |
Phenolic content (mg/g) | 16.16 ± 1.30 e | 18.06 ± 0.72 d | 19.21 ± 0.59 c d | 20.17 ± 0.33 bc | 21.27 ± 1.28 a b | 22.39 ± 0.72 a |
Antioxidant Activity (% DPPH scavenging capacity) | 9.74 ± 0.04 c d | 9.92 ± 0.06 c d | 10.04 ± 0.03 cd | 12.24 ± 0.03 bc | 14.98 ± 0.02 ab | 16.67 ± 0.02 a |
Reducing capacity (%) | 28.77 ± 0.02 f | 30.04 ± 0.03 e | 32.95 ± 0.03 d | 35.27 ± 0.02 c | 37.65 ± 0.04 b | 39.25 ± 0.02 a |
Flavonoid content (mg QE/100 g) | 25.38 ± 0.18 f | 26.89 ± 0.05 e | 28.29 ± 0.07 d | 30.64 ± 0.17 c | 32.34 ± 0.10 b | 34.47 ± 0.31 a |
Metal chelating activity (%) | 20.59 ± 0.05 f | 23.80 ± 0.14 e | 26.60 ± 0.33 d | 28.62 ± 0.12 c | 31.52 ± 0.43 b | 34.64 ± 0.11 a |
Zinc (ppm) | 4.49 ± 0.04 f | 4.92 ± 0.05 e | 5.23 ± 0.04 d | 5.94 ± 0.05 c | 6.39 ± 0.05 b | 6.74 ± 0.04 a |
Iron (ppm) | 1.57 ± 0.02 e | 1.61 ± 0.02 e | 1.73 ± 0.05 d | 1.85 ± 0.03 c | 1.97 ± 0.03 b | 2.22 ± 0.03 a |
Copper (ppm) | 1.22 ± 0.02 a | 1.49 ± 0.35 a | 1.35 ± 0.07 a | 1.41 ± 0.11 a | 1.45 ± 0.04 a | 1.51 ± 0.02 a |
Manganese (ppm) | 5.16 ± 0.04 f | 5.35 ± 0.04 e | 5.51 ± 0.06 d | 6.34 ± 0.11 c | 6.82 ± 0.07 b | 7.32 ± 0.03 a |
Wave Range (cm−1) | Functional Group | Compound Class | Adzuki Beans | Lima Beans | ||||
---|---|---|---|---|---|---|---|---|
Raw Grains | Soaking | Germination | Raw Grains | Soaking | Germination | |||
3400–3300 | N-H stretching | Aliphatic primary amine | 3272 | 3290 | 3287 | 3260 | 3266 | 3262 |
3300–2500 | O-H stretching | Carboxylic acid | 2905 | 2914 | 2913 | 2911 | 2922 | 2922 |
1550–1500 | N-O stretching | Nitro compound | 1631 | 1632 | 1635 | 1625 | 1635 | 1631 |
980–960 | C=C bending | Alkene | 992 | 996 | 994 | 997 | 994 | 994 |
600–500 | C-I stretching | Halo compound | 519 | 515 | 518 | 482 | 522 | 515 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizvi, Q.U.E.H.; Guiné, R.P.F.; Ahmed, N.; Sheikh, M.A.; Sharma, P.; Sheikh, I.; Yadav, A.N.; Kumar, K. Effects of Soaking and Germination Treatments on the Nutritional, Anti-Nutritional, and Bioactive Characteristics of Adzuki Beans (Vigna angularis L.) and Lima Beans (Phaseolus lunatus L.). Foods 2024, 13, 1422. https://doi.org/10.3390/foods13091422
Rizvi QUEH, Guiné RPF, Ahmed N, Sheikh MA, Sharma P, Sheikh I, Yadav AN, Kumar K. Effects of Soaking and Germination Treatments on the Nutritional, Anti-Nutritional, and Bioactive Characteristics of Adzuki Beans (Vigna angularis L.) and Lima Beans (Phaseolus lunatus L.). Foods. 2024; 13(9):1422. https://doi.org/10.3390/foods13091422
Chicago/Turabian StyleRizvi, Qurat Ul Eain Hyder, Raquel P. F. Guiné, Naseer Ahmed, Mohd Aaqib Sheikh, Paras Sharma, Imran Sheikh, Ajar Nath Yadav, and Krishan Kumar. 2024. "Effects of Soaking and Germination Treatments on the Nutritional, Anti-Nutritional, and Bioactive Characteristics of Adzuki Beans (Vigna angularis L.) and Lima Beans (Phaseolus lunatus L.)" Foods 13, no. 9: 1422. https://doi.org/10.3390/foods13091422
APA StyleRizvi, Q. U. E. H., Guiné, R. P. F., Ahmed, N., Sheikh, M. A., Sharma, P., Sheikh, I., Yadav, A. N., & Kumar, K. (2024). Effects of Soaking and Germination Treatments on the Nutritional, Anti-Nutritional, and Bioactive Characteristics of Adzuki Beans (Vigna angularis L.) and Lima Beans (Phaseolus lunatus L.). Foods, 13(9), 1422. https://doi.org/10.3390/foods13091422