Extraction of Biomolecules from Coffee and Cocoa Agroindustry Byproducts Using Alternative Solvents
Abstract
:1. Introduction
2. Coffee and Cocoa Agroindustry Residues
2.1. Coffee
Byproduct | Composition | References | |||||||
---|---|---|---|---|---|---|---|---|---|
Protein (g/100 g) a | Lipids (g/100 g) a | Dietary Fiber (g/100 g) a | Cellulose (g/100 g) a | Lignin (g/100 g) a | Total Phenolic Compounds (mg GAE/g Byproduct) b | Caffeine (mg Caffeine/g Byproduct) | Moisture (g/100 g) | ||
CH | 6.6–11 | 0.5–3 | 26–32 | 16–43 | 6–24.5 | 4.55–10 | 1.3–9.8 | 5.7–11.98 | [8,11,34] |
CP | 4–16.2 | 1–2.9 | 12–24 | 10–63 | 14.3–31.5 | 0.56–4.53 | 18.6–31 | 5–11.6 | [10,11,38,39,40] |
PS | 0.4–3.1 | 0.3–0.9 | 89–92 | 40–60 | 25–35 | 2.28–2.84 | 1.45–58 | 7.6–11 | [10,11,34,41,42] |
SS | 12–20 | 2.1–5.8 | 54–74 | 10–23.8 | 17.8–30.2 | 3–17.3 | 10–36 | 4–7 | [10,11,34,35,43,44] |
CBS | 9–18.1 | 2–21 | 61–65.58 | 14–35 | 32.41–40.2 | 4.6–6.9 | 1.2–1.44 | 4.7–10.1 | [3,4,14,28,32] |
Byproduct | Current/Potential Uses | References |
---|---|---|
CH | Composting and vermicomposting production; Production of biofuels, ethanol, and biogas; Production of mushrooms, energy drinks, and energy bars; Application in polymers and ceramics; Food for cows, pigs, and fish; Production of silage and soil conditioners; Studies in fermentation processes as a substrate; Combustion; Extraction of bioactives: carotenoids, chlorogenic acids, and other polyphenols. | [5,29,34] |
CP | Fermentation as a substrate; Fertilizer; Mushroom production; Animal feed; Biofuel production; Pellet manufacturing. | [5,11,34] |
PS | Pyrolysis; Extraction of bioactive; Fermentation as a substrate and support for enzyme immobilization; Production of biofuels and biogas; Production of panels in civil construction. | [34,42] |
SS | Source of fiber in functional products; Color modifier in food; Functional beverages; Fertilizers; Energy source in boilers; Obtaining ethanol and methanol. | [5,11,34] |
CBS | Fertilizer; Biogas; Production of polymeric films; Production of functional beverages; Extraction of bioactive; Formulation of cakes, cookies, chocolates, and beverages; Fuel in boilers; Animal feed. | [3,14,15] |
2.2. Cocoa
3. Extraction of the Components of Interest from Coffee and Cocoa Residues
3.1. Principles of Biomolecule Extraction Processes
3.2. Extraction of Biomolecules Using Conventional Solvents
3.3. Extraction of Biomolecules with Alternative Solvents
3.3.1. Biobased Solvents
3.3.2. Supercritical Fluids
3.3.3. Supramolecular Solvents
3.3.4. Ionic Liquids and Eutectic Solvents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Cocoa Organization (ICCO). ICCO Quarterly Bulletin of Cocoa Statistics, Volume L, n° 3, Cocoa Year 2023/24. Published on 30 August 2024. Available online: https://www.icco.org/november-2024-quarterly-bulletin-of-cocoa-statistics/ (accessed on 4 December 2024).
- United States Department of Agriculture, Foreign Agricultural Service. Coffee: World Markets and Trade. Global Market Analysis, June 2024. Available online: https://www.fas.usda.gov/commodities/coffee (accessed on 4 December 2024).
- Botella-Martínez, C.; Lucas-Gonzalez, R.; Ballester-Costa, C.; Pérez-Álvarez, J.Á.; Fernández-López, J.; Delgado-Ospina, J.; Chaves-López, C.; Viuda-Martos, M. Ghanaian Cocoa (Theobroma cacao L.) Bean Shells Coproducts: Effect of Particle Size on Chemical Composition, Bioactive Compound Content and Antioxidant Activity. Agronomy 2021, 11, 401. [Google Scholar] [CrossRef]
- Mellinas, A.C.; Jiménez, A.; Garrigós, M.C. Optimization of Microwave-Assisted Extraction of Cocoa Bean Shell Waste and Evaluation of Its Antioxidant, Physicochemical and Functional Properties. LWT 2020, 127, 109361. [Google Scholar] [CrossRef]
- Murthy, P.S.; Madhava Naidu, M. Sustainable Management of Coffee Industry By-Products and Value Addition—A Review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Okiyama, D.C.G.; Soares, I.D.; Toda, T.A.; Oliveira, A.L.; Rodrigues, C.E.C. Effect of the Temperature on the Kinetics of Cocoa Bean Shell Fat Extraction Using Pressurized Ethanol and Evaluation of the Lipid Fraction and Defatted Meal. Ind. Crops Prod. 2019, 130, 96–103. [Google Scholar] [CrossRef]
- Prandi, B.; Ferri, M.; Monari, S.; Zurlini, C.; Cigognini, I.; Verstringe, S.; Schaller, D.; Walter, M.; Navarini, L.; Tassoni, A.; et al. Extraction and Chemical Characterization of Functional Phenols and Proteins from Coffee (Coffea arabica) by-Products. Biomolecules 2021, 11, 1571. [Google Scholar] [CrossRef]
- Gemechu, F.G. Embracing Nutritional Qualities, Biological Activities and Technological Properties of Coffee Byproducts in Functional Food Formulation. Trends Food Sci. Technol. 2020, 104, 235–261. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods Within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Durán-Aranguren, D.; Robledo, S.; Gomez-Restrepo, E.; Arboleda Valencia, J.; Tarazona, N. Scientometric Overview of Coffee By-Products and Their Applications. Molecules 2021, 26, 7605. [Google Scholar] [CrossRef]
- Bondam, A.F.; Diolinda da Silveira, D.; Pozzada dos Santos, J.; Hoffmann, J.F. Phenolic Compounds from Coffee By-Products: Extraction and Application in the Food and Pharmaceutical Industries. Trends Food Sci. Technol. 2022, 123, 172–186. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Sanin, A.; Rubio, S. Valorization of Spent Coffee Grounds by Supramolecular Solvent Extraction. Sep. Purif. Technol. 2019, 228, 115759. [Google Scholar] [CrossRef]
- Wen, L.; Álvarez, C.; Zhang, Z.; Poojary, M.M.; Lund, M.N.; Sun, D.W.; Tiwari, B.K. Optimisation and Characterisation of Protein Extraction from Coffee Silverskin Assisted by Ultrasound or Microwave Techniques. Biomass Convers. Biorefinery 2021, 11, 1575–1585. [Google Scholar] [CrossRef]
- Okiyama, D.C.G.; Navarro, S.L.B.; Rodrigues, C.E.C. Cocoa Shell and Its Compounds: Applications in the Food Industry. Trends Food Sci. Technol. 2017, 63, 103–112. [Google Scholar] [CrossRef]
- Belwal, T.; Cravotto, C.; Ramola, S.; Thakur, M.; Chemat, F.; Cravotto, G. Bioactive Compounds from Cocoa Husk: Extraction, Analysis and Applications in Food Production Chain. Foods 2022, 11, 798. [Google Scholar] [CrossRef] [PubMed]
- Rojo-Poveda, O.; Barbosa-Pereira, L.; Zeppa, G.; Stévigny, C. Cocoa Bean Shell—A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients 2020, 12, 1123. [Google Scholar] [CrossRef] [PubMed]
- Ruesgas-Ramón, M.; Suárez-Quiroz, M.L.; González-Ríos, O.; Baréa, B.; Cazals, G.; Figueroa-Espinoza, M.C.; Durand, E. Biomolecules Extraction from Coffee and Cocoa By- and Co-products Using Deep Eutectic Solvents. J. Sci. Food Agric. 2020, 100, 81–91. [Google Scholar] [CrossRef]
- Efthymiopoulos, I.; Hellier, P.; Ladommatos, N.; Russo-Profili, A.; Eveleigh, A.; Aliev, A.; Kay, A.; Mills-Lamptey, B. Influence of Solvent Selection and Extraction Temperature on Yield and Composition of Lipids Extracted from Spent Coffee Grounds. Ind. Crops Prod. 2018, 119, 49–56. [Google Scholar] [CrossRef]
- Chang, S.S.L.; Kong, Y.L.; Lim, W.X.; Ooi, J.; Ng, D.K.S.; Chemmangattuvalappil, N.G. Design of Alternate Solvent for Recovery of Residual Palm Oil: Simultaneous Optimization of Process Performance with Environmental, Health and Safety Aspects. Clean. Technol. Environ. Policy 2018, 20, 949–968. [Google Scholar] [CrossRef]
- Khor, S.Y.; Liam, K.Y.; Loh, W.X.; Tan, C.Y.; Ng, L.Y.; