Thermal Characteristics and Kinetics of the Thermal Degradation of Sugar Beet Waste Leaves and Pulp in Relation to Chemical Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.1.1. Preparation of Dried Sugar Beet Leaves (SBLs)
2.1.2. Preparation of the Sugar Beet Leaf Pellets (SBPE)
2.1.3. Preparation of the Sugar Beet Pulp (SBPU)
2.1.4. Preparation of the Sugar Beet Fibrous Leaf Pulp (FLP) and Fibre-Rich Leaf Fraction (FRLF)
2.2. Determination of Chemical Composition
2.2.1. Determination of Moisture and Other Volatile Matter Content
2.2.2. Determination of Crude Ash
2.2.3. Determination of Fat Content
2.2.4. Determination of Nitrogen Content and Calculation of Crude Protein Content
2.2.5. Determination of Crude Fibers
2.2.6. Determination of Carbohydrates
2.2.7. Determination of Sugars
2.3. Determination of Water Activity (aw)
2.4. Thermal Analysis
2.5. Mathematical Models and Statistical Analysis
2.5.1. Kinetics of Thermal Degradation
2.5.2. Statistical Data Processing
3. Results
3.1. Chemical Composition and Water Activity (aw)
3.2. Thermal Analysis
3.2.1. DSC Analysis
3.2.2. TGA
3.2.3. Kinetic Analysis
4. Discussion
4.1. Chemical Composition and Water Activity
4.2. Thermal Analysis
4.2.1. DSC Analysis
4.2.2. Thermogravimetry
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zicari, S.; Zhang, R.; Kaffka, S. Sugar Beet. In Integrated Processing Technologies for Food and Agricultural By-Products; Academic Press: Cambridge, MA, USA, 2019; pp. 331–351. [Google Scholar] [CrossRef]
- Tayyab, M.; Wakeel, A.; Mubarak, M.U.; Artyszak, A.; Ali, S.; Hakki, E.E.; Mahmood, K.; Song, B.; Ishfaq, M. Sugar Beet Cultivation in the Tropics and Subtropics: Challenges and Opportunities. Agronomy 2023, 13, 1213. [Google Scholar] [CrossRef]
- Boincean, B.; Dent, D. Farming the Black Earth: Sustainable and Climate-Smart Management of Chernozem Soils. In Farming the Black Earth; Springer: Cham, Switzerland, 2019; pp. 1–209. [Google Scholar] [CrossRef]
- Garcia Gonzalez, M.N.; Björnsson, L. Life Cycle Assessment of the Production of Beet Sugar and Its By-Products. J. Clean. Prod. 2022, 346, 131211. [Google Scholar] [CrossRef]
- Aït-Kaddour, A.; Hassoun, A.; Tarchi, I.; Loudiyi, M.; Boukria, O.; Cahyana, Y.; Ozogul, F.; Khwaldia, K. Transforming Plant-Based Waste and by-Products into Valuable Products Using Various “Food Industry 4.0” Enabling Technologies: A Literature Review. Sci. Total Environ. 2024, 955, 176872. [Google Scholar] [CrossRef] [PubMed]
- Namdari, M.; Rafiee, S.; Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Hosseinpour, S. Use of LCA Indicators to Assess Iranian Sugar Production Systems: Case Study—Hamadan Province. Biomass Convers. Biorefin. 2022, 14, 6759–6772. [Google Scholar] [CrossRef]
- Tomaszewska, J.; Bieliński, D.; Binczarski, M.; Berlowska, J.; Dziugan, P.; Piotrowski, J.; Stanishevsky, A.; Witońska, I.A. Products of Sugar Beet Processing as Raw Materials for Chemicals and Biodegradable Polymers. RSC Adv. 2018, 8, 3161–3177. [Google Scholar] [CrossRef]
- Joanna, B.; Michal, B.; Piotr, D.; Agnieszka, W.; Dorota, K.; Izabela, W. Sugar Beet Pulp as a Source of Valuable Biotechnological Products. Adv. Biotechnol. Food Ind. 2018, 14, 359–392. [Google Scholar] [CrossRef]
- Patelski, P.; Berlowska, J.; Dziugan, P.; Pielech-Przybylska, K.; Balcerek, M.; Dziekonska, U.; Kalinowska, H. Utilisation of Sugar Beet Bagasse for the Biosynthesis of Yeast SCP. J. Food Eng. 2015, 167, 32–37. [Google Scholar] [CrossRef]
- Dukić, J.; Hunić, M.; Nutrizio, M.; Režek Jambrak, A. Influence of High-Power Ultrasound on Yield of Proteins and Specialized Plant Metabolites from Sugar Beet Leaves (Beta vulgaris Subsp. vulgaris var. altissima). Appl. Sci. 2022, 12, 8949. [Google Scholar] [CrossRef]
