Effect of Planting Systems on the Physicochemical Properties and Bioactivities of Strawberry Polysaccharides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of SPs
2.3. Chemical Composition Analysis
2.4. Monosaccharide Composition and Molecular Weight Analysis
2.5. Fourier Transform Infrared (FT-IR) Spectroscope
2.6. Congo Red Test
2.7. Differential Scanning Calorimetry (DSC)
2.8. Particle Size and Potential Determination
2.9. X-Ray Diffraction (XRD)
2.10. Scanning Electron Microscopy (SEM)
2.11. Non-Enzymatic Glycation Inhibition Assay
2.11.1. BSA–Fructose Reaction Model
2.11.2. Determination of Fructosamine
2.11.3. Determination of α-Dicarbonyl Compounds
2.11.4. Determination of Fluorescent AGEs
2.12. α-Glucosidase Inhibition Assay
2.13. Kinetics of α-Glucosidase Inhibition
2.14. Fluorescence Spectra Analysis
2.15. Rheological Measurements
2.16. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yields and Chemical Composition Analysis
3.2. Monosaccharide Composition of SPs
3.3. Characterizations and Morphology of SPs
3.3.1. Congo Red Test Analysis
3.3.2. FT-IR Spectroscope Analysis
3.3.3. Thermal Characteristics
3.3.4. Particle Size and Zeta Potential Analysis
3.3.5. XRD and SEM Analysis
3.4. Non-Enzymatic Glycation Inhibition Activity
3.5. Hypoglycemic Activities
3.5.1. Analysis of Inhibition Rate and Inhibition Kinetics
3.5.2. Fluorescence Quenching Analysis
3.6. Rheological Properties
3.6.1. Steady Shear Flow Properties
3.6.2. Dynamic Oscillatory Shear Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, H.; Hao, Z.; Gao, Y.; Cai, X.; Tang, J.; Liao, X.; Tan, J. Research progress on the hypoglycemic activity and mechanisms of natural polysaccharides. Int. J. Biol. Macromol. 2023, 252, 126199. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.H.; Yang, Y.; Zhou, X.; Chen, H.G. Advances in polysaccharides of natural source of anti-diabetes effect and mechanism. Molec. Biol. Rep. 2024, 51, 101. [Google Scholar] [CrossRef]
- Wijesekara, T.; Huang, R.; Wong, I.N.; Xu, B. Insights into immunoregulatory effects of bioactive polysaccharides derived from seaweeds through gut microbiota. Food Biosci. 2024, 58, 103800. [Google Scholar] [CrossRef]
- Zheng, Q.; Jia, R.-B.; Luo, D.; Lin, L.; Chen, C.; Zhao, M. The effect of extraction solution pH level on the physicochemical properties and α-glucosidase inhibitory potential of Fucus vesiculosus polysaccharide. LWT 2022, 169, 114028. [Google Scholar] [CrossRef]
- Zgutka, K.; Tkacz, M.; Tomasiak, P.; Tarnowski, M. A role for advanced glycation end products in molecular ageing. Int. J. Mol. Sci. 2023, 24, 9881. [Google Scholar] [CrossRef]
- Goldin, A.; Beckman, J.A.; Schmidt, A.M.; Creager, M.A. Advanced glycation end products. Circulation 2006, 114, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Pei, S.; Long, H.; Yang, W.; Yao, W.; Li, N.; Wang, J.; Zhao, Y.; Chen, F.; Xie, J.; et al. Potential inhibitory effect of Auricularia auricula polysaccharide on advanced glycation end-products (AGEs). Int. J. Biol. Macromol. 2024, 262, 129856. [Google Scholar] [CrossRef]
