Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Methods
2.2.1. Starch Extraction
2.2.2. Oxidative Treatment of the Dry Extract
2.2.3. Extraction of Clove Buds’ Essential Oil
2.2.4. Film Preparation
2.2.5. Film Characterization
2.2.6. Antimicrobial Tests
3. Results and Discussion
3.1. Film Characterization
3.1.1. Color
3.1.2. Fourier Transform Infrared (FTIR)
3.1.3. Antimicrobial Activity of Functionalized Films
3.1.4. Water Vapor Permeability
3.1.5. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fronza, P.; Batista, M.J.P.A.; Franca, A.S.; Oliveira, L.S. Bionanocomposite Based on Cassava Waste Starch, Locust Bean Galactomannan, and Cassava Waste Cellulose Nanofibers. Foods 2024, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.; Gonçalves, I.; Nunes, C.; Teixeira, B.; Mendes, R.; Ferreira, P.; Coimbra, M.A. Potato peel phenolics as additives for developing active starch-based films with potential to pack smoked fish fillets. Food Packag. Shelf Life 2021, 28, 100644. [Google Scholar] [CrossRef]
- Matheus, J.R.; de Farias, P.M.; Satoriva, J.M.; de Andrade, C.J.; Fai, A.E. Cassava starch films for food packaging: Trends over the last decade and future research. Int. J. Biol. Macromol. 2023, 225, 658–672. [Google Scholar] [CrossRef] [PubMed]
- Abotbina, W.; Sapuan, S.M.; Ilyas, R.A.; Sultan, M.T.H.; Alkbir, M.F.M.; Sulaiman, S.; Harussani, M.M.; Bayraktar, E. Recent Developments in Cassava (Manihot esculenta) Based Biocomposites and Their Potential Industrial Applications: A Comprehensive Review. Materials 2022, 15, 6992. [Google Scholar] [CrossRef] [PubMed]
- Mueller, E.; Hoffmann, T.G.; Schmitz, F.R.; Helm, C.V.; Roy, S.; Bertoli, S.L.; de Souza, C.K. Development of ternary polymeric films based on cassava starch, pea flour and green banana flour for food packaging. Int. J. Biol. Macromol. 2024, 256, 128436. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Bachar, L.; Vilcovsky, M.; González-Seligra, P.; Famá, L. Effects of PVA and yerba mate extract on extruded films of carboxymethyl cassava starch/PVA blends for antioxidant and mechanically resistant food packaging. Int. J. Biol. Macromol. 2024, 268, 131464. [Google Scholar] [CrossRef]
- Castro, D.; Podshivalov, A.; Ponomareva, A.; Zhilenkov, A. Study of the Reinforcing Effect and Antibacterial Activity of Edible Films Based on a Mixture of Chitosan/Cassava Starch Filled with Bentonite Particles with Intercalated Ginger Essential Oil. Polymers 2024, 16, 2531. [Google Scholar] [CrossRef]
- Lin, L.; Peng, S.; Shi, C.; Li, C.; Hua, Z.; Cui, H. Preparation and characterization of cassava starch/sodium carboxymethyl cellulose edible film incorporating apple polyphenols. Int. J. Biol. Macromol. 2022, 212, 155–164. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, J.; Ellis, W.O.; Li, J.; Appaw, W.O.; Simpson, B.K. Bioplastic films from cassava peels: Enzymatic transformation and film properties. Ind. Crops Prod. 2024, 213, 118427. [Google Scholar] [CrossRef]
- Tafa, T.G.; Engida, A.M. Preparation of green film with improved physicochemical properties and enhanced antimicrobial activity using ingredients from cassava peel, bamboo leaf and rosemary leaf. Heliyon 2022, 8, e10130. [Google Scholar] [CrossRef]
- Silva, M.V.; de Lima, A.d.; Silva, M.G.; Caetano, V.F.; de Andrade, M.F.; da Silva, R.G.; de Moraes Filho, L.E.P.T.; de Lima Silva, I.D.; Vinhas, G.M. Clove essential oil and eugenol: A review of their significance and uses. Food Biosci. 2024, 62, 105112. [Google Scholar] [CrossRef]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2018; 12p. [CrossRef]
- ASTM E96/E96M-24a; Standard Test Methods for Gravimetric Determination of Water Vapor Transmission. ASTM International: West Conshohocken, PA, USA, 2024; 16p. [CrossRef]