- Dukić, J.; Košpić, K.; Kelava, V.; Mavrić, R.; Nutrizio, M.; Balen, B.; Butorac, A.; Halil Öztop, M.; Režek Jambrak, A. Alternative Methods for RuBisCO Extraction from Sugar Beet Waste: A Comparative Approach of Ultrasound and High Voltage Electrical Discharge. Ultrason. Sonochem. 2023, 99, 106535. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Mihaylova, D.; Marangon, C.M.; Grigoletto, L.; Lante, A. Impact of Sample Pretreatment and Extraction Methods on the Bioactive Compounds of Sugar Beet (Beta vulgaris L.) Leaves. Molecules 2022, 27, 8110. [Google Scholar] [CrossRef]
- Rule, D.C.; Koch, D.W.; Jones, R.R.; Kercher, C.J. Brassica and Sugarbeet Forages for Lambs—Growth Performance of Lambs and Composition of Forage and Dock-Fat Fatty Acids. J. Prod. Agric. 1991, 4, 29–33. [Google Scholar] [CrossRef]
- Aramrueang, N.; Zicari, S.M.; Zhang, R.; Aramrueang, N.; Zicari, S.M.; Zhang, R. Response Surface Optimization of Enzymatic Hydrolysis of Sugar Beet Leaves into Fermentable Sugars for Bioethanol Production. Adv. Biosci. Biotechnol. 2017, 8, 51–67. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Bayram, I.; Mihaylova, D.; Lante, A. A Strategy to Minimize the Chlorophyll Content in the Phenolic Extract of Sugar Beet Leaves: Can This Extract Work as a Natural Antioxidant in Vegetable Oils? Food Bioprocess Technol. 2024, 1–14. [Google Scholar] [CrossRef]
- Zlatanović, S.; Ostojić, S.; Micić, D.; Rankov, S.; Dodevska, M.; Vukosavljević, P.; Gorjanović, S. Thermal Behaviour and Degradation Kinetics of Apple Pomace Flours. Thermochim. Acta 2019, 673, 17–25. [Google Scholar] [CrossRef]
- Roos, Y.H. Thermal Analysis, State Transitions and Food Quality. J. Therm. Anal. Calorim. 2003, 71, 197–203. [Google Scholar] [CrossRef]
- Ostojić, S.; Micić, D.; Zlatanović, S.; Lončar, B.; Filipović, V.; Pezo, L. Thermal Characterisation and Isoconversional Kinetic Analysis of Osmotically Dried Pork Meat Proteins Longissimus dorsi. Foods 2023, 12, 2867. [Google Scholar] [CrossRef]
- Parniakov, O.; Bals, O.; Barba, F.J.; Mykhailyk, V.; Lebovka, N.; Vorobiev, E. Application of Differential Scanning Calorimetry to Estimate Quality and Nutritional Properties of Food Products. Crit. Rev. Food Sci. Nutr. 2018, 58, 362–385. [Google Scholar] [CrossRef]
- Silva, J.; Teixeira, S.; Teixeira, J. A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective. Energies 2023, 16, 6705. [Google Scholar] [CrossRef]
- Fernandes, F.H.A.; Santana, C.P.; Santos, R.L.; Correia, L.P.; Conceição, M.M.; MacÊdo, R.O.; Medeiros, A.C.D. Thermal Characterization of Dried Extract of Medicinal Plant by DSC and Analytical Techniques. J. Therm. Anal. Calorim. 2013, 113, 443–447. [Google Scholar] [CrossRef]
- Guo, F.; Wu, F.; Mu, Y.; Hu, Y.; Zhao, X.; Meng, W.; Giesy, J.P.; Lin, Y. Characterization of Organic Matter of Plants from Lakes by Thermal Analysis in a N2 Atmosphere. Sci. Rep. 2016, 6, 22877. [Google Scholar] [CrossRef]
- López-Ortiz, A.; Navarrete Salgado, M.; Nair, P.K.; Balbuena Ortega, A.; Méndez-Lagunas, L.L.; Hernández-Díaz, W.N.; Guerrero, L. Improved Preservation of the Color and Bioactive Compounds in Strawberry Pulp Dried under UV-Blue Blocked Solar Radiation. Clean. Circ. Bioecon. 2024, 9, 100112. [Google Scholar] [CrossRef]
- ElGamal, R.; Song, C.; Rayan, A.M.; Liu, C.; Al-Rejaie, S.; ElMasry, G. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy 2023, 13, 1580. [Google Scholar] [CrossRef]
- Peñaloza, S.; Delesma, C.; Muñiz, J.; López-Ortiz, A. The Anthocyanin’s Role on the Food Metabolic Pathways, Color and Drying Processes: An Experimental and Theoretical Approach. Food Biosci. 2022, 47, 101700. [Google Scholar] [CrossRef]
- HRN ISO 6491:2001; Animal Feeding Stuffs—Determination of Phosphorus Content—Spectrometric Method (ISO 6491:1998). Available online: https://repozitorij.hzn.hr/norm/HRN+ISO+6491%3A2001 (accessed on 17 December 2024).