- Fu, X.; Yang, H.; Ma, C.; Li, X.; Li, D.; Yang, Y.; Xu, Y.; Wang, L. Characterization and inhibitory activities on α-amylase and α-glucosidase of the polysaccharide from blue honeysuckle berries. Int. J. Biol. Macromol. 2020, 163, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Huang, L.; Zhang, C.; Xie, P.; Cheng, J.; Wang, X.; Liu, L. Novel polysaccharide from Chaenomeles speciosa seeds: Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation. Int. J. Biol. Macromol. 2020, 153, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Mazzoni, L.; Leoni, E.; Tonanni, V.; Gagliardi, F.; Qaderi, R.; Capocasa, F.; Toscano, G.; Mezzetti, B. Application of near infrared spectroscopy for the rapid assessment of nutritional quality of different strawberry cultivars. Foods 2023, 12, 3253. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, L.; Qiu, J.; Qian, Y.; Wang, M. Comparative metabolomic analysis of the nutritional aspects from ten cultivars of the strawberry fruit. Foods 2023, 12, 1153. [Google Scholar] [CrossRef]
- Lazcano, C.; Boyd, E.; Holmes, G.; Hewavitharana, S.; Pasulka, A.; Ivors, K. The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci. Rep. 2021, 11, 3188. [Google Scholar] [CrossRef]
- Kobi, H.B.; Martins, M.C.; Silva, P.I.; Souza, J.L.; Carneiro, J.C.S.; Heleno, F.; Queiroz, M.E.L.R.; Costa, N.M. Organic and conventional strawberries: Nutritional quality, antioxidant characteristics and pesticide residues. Fruits 2018, 73, 39–47. [Google Scholar] [CrossRef]
- Arancibia, R.A.; Motsenbocker, C.E. Pectin methylesterase activity in vivo differs from activity in vitro and enhances polygalacturonase-mediated pectin degradation in Tabasco pepper. J. Plant Physiol. 2006, 163, 488–496. [Google Scholar] [CrossRef]
- Drobek, M.; Frąc, M.; Zdunek, A.; Cybulska, J. The effect of cultivation method of strawberry (Fragaria × ananassa Duch.) cv. Honeoye on structure and degradation dynamics of pectin during cold storage. Molecules 2020, 25, 4325. [Google Scholar] [CrossRef] [PubMed]
- Macías-Rodríguez, L.; Quero, E.; López, M.G. Carbohydrate differences in strawberry crowns and fruit (Fragaria × ananassa) during plant development. J. Agric. Food Chem. 2002, 50, 3317–3321. [Google Scholar] [CrossRef]
- Mattner, S.W.; Milinkovic, M.; Arioli, T. Increased growth response of strawberry roots to a commercial extract from Durvillaea potatorum and Ascophyllum nodosum. J. Appl. Phycol. 2018, 30, 2943–2951. [Google Scholar] [CrossRef]
- Liu, M.; Liu, J.; Li, G.; Zhang, D.; Qin, D.; Wang, L.; Xu, Y. Functional properties, structural characteristics, and anti-complementary activities of two degraded polysaccharides from strawberry fruits. Int. J. Biol. Macromol. 2024, 269, 132263. [Google Scholar] [CrossRef]
- Wan, X.; Wang, J.; Zhang, S.; Zhang, X.; Shi, X.; Chen, G. New insights into adlay seed bran polysaccharides: Effects of enzyme-assisted Aspergillus niger solid-state fermentation on its structural features, simulated gastrointestinal digestion, and prebiotic activity. Int. J. Biol. Macromol. 2025, 284, 138101. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Blumenkr, N.; Asboehan, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Zor, T.; Seliger, Z. Linearization of the Bradford protein assay increases its sensitivity: Theoretical and experimental studies. Anal. Biochem. 1996, 236, 302–308. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, Q.; Yang, J.; Huang, R.; Ge, Y.; Wang, J.; Chen, G. Simultaneous extraction of oil, protein and polysaccharide from Idesia polycarpa Maxim cake meal using ultrasound combined with three phase partitioning. Ultrason. Sonochem. 2024, 110, 107043. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, X.; Wang, L.; Ge, Y.; Chen, G. Comparative study of Idesia polycarpa Maxim cake meal polysaccharides: Conventional versus innovative extraction methods and their impact on structural features, emulsifying, antiglycation, and hypoglycemic properties. Food Chem. 2025, 471, 142745. [Google Scholar] [CrossRef]
- Dou, Z.M.; Chen, C.; Huang, Q.; Fu, X. Comparative study on the effect of extraction solvent on the physicochemical properties and bioactivity of blackberry fruit polysaccharides. Int. J. Biol. Macromol. 2021, 183, 1548–1559. [Google Scholar] [CrossRef]
- Zeng, L.; Ding, H.; Hu, X.; Zhang, G.; Gong, D. Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products. Food Chem. 2019, 271, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, B.; Zheng, T.; Zhao, C.; Gao, Y.; Wu, W.; Fan, Y.; Wang, X.; Qiu, M.; Fan, J. Structural characteristics, rheological properties, and antioxidant and anti-glycosylation activities of pectin polysaccharides from Arabica coffee husks. Foods 2023, 12, 423. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, Q.; Yang, S.; Zhang, S.; Chen, G. Comparative study on the impact of different extraction technologies on structural characteristics, physicochemical properties, and biological activities of polysaccharides from seedless chestnut rose (Rosa sterilis) fruit. Foods 2024, 13, 772. [Google Scholar] [CrossRef]
- Sun, N.; Xie, J.; Zheng, B.; Xie, J.; Chen, Y.; Hu, X.; Yu, Q. The inhibition mechanism of bound polyphenols extracted from mung bean coat dietary fiber on porcine pancreatic α-amylase: Kinetic, spectroscopic, differential scanning calorimetric and molecular docking. Food Chem. 2024, 436, 137749. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Chen, N.; Li, J. Detailed investigation on the polyphenols from four Dendrobium species against α-glucosidase: An integrated in vitro and in silico approach. Arab. J. Chem. 2024, 17, 105627. [Google Scholar] [CrossRef]
- Wen, Y.; Zhou, X.; Huo, D.; Chen, J.; Weng, L.; Li, B.; Wu, Z.; Zhang, X.; Li, L. Optimization for the extraction of polysaccharides from Huidouba and their in vitro α-glucosidase inhibition mechanism. Food Biosci. 2022, 49, 101910. [Google Scholar] [CrossRef]
- Wang, Y.X.; Yin, J.Y.; Huang, X.J.; Nie, S.P. Structural characteristics and rheological properties of high viscous glucan from fruit body of Dictyophora rubrovolvata. Food Hydrocoll. 2020, 101, 105514. [Google Scholar] [CrossRef]
- Kumar, Y.; Roy, S.; Devra, A.; Dhiman, A.; Prabhakar, P.K. Ultrasonication of mayonnaise formulated with xanthan and guar gums: Rheological modeling, effects on optical properties and emulsion stability. LWT Food Sci. Technol. 2021, 149, 111632. [Google Scholar] [CrossRef]
- Zeng, R.Y.; He, R.T.; Wei, W.; Xu, X.Y.; Zhang, X.P.; Luo, X.; Zheng, L.Y. Antioxidant properties of polysaccharides from Ganoderma sinense by different cultivations. Food Sci. Technol. Res. 2010, 16, 143–148. [Google Scholar] [CrossRef]
- Inngjerdingen, K.T.; Ballo, N.G.; Zhang, B.-Z.; Malterud, K.E.; Michaelsen, T.E.; Diallo, D.; Paulsen, B.S. A comparison of bioactive aqueous extracts and polysaccharide fractions from roots of wild and cultivated Cochlospermum tinctorium A. Rich. Phytochemistry 2013, 93, 136–143. [Google Scholar] [CrossRef]
- Miyatake, M.; Nishizono, S.; Kobayashi, T.; Sakatani, Y.; Matsubara, J.; Yamaguchi, M. Structure elucidation of the active polysaccharide component in Hyuganatsu orange (Citrus tamurana Hort. ex Tanaka) and its effect on osteoclast formation. Food Sci. Technol. Res. 2021, 27, 907–914. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, G.; Hu, J. Extraction, characterization and antioxidant activity of polysaccharides from Chinese watermelon. Int. J. Biol. Macromol. 2018, 111, 1304–1307. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zeng, J.; Wen, L.; Zhu, H.; Jiang, Y.; John, A.; Yu, L.; Yang, B. Effect of morin on the degradation of water-soluble polysaccharides in banana during softening. Food Chem. 2019, 287, 346–353. [Google Scholar] [CrossRef] [PubMed]