- El Halal, S.L.; Colussi, R.; Deon, V.G.; Pinto, V.Z.; Villanova, F.A.; Carreño, N.L.; Dias, A.R.G.; Zavareze, E.d. Films based on oxidized starch and cellulose from barley. Carbohydr. Polym. 2015, 133, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, A.B.; Kachkarova-Sorokina, S.L.; Donzé, C.; Pinel, C.; Gallezot, P. From Native Starch to Hydrophilic and Hydrophobic Products: A Catalytic Approach. Top. Catal. 2004, 27, 67–76. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, X.; Yu, Y.; Li, W.; Mou, Y.; Chen, F.; Hu, X.; Ji, J.; Ma, L. From polyphenol to o-quinone: Occurrence, significance, and intervention strategies in foods and health implications. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3254–3291. [Google Scholar] [CrossRef] [PubMed]
- Fronza, P.; Costa, A.L.; Franca, A.S.; de Oliveira, L.S. Extraction and Characterization of Starch from Cassava Peels. Starch 2022, 75, 2100245. [Google Scholar] [CrossRef]
- Hong, T.; Yin, J.-Y.; Nie, S.-P.; Xie, M.-Y. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem. X 2021, 12, 100168. [Google Scholar] [CrossRef]
- Monroy, Y.; Rivero, S.; García, M.A. Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrason. Sonochem. 2018, 42, 795–804. [Google Scholar] [CrossRef]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-G.; Liu, T.; Hu, Q.-P.; Cao, X.-M. Chemical Composition, Antibacterial Properties and Mechanism of Action of Essential Oil from Clove Buds against Staphylococcus aureus. Molecules 2016, 21, 1194. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Antimicrobial mechanism of clove oil on Listeria monocytogenes. Food Control 2018, 94, 140–146. [Google Scholar] [CrossRef]
- Bai, J.; Li, J.; Chen, Z.; Bai, X.; Yang, Z.; Wang, Z.; Yang, Y. Antibacterial activity and mechanism of clove essential oil against foodborne pathogens. LWT 2023, 173, 114249. [Google Scholar] [CrossRef]
- Souza, A.C.; Goto, G.E.; Mainardi, J.A.; Coelho, A.C.; Tadini, C.C. Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT 2013, 54, 346–352. [Google Scholar] [CrossRef]
- Tumwesigye, S.K.; Montañez, J.C.; Oliveira, J.C.; Sousa-Gallagher, M.J. Novel Intact Bitter Cassava: Sustainable Development and Desirability Optimisation of Packaging Films. Food Bioprocess Technol. 2016, 9, 801–812. [Google Scholar] [CrossRef]
- Luchese, C.L.; Rodrigues, R.B.; Tessaro, I.C. Cassava starch-processing residue utilization for packaging development. Int. J. Biol. Macromol. 2021, 183, 2238–2247. [Google Scholar] [CrossRef]
- dos Santos Caetano, K.; Almeida Lopes, N.; Haas Costa, T.M.; Brandelli, A.; Rodrigues, E.; Hickmann Flôres, S.; Cladera-Olivera, F. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packag. Shelf Life 2018, 16, 138–147. [Google Scholar] [CrossRef]
- Kang, J.-H.; Song, K.B. Characterization of Job’s tears (Coix lachryma-jobi L.) starch films incorporated with clove bud essential oil and their antioxidant effects on pork belly during storage. LWT 2019, 111, 711–718. [Google Scholar] [CrossRef]
- Al-Hashimi, A.G.; Ammar, A.B.; Cacciola, F.; Lakhssassi, N. Development of a Millet Starch Edible Film Containing Clove Essential Oil. Foods 2020, 9, 184. [Google Scholar] [CrossRef]
- Bangar, S.P.; Whiteside, W.S.; Dunno, K.D.; Cavender, G.A.; Dawson, P. Pearl millet starch-based nanocomposite films reinforced with Kudzu cellulose nanocrystals and essential oil: Effect on functionality and biodegradability. Food Res. Int. 2022, 157, 111384. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Yin, X.; Liu, X.; Wang, G.; Qiu, W. Enhancing bread preservation through non-contact application of starch-based composite film infused with clove essential oil nanoemulsion. Int. J. Biol. Macromol. 2024, 263, 130297. [Google Scholar] [CrossRef] [PubMed]
- Arias, L.V.A.; Silva, V.d.S.; Vieira, J.M.M.; Fakhouri, F.M.; de Oliveira, R.A. Plant-Based Films for Food Packaging as a Plastic Waste Management Alternative: Potato and Cassava Starch Case. Polymers 2024, 16, 2390. [Google Scholar] [CrossRef] [PubMed]