- HRN ISO 5984:2023; Animal Feeding Stuffs—Determination of Crude Ash (ISO 5984:2022). Available online: https://repozitorij.hzn.hr/norm/HRN+ISO+5984%3A2023 (accessed on 17 December 2024).
- HRN ISO 6492:2001; Animal Feeding Stuffs—Determination of Fat Content (ISO 6492:1999). Available online: https://repozitorij.hzn.hr/norm/HRN+ISO+6492%3A2001 (accessed on 17 December 2024).
- HRN EN ISO 5983-2:2008; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion/Steam Distillation Method (ISO 5983-2:2005; EN ISO 5983-2:2005). Available online: https://repozitorij.hzn.hr/norm/HRN+EN+ISO+5983-2%3A2008 (accessed on 17 December 2024).
- HRN ISO 6492:2001; HRN EN ISO 6865:2001 Animal Feeding Stuffs—Determination of Crude Fibre Content—Method with Intermediate Filtration (ISO 6865:2000; EN ISO 6865:2000). Available online: https://repozitorij.hzn.hr/norm/HRN+EN+ISO+6865%3A2001 (accessed on 17 December 2024).
- Gatta, G.D.; Richardson, M.J.; Sarge, S.M.; Stølen, S. Standards, Calibration, and Guidelines in Microcalorimetry. Part 2. Calibration for Differential Scanning Calorimetry (IUPAC Technical Report). Pure Appl. Chem. 2006, 78, 1455–1476. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Achilias, D.; Fernandez-Francos, X.; Galukhin, A.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Analysis of Thermal Polymerization Kinetics. Thermochim. Acta 2022, 714, 179243. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Friedman, H.L. Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic. J. Polym. Sci. Part C Polym. Symp. 1964, 6, 183–195. [Google Scholar] [CrossRef]
- Ortega, A. A Simple and Precise Linear Integral Method for Isoconversional Data. Thermochim. Acta 2008, 474, 81–86. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Vincent, L.; Sbirrazzuoli, N. Thermal Denaturation of Collagen Analyzed by Isoconversional Method. Macromol. Biosci. 2007, 7, 1181–1186. [Google Scholar] [CrossRef]
- Kumar, M.; Sabbarwal, S.; Mishra, P.K.; Upadhyay, S.N. Thermal Degradation Kinetics of Sugarcane Leaves (Saccharum officinarum L.) Using Thermo-Gravimetric and Differential Scanning Calorimetric Studies. Bioresour. Technol. 2019, 279, 262–270. [Google Scholar] [CrossRef]
- Ziemiński, K.; Romanowska, I.; Kowalska, M. Enzymatic Pretreatment of Lignocellulosic Wastes to Improve Biogas Production. Waste Manag. 2012, 32, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Syamaladevi, R.M.; Tang, J.; Villa-Rojas, R.; Sablani, S.; Carter, B.; Campbell, G. Influence of Water Activity on Thermal Resistance of Microorganisms in Low-Moisture Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 353–370. [Google Scholar] [CrossRef] [PubMed]
- Rouilly, A.; Jorda, J.; Rigal, L. Thermo-Mechanical Processing of Sugar Beet Pulp. II. Thermal and Rheological Properties of Thermoplastic SBP. Carbohydr. Polym. 2006, 66, 117–125. [Google Scholar] [CrossRef]
- Takizawa, T.; Nakata, Y. New Small Endothermic Peaks with Hysteresis Commonly Observed in the Differential Scanning Calorimetric Study of Biopolymer–Water Systems. Thermochim. Acta 2000, 352–353, 223–231. [Google Scholar] [CrossRef]