- An, K.; Wu, J.; Xiao, H.; Hu, T.; Yu, Y.; Yang, W.; Xiao, G.; Xu, Y. Effect of various drying methods on the physicochemical characterizations, antioxidant activities and hypoglycemic activities of lychee (Litchi chinensis Sonn.) pulp polysaccharides. Int. J. Biol. Macromol. 2022, 220, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhao, J.; Lv, M.; Li, X.; Wang, J.; Yue, Z.; Shi, J.; Zhang, G.; Sui, G. Comparative study of structural properties and biological activities of polysaccharides extracted from Chroogomphus rutilus by four different approaches. Int. J. Biol. Macromol. 2021, 188, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Zhao, Q.; Zhao, B. Physicochemical properties, structural characterization and biological activities of polysaccharides from quinoa (Chenopodium quinoa Willd.) seeds. Int. J. Biol. Macromol. 2021, 193, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhang, X.; Wang, Y.; Zhang, L.; Zhao, J.; Chen, G.; Fan, J.; Jia, Y.; Yan, F.; Ning, C. Characterization of polysaccharide fractions from fruit of Actinidia arguta and assessment of their antioxidant and antiglycated activities. Carbohydr. Polym. 2019, 210, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Feng, K.-L.; Yang, J.-C.; He, Y.-S.; Guo, H.; Wang, S.-P.; Gan, R.-Y.; Wu, D.-T. Polysaccharides from dandelion (Taraxacum mongolicum) leaves: Insights into innovative drying techniques on their structural characteristics and biological activities. Int. J. Biol. Macromol. 2021, 167, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, N.; Ma, L.; Pei, D.; Di, D.; Liu, J. Polysaccharides from different cultivars of wolfberry: Physicochemical characteristics and protection against oxidative stress. Ind. Crops Prod. 2023, 197, 116548. [Google Scholar] [CrossRef]
- Mohammed, J.K.; Mahdi, A.A.; Ahmed, M.I.; Ma, M.; Wang, H. Preparation, deproteinization, characterization, and antioxidant activity of polysaccharide from Medemia argun fruit. Int. J. Biol. Macromol. 2020, 155, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Tian, J.; Wang, L.; Song, S.; Ai, C.; Janaswamy, S.; Wen, C. Fucoidan hydrogels induced by κ-carrageenan: Rheological, thermal and structural characterization. Int. J. Biol. Macromol. 2021, 191, 514–520. [Google Scholar] [CrossRef]
- Chen, G.; Chen, K.; Zhang, R.; Chen, X.; Hu, P.; Kan, J. Polysaccharides from bamboo shoots processing by-products: New insight into extraction and characterization. Food Chem. 2018, 245, 1113–1123. [Google Scholar] [CrossRef]
- Chen, G.J.; Hong, Q.-Y.; Ji, N.; Wu, W.N.; Ma, L.Z. Influences of different drying methods on the structural characteristics and prebiotic activity of polysaccharides from bamboo shoot (Chimonobambusa quadrangularis) residues. Int. J. Biol. Macromol. 2020, 155, 674–684. [Google Scholar] [CrossRef]
- Li, Q.; Dou, Z.; Duan, Q.; Chen, C.; Liu, R.; Jiang, Y.; Yang, B.; Fu, X. A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods: Antioxidant and bile acid-binding capacity. Food Sci. Hum. Wellness 2024, 13, 494–505. [Google Scholar] [CrossRef]
- Li, M.; Li, T.; Hu, X.; Ren, G.; Zhang, H.; Wang, Z.; Teng, Z.; Wu, R.; Wu, J. Structural, rheological properties and antioxidant activities of polysaccharides from mulberry fruits (Morus alba L.) based on different extraction techniques with superfine grinding pretreatment. Int. J. Biol. Macromol. 2021, 183, 1774–1783. [Google Scholar] [CrossRef]
- Ogawa, Y.; Putaux, J.L.; Nishiyama, Y. Crystallography of polysaccharides: Current state and challenges. Curr. Opin. Chem. Biol. 2022, 70, 102183. [Google Scholar] [CrossRef]
- Park, J.J.; Lee, W.Y. Anti-glycation effect of Ecklonia cava polysaccharides extracted by combined ultrasound and enzyme-assisted extraction. Int. J. Biol. Macromol. 2021, 180, 684–691. [Google Scholar] [CrossRef]
- Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxidative Med. Cell. Longev. 2020, 2020, 3818196. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, P.-P.; Huang, Q.; You, L.J.; Liu, R.H.; Zhao, M.-M.; Fu, X.; Luo, Z.-G. A comparison study on polysaccharides extracted from Fructus Mori using different methods: Structural characterization and glucose entrapment. Food Funct. 2019, 10, 3684–3695. [Google Scholar] [CrossRef]
- Jia, Y.; Gao, X.; Xue, Z.; Wang, Y.; Lu, Y.; Zhang, M.; Panichayupakaranant, P.; Chen, H. Characterization, antioxidant activities, and inhibition on α-glucosidase activity of corn silk polysaccharides obtained by different extraction methods. Int. J. Biol. Macromol. 2020, 163, 1640–1648. [Google Scholar] [CrossRef] [PubMed]
- Koh, H.S.A.; Lu, J.; Zhou, W. Structural Dependence of Sulfated Polysaccharide for Diabetes Management: Fucoidan From Undaria pinnatifida Inhibiting α-Glucosidase More Strongly Than α-Amylase and Amyloglucosidase. Front. Pharmacol. 2020, 11, 00831. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Jia, R.-B.; Ou, Z.-R.; Li, Z.-R.; Zhao, M.; Luo, D.; Lin, L. Comparative study on the structural characterization and α-glucosidase inhibitory activity of polysaccharide fractions extracted from Sargassum fusiforme at different pH conditions. Int. J. Biol. Macromol. 2022, 194, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.H.; Kim, D.W.; Curtis-Long, M.J.; Park, C.; Son, M.; Kim, J.Y.; Yuk, H.J.; Lee, K.W.; Park, K.H. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition. Eur. J. Med. Chem. 2016, 114, 201–208. [Google Scholar] [CrossRef]
- Lin, Y.S.; Chen, C.-R.; Wu, W.H.; Wen, C.-L.; Chang, C.I.; Hou, W.C. Anti-α-glucosidase and Anti-dipeptidyl Peptidase-IV Activities of Extracts and Purified Compounds from Vitis thunbergii var. taiwaniana. J. Agric. Food Chem. 2015, 63, 6393–6401. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Bai, J.; Bu, X.; Yin, Y.; Wang, L.; Yang, Y.; Xu, Y. Characterization of selenized polysaccharides from Ribes nigrum L. and its inhibitory effects on α-amylase and α-glucosidase. Carbohydr. Polym. 2021, 259, 117729. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Xia, Y.; Liu, D.; He, Y.; Mu, T.; Huo, Y.; Liu, J. Inhibitory effects of Lentinus edodes mycelia polysaccharide on α-glucosidase, glycation activity and high glucose-induced cell damage. Carbohydr. Polym. 2020, 246, 116659. [Google Scholar] [CrossRef]
- Jia, Y.; Xue, Z.; Wang, Y.; Lu, Y.; Li, R.; Li, N.; Wang, Q.; Zhang, M.; Chen, H. Chemical structure and inhibition on α-glucosidase of polysaccharides from corn silk by fractional precipitation. Carbohydr. Polym. 2021, 252, 117185. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Cao, X.; Kong, Y.; Mu, T.; Liu, J. Inhibitory mechanism of sinensetin on α-glucosidase and non-enzymatic glycation: Insights from spectroscopy and molecular docking analyses. Int. J. Biol. Macromol. 2021, 166, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tian, J.; Yang, W.; Chen, S.; Liu, D.; Fang, H.; Zhang, H.; Ye, X. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chem. 2020, 317, 126346. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zhang, Y.; Dai, F.; Liu, C.; Hu, H.; Zhang, Q. Advanced glycation end products and diabetes and other metabolic indicators. Diabetol. Metab. Syndr. 2022, 14, 104. [Google Scholar] [CrossRef]