- Nining, N.; Elfiyani, R.; Wulandari, E. Comparison eugenol and oleic acid as a plasticizer on characteristic of dextromethorphan hydrobromide film by solvent casting method. Pharm. Sci. Asia 2021, 48, 139–146. [Google Scholar] [CrossRef]
- Huang, X.; Ge, X.; Zhou, L.; Wang, Y. Eugenol embedded zein and poly(lactic acid) film as active food packaging: Formation, characterization, and antimicrobial effects. Food Chem. 2022, 384, 132482. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Song, F.; Yu, J.; Wang, N.; Jia, P.; Zhou, Y. Combining renewable eleostearic acid and eugenol to fabricate sustainable plasticizer and its effect of plasticizing on PVC. J. Polym. Environ. 2021, 30, 2099–2108. [Google Scholar] [CrossRef]
- Sothornvit, R.; Krochta, J.M. Plasticizer effect on mechanical properties of β-lactoglobulin films. J. Food Eng. 2001, 50, 149–155. [Google Scholar] [CrossRef]
Film | Treatment | Color Parameters | ||
L* | c* | h* | ||
NCPF | No Treatment | 49.03 ± 0.08 c | 18.90 ± 0.33 f | 72.19 ± 0.27 c |
WCPF | 36.91 ± 0.07 f | 20.54 ± 0.35 f | 59.01 ± 0.94 e | |
NCPF | NaClO 2% | 49.12 ± 0.11 c | 31.12 ± 0.08 b | 72.77 ± 0.59 c |
NaClO 6% | 58.50 ± 0.67 a | 25.95 ± 0.46 d | 80.21 ± 0.11 a | |
NaClO 10% | 55.66 ± 0.30 b | 29.63 ± 0.40 b | 77.35 ± 0.25 b | |
WCPF | NaClO 2% | 35.42 ± 0.03 f | 23.52 ± 0.15 e | 53.86 ± 0.88 f |
NaClO 6% | 48.05 ± 0.13 c | 38.97 ± 0.18 a | 65.32 ± 0.33 d | |
NaClO 10% | 42.26 ± 0.58 d | 37.98 ± 1.52 a | 57.30 ± 1.14 e | |
NCPF | H2O2 2% | 55.67 ± 1.40 b | 27.56 ± 1.60 d | 73.34 ± 0.45 c |
H2O2 6% | 55.13 ± 1.36 b | 31.26 ± 0.19 c | 73.91 ± 0.13 c | |
H2O2 10% | 57.73 ± 0.51 a | 31.93 ± 0.34 c | 77.92 ± 0.09 b | |
WCPF | H2O2 2% | 40.77 ± 0.15 d | 31.58 ± 4.01 c | 54.43 ± 0.95 f |
H2O2 6% | 36.40 ± 0.34 f | 35.04 ± 1.22 b | 52.71 ± 0.57 f | |
H2O2 10% | 38.55 ± 0.02 e | 32.90 ± 0.53 c | 51.57 ± 0.73 f |
Antimicrobial Activity of Functionalized Films | ||
---|---|---|
Film | Bacteria | Inhibition Zone (mm) |
NCPF | Staphylococcus aureus | 11.00 ± 5.04 a |
Listeria monocytogenes | 11.80 ± 2.96 a | |
Salmonella enterica Typhimurium | 11.72 ± 0.87 a | |
WCPF | Staphylococcus aureus | 9.10 ± 5.50 a |
Listeria monocytogenes | 10.57 ± 3.28 a | |
Salmonella enterica Typhimurium | 11.87 ± 1.62 a | |
Eugenol | Staphylococcus aureus | 23.75 ± 3.37 a |
Listeria monocytogenes | * | |
Salmonella enterica Typhimurium | * | |
Clove essential oil | Staphylococcus aureus | 19.37 ± 2.68 a |
Listeria monocytogenes | * | |
Salmonella enterica Typhimurium | 22.50 ± 2.05 a |
Film | Thickness (mm) | WVP (g mm/m2 h kPa) |
---|---|---|
NCPF * | 0.270 ± 0.06 a | 0.14 ± 0.06 b |
WCPF * | 0.236 ± 0.02 a | 0.15 ± 0.03 b |
NCPF | 0.206 ± 0.06 b | 0.23 ± 0.04 a |
WCPF | 0.207 ± 0.03 b | 0.27 ± 0.08 a |
Film | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|
NCPF * | 1.7 ± 0.4 b | 32.90 ± 14.31 a |
WCPF * | 1.5 ± 0.4 b | 48.01 ± 18.77 a |
NCPF | 3.2 ± 0.3 a | 21.40 ± 13.0 a |
WCPF | 2.1 ± 0.4 a,b | 40.24 ± 11.38 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira, Y.D.O.; Franca, A.S.; Oliveira, L.S. Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties. Foods 2025, 14, 113. https://doi.org/10.3390/foods14010113
Silveira YDO, Franca AS, Oliveira LS. Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties. Foods. 2025; 14(1):113. https://doi.org/10.3390/foods14010113
Chicago/Turabian StyleSilveira, Yuri D. O., Adriana S. Franca, and Leandro S. Oliveira. 2025. "Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties" Foods 14, no. 1: 113. https://doi.org/10.3390/foods14010113
APA StyleSilveira, Y. D. O., Franca, A. S., & Oliveira, L. S. (2025). Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties. Foods, 14(1), 113. https://doi.org/10.3390/foods14010113