- Huang, X.; Dou, J.Y.; Li, D.; Wang, L.J. Effects of Superfine Grinding on Properties of Sugar Beet Pulp Powders. LWT 2018, 87, 203–209. [Google Scholar] [CrossRef]
- Akyüz, A.; Ersus, S. Optimization of Enzyme Assisted Extraction of Protein from the Sugar Beet (Beta vulgaris L.) Leaves for Alternative Plant Protein Concentrate Production. Food Chem. 2021, 335, 127673. [Google Scholar] [CrossRef]
- Xu, N.; Lu, C.; Zheng, T.; Qiu, S.; Liu, Y.; Zhang, D.; Xiao, D.; Liu, G. Enhanced Mechanical Properties of Carbon Fibre/Epoxy Composites via in Situ Coating-carbonisation of Micron-Sized Sucrose Particles on the Fibre Surface. Mater. Des. 2021, 200, 109458. [Google Scholar] [CrossRef]
- Jagadeesh, D.; Jeevan Prasad Reddy, D.; Varada Rajulu, A. Preparation and Properties of Biodegradable Films from Wheat Protein Isolate. J. Polym. Environ. 2011, 19, 248–253. [Google Scholar] [CrossRef]
- Sidi-Yacoub, B.; Oudghiri, F.; Belkadi, M.; Rodríguez-Barroso, R. Characterization of Lignocellulosic Components in Exhausted Sugar Beet Pulp Waste by TG/FTIR Analysis. J. Therm. Anal. Calorim. 2019, 138, 1801–1809. [Google Scholar] [CrossRef]
- Mironova, M.; Makarov, I.; Golova, L.; Vinogradov, M.; Shandryuk, G.; Levin, I. Improvement in Carbonization Efficiency of Cellulosic Fibres Using Silylated Acetylene and Alkoxysilanes. Fibers 2019, 7, 84. [Google Scholar] [CrossRef]
- Yıldız Uzun, Z. Hydrothermal Carbonization of Sugar Beet Pulp: Optimization and Characterization. Biomass Convers. Biorefin. 2024, 14, 21507–21521. [Google Scholar] [CrossRef]
- Singh, K.; Risse, M.; Das, K.C.; Worley, J. Determination of Composition of Cellulose and Lignin Mixtures Using Thermogravimetric Analysis. J. Energy Resour. Technol. Trans. ASME 2009, 131, 0222011–0222016. [Google Scholar] [CrossRef]
- Devrim, Y.G. Pyrolysis Kinetics of Blends of Yeni Çeltek Lignite and Sugar Beet Pulp. Energy Sources Part A Recovery Util. Environ. Eff. 2007, 30, 238–246. [Google Scholar] [CrossRef]
- Tian, W.W.; Xu, F.; Xing, S.J.; Wu, R.; Yuan, Z.Y. Comprehensive Study on the Thermal Decomposition Process of Waste Tobacco Leaves and Stems to Investigate Their Bioenergy Potential: Kinetic, Thermodynamic, and Biochar Analysis. Thermochim. Acta 2023, 723, 179473. [Google Scholar] [CrossRef]
- Prado, J.R.; Vyazovkin, S. Activation Energies of Water Vaporization from the Bulk and from Laponite, Montmorillonite, and Chitosan Powders. Thermochim. Acta 2011, 524, 197–201. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Tao, R.; Ye, J. Thermal Stability and Thermal Decomposition Kinetics of Ginkgo Biloba Leaves Waste Residue. Therm. Sci. 2018, 22, 1059–1069. [Google Scholar] [CrossRef]
- García Sánchez, G.F.; Rueda-Ordóñez, Y.J.; Chacón Velasco, J.L.; Martínez Morales, J.R. Kinetic Study of the Thermal Decomposition of Lippia origanoides Bagasse. Bioresour. Technol. Rep. 2021, 14, 100666. [Google Scholar] [CrossRef]
Parameter | Moisture (%) | aw | Proteins (%) | Total Fat (g/100 g) | Carbohydrates (%) | Ash (%) |
---|---|---|---|---|---|---|
SBL | 9.55 ± 0.07 a | 0.288 ± 0.003 d | 20.52 ± 0.38 d | 2.76 ± 0.03 d | 44.17 ± 0.14 d | 23.00 ± 0.28 a |
FRLF | 6.75 ± 0.01 d | 0.427 ± 0.008 a | 37.01 ± 0.05 a | 11.59 ± 0.20 a | 28.24 ± 0.36 e | 16.4 ± 0.14 c |
FLP | 7.50 ± 0.14 b | 0.361 ± 0.010 b | 21.40 ± 0.13 c | 4.12 ± 0.18 b | 57.97 ± 0.09 b | 9.00 ± 0.00 d |
SBPE | 5.75 ± 0.07 e | 0.226 ± 0.005 e | 27.63 ± 0.33 b | 3.46 ± 0.03 c | 45.65 ± 0.01 c | 17.50 ± 0.42 b |
SBPU | 7.20 ± 0.00 c | 0.325 ± 0.003 c | 9.36 ± 0.14 e | 0.38 ± 0.02 e | 78.25 ± 0.30 a | 4.80 ± 0.14 e |
I Loss (%) | II Loss | III Loss (%) | IV Loss (%) | Total Loss (%) | Residue (%) | |
---|---|---|---|---|---|---|
FLP | 7.2 ± 0.5 a | 52.8 ± 0.6 a | 9.6 ± 0.5 c | 4.5 ± 0.8 d | 74.0 ± 1.3 a | 25.8 ± 1.3 b |
FRLF | 6.8 ± 1.1 ab | 46.0 ± 0.9 b | 15.3 ± 0.6 b | 5.4 ± 0.7 cd | 73.3 ± 0.7 a | 26.7 ± 0.9 b |
SBL | 4.8 ± 1.0 bc | 44.8 ± 0.9 b | 13.8 ± 0.9 b | 8.2 ± 1.2 c | 71.5 ± 1.3 a | 28.6 ± 1.3 ab |
SBPE | 4.3 ± 0.8 c | 9.8 ± 1.0 d | 34.8 ± 0.8 a | 19.7 ± 1.2 b | 68.5 ± 0.8 b | 31.5 ± 0.9 a |
SBPU | 7.2 ± 0.5 a | 13.9 ± 0.6 c | 11.3 ± 1.0 c | 40.5 ± 1.4 a | 72.8 ± 0.5 a | 27.1 ± 1.5 b |
Ea (kJ/mol) | ln (A/min) | kp1 (1/min) | kp2 (1/min) | ||
---|---|---|---|---|---|
F | FRLF | 79.1 ± 17.4 b | 15.6 ± 4.1 b | 0.43 | - |
SBL | 155.0 ± 20.1 a | 36.1 ± 5.1 a | 2.58 | 75.1 | |
FLP | 66.3 ± 21.2 b | 12.4 ± 4.9 b | 0.19 | - | |
SBPE | 151.2 ± 8.1 a | 35.5 ± 2.1 a | 0.082 | 39.6 | |
SBPU | 144.3 ± 14.4 a | 30.0 ± 3.3 a | 0.024 | 5.2 | |
O | FRLF | 79.0 ± 17.6 b | 15.6 ± 4.2 b | 0.44 | - |
SBL | 154.1 ± 20.9 a | 35.8 ± 5.4 a | 2.55 | 70.4 | |
FLP | 66.2 ± 22.3 b | 12.3 ± 5.2 b | 0.19 | - | |
SBPE | 151.1 ± 8.5 a | 35.5 ± 2.2 a | 0.082 | 38.6 | |
SBPU | 143.9 ± 14.7 a | 29.9 ± 3.4 a | 0.024 | 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostojić, S.; Micić, D.; Dukić, J.; Sabljak, I.; Akyüz, A.; Ersus, S.; Režek Jambrak, A. Thermal Characteristics and Kinetics of the Thermal Degradation of Sugar Beet Waste Leaves and Pulp in Relation to Chemical Composition. Foods 2025, 14, 307. https://doi.org/10.3390/foods14020307
Ostojić S, Micić D, Dukić J, Sabljak I, Akyüz A, Ersus S, Režek Jambrak A. Thermal Characteristics and Kinetics of the Thermal Degradation of Sugar Beet Waste Leaves and Pulp in Relation to Chemical Composition. Foods. 2025; 14(2):307. https://doi.org/10.3390/foods14020307
Chicago/Turabian StyleOstojić, Sanja, Darko Micić, Josipa Dukić, Iva Sabljak, Ayça Akyüz, Seda Ersus, and Anet Režek Jambrak. 2025. "Thermal Characteristics and Kinetics of the Thermal Degradation of Sugar Beet Waste Leaves and Pulp in Relation to Chemical Composition" Foods 14, no. 2: 307. https://doi.org/10.3390/foods14020307
APA StyleOstojić, S., Micić, D., Dukić, J., Sabljak, I., Akyüz, A., Ersus, S., & Režek Jambrak, A. (2025). Thermal Characteristics and Kinetics of the Thermal Degradation of Sugar Beet Waste Leaves and Pulp in Relation to Chemical Composition. Foods, 14(2), 307. https://doi.org/10.3390/foods14020307