- Koska, J.; Gerstein, H.C.; Beisswenger, P.J.; Reaven, P.D. Advanced glycation end products predict loss of renal function and high-risk chronic kidney disease in type 2 diabetes. Diabetes Care 2022, 45, 684–691. [Google Scholar] [CrossRef]
- Li, Q.; Li, J.; Li, H.; Xu, R.; Yuan, Y.; Cao, J. Physicochemical properties and functional bioactivities of different bonding state polysaccharides extracted from tomato fruit. Carbohydr. Polym. 2019, 219, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Nwokocha, L.M.; Williams, P.A. Rheological properties of a polysaccharide isolated from Adansonia digitata leaves. Food Hydrocoll. 2016, 58, 29–34. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, L.; Wang, J.; Zhang, Z.; Xu, X.; Yang, K.; Sun, P.; Liao, X.; Cai, M. Rheological behaviors of ethanol-fractional polysaccharides from Dendrobium officinale in aqueous solution: Effects of concentration, temperature, pH, and metal ions. Food Hydrocoll. 2023, 137, 108311. [Google Scholar] [CrossRef]
- Graessley, W.W. The Entanglement Concept in Polymer Rheology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–179. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, R.; Cao, N.; Sun, X.; Sui, Z.; Guo, Q. A systematical rheological study of polysaccharide from Sophora alopecuroides L. seeds. Carbohydr. Polym. 2018, 180, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Xu, X.; Ma, Y.; Jiang, H.; Yang, K.; Wang, R.; Gu, Y.; Li, S.; Qiu, Y.; Sun, D.; et al. Structure, rheology, and antifreeze property of the exopolysaccharide from Naematelia aurantialba through basidiospore fermentation. Food Hydrocoll. 2023, 142, 108848. [Google Scholar] [CrossRef]
- Arab, K.; Ghanbarzadeh, B.; Karimi, S.; Ebrahimi, B.; Hosseini, M. Gelling and rheological properties of a polysaccharide extracted from Ocimum album L. seed. Int. J. Biol. Macromol. 2023, 246, 125603. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, Y.; Liu, N.; Zhang, J.; Tan, G.; Kannan, B.; Liu, X.; Bell, A.E. Rheological properties of polysaccharides from Dioscorea opposita Thunb. Food Chem. 2017, 227, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lin, L.; Shen, M.; Wang, W.; Xiao, Y.; Xie, J. Effect of Mesona chinensis polysaccharide on the pasting, thermal and rheological properties of wheat starch. Int. J. Biol. Macromol. 2018, 118, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.L.; Zhang, J.C.; Liu, Y.; Sun, H.J.; Wang, J.H. Rheological properties of a polysaccharide from floral mushrooms cultivated in Huangshan Mountain. Carbohydr. Polym. 2016, 139, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Razi, S.M.; Motamedzadegan, A.; Shahidi, S.A.; Rashidinejad, A. Steady and dynamic shear rheology as a tool for evaluation of the interactions between egg white albumin and basil seed gum. Rheol. Acta 2020, 59, 317–331. [Google Scholar] [CrossRef]
EP-SP | GP-SP | |
---|---|---|
Yield (%) | 5.88 ± 0.87 a | 4.67 ± 1.33 b |
Protein | 1.65 ± 0.34 b | 2.12 ± 0.42 a |
Uronic acid | 22.33 ± 1.47 a | 22.44 ± 2.03 a |
Total sugar | 39.38 ± 0.59 a | 34.92 ± 1.43 b |
Fucose | 0.19 ± 0.11 a | 0.35 ± 0.49 a |
Rhamnose | 12.33 ± 1.54 a | 11.83 ± 1.49 a |
Arabinose | 5.90 ± 0.69 a | 4.99 ± 0.65 a |
Galactose | 10.91 ± 1.81 a | 11.06 ± 1.81 a |
Glucose | 49.29 ± 1.31 a | 47.90 ± 2.39 b |
Xylose | 1.69 ± 0.31 a | 2.00 ± 0.20 a |
Mannose | 2.09 ± 0.46 a | 2.20 ± 0.22 a |
Galacturonic Acid | 17.00 ± 2.78 b | 19.12 ± 3.08 a |
Gluconic Acid | 0.60 ± 0.14 a | 0.54 ± 0.09 a |
Mw (kDa) | 632.10 ± 3.61 a | 611.88 ± 6.93 b |
Mn (kDa) | 161.11 ± 8.82 a | 156.10 ± 7.83 b |
Mw/Mn | 3.93 ± 0.24 a | 3.93 ± 0.16 a |
EP-SP | GP-SP | |
---|---|---|
Tm (°C) | 159.87 ± 0.57 a | 139.08 ± 15.42 b |
ΔHm (J/g) | 231.02 ± 22.73 a | 187.36 ± 40.99 b |
To (°C) | 214.99 ± 0.91 a | 210.33 ± 1.36 a |
Tg (°C) | 226.17 ± 0.60 a | 225.70 ± 2.19 a |
ΔHg (J/g) | 13.93 ± 2.18 b | 18.74 ± 2.24 a |
Sample | EP-SP | GP-SP | ||||||
---|---|---|---|---|---|---|---|---|
IC50 | 2.7377 ± 0.12 | 2.4583 ± 0.19 | ||||||
Concentration (mg/mL) | 0 | 1 | 5 | 10 | 0 | 1 | 5 | 10 |
Km (mM) | 5.0845 | 2.7083 | 1.7716 | 0.8615 | 5.5557 | 2.7215 | 2.1084 | 0.8383 |
Vmax (ΔA405 min−1) | 0.1495 | 0.0800 | 0.0531 | 0.0238 | 0.1635 | 0.0789 | 0.0605 | 0.0229 |
Inhibition type | uncompetitive inhibition | uncompetitive inhibition | ||||||
Kis (mg/mL) | 2.0027 | 1.6682 | ||||||
Kq (M−1 s−1) | 4.1204 × 1012 | 6.8077 × 1012 | ||||||
KSV (M−1) | 4.1204 × 104 | 6.8077 × 104 | ||||||
Kα (M−1) | 3.3124 × 104 | 5.1352 × 105 | ||||||
N | 0.9830 | 1.1945 |
Models | Concentration (mg/mL) | Cross | Carreau–Yasuda | |||||||
---|---|---|---|---|---|---|---|---|---|---|
η0 | λ | m | R2 | η0 | λ | a | n | R2 | ||
EP-SP | 20 | 44.43 | 0.03 × 10−2 | 0.49 | 0.9824 | 44.45 | 0.02 × 10−2 | 0.48 | 0.41 | 0.9830 |
30 | 122.16 | 0.10 × 10−2 | 0.54 | 0.9890 | 117.28 | 0.14 × 10−2 | 0.76 | 0.36 | 0.9996 | |
40 | 299.04 | 0.24 × 10−2 | 0.61 | 0.9970 | 296.06 | 0.20 × 10−2 | 0.69 | 0.28 | 0.9995 | |
50 | 681.19 | 0.47 × 10−2 | 0.61 | 0.9982 | 707.97 | 0.25 × 10−2 | 0.56 | 0.24 | 0.9984 | |
60 | 1263.91 | 0.80 × 10−2 | 0.62 | 0.9984 | 1268.05 | 0.52 × 10−2 | 0.59 | 0.27 | 0.9993 | |
70 | 3419.22 | 1.75 × 10−2 | 0.63 | 0.9991 | 3715.92 | 1.17 × 10−2 | 0.56 | 0.27 | 0.9997 | |
GP-SP | 20 | 48.46 | 0.04 × 10−2 | 0.69 | 0.9855 | 48.47 | 0.03 × 10−2 | 0.68 | 0.26 | 0.9856 |
30 | 93.26 | 0.07 × 10−2 | 0.68 | 0.9953 | 92.95 | 0.06 × 10−2 | 0.70 | 0.21 | 0.9968 | |
40 | 230.67 | 0.16 × 10−2 | 0.67 | 0.9967 | 231.50 | 0.06 × 10−2 | 0.61 | 0.22 | 0.9974 | |
50 | 554.00 | 0.33 × 10−2 | 0.74 | 0.9999 | 543.52 | 0.22 × 10−2 | 0.63 | 0.24 | 0.9989 | |
60 | 949.50 | 0.62 × 10−2 | 0.62 | 0.9985 | 954.97 | 0.32 × 10−2 | 0.58 | 0.23 | 0.9990 | |
70 | 2425.54 | 1.06 × 10−2 | 0.66 | 0.9994 | 2369.90 | 1.03 × 10−2 | 0.65 | 0.33 | 0.9993 |
EP-SP | GP-SP | ||
---|---|---|---|
G′ = k′ωn′ | k′ | 9.1322 | 10.3313 |
n′ | 0.6792 | 0.6416 | |
R2 | 0.9973 | 0.9960 | |
G″ = k″ωn″ | k″ | 1.7953 | 3.3329 |
n″ | 0.9487 | 0.7845 | |
R2 | 0.9954 | 0.9824 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Huang, R.; Chen, G.; Guo, F.; Hu, Y. Effect of Planting Systems on the Physicochemical Properties and Bioactivities of Strawberry Polysaccharides. Foods 2025, 14, 238. https://doi.org/10.3390/foods14020238
Zhang Q, Huang R, Chen G, Guo F, Hu Y. Effect of Planting Systems on the Physicochemical Properties and Bioactivities of Strawberry Polysaccharides. Foods. 2025; 14(2):238. https://doi.org/10.3390/foods14020238
Chicago/Turabian StyleZhang, Qiuqiu, Renshuai Huang, Guangjing Chen, Fen Guo, and Yan Hu. 2025. "Effect of Planting Systems on the Physicochemical Properties and Bioactivities of Strawberry Polysaccharides" Foods 14, no. 2: 238. https://doi.org/10.3390/foods14020238
APA StyleZhang, Q., Huang, R., Chen, G., Guo, F., & Hu, Y. (2025). Effect of Planting Systems on the Physicochemical Properties and Bioactivities of Strawberry Polysaccharides. Foods, 14(2), 238. https://doi.org/10.3390/foods14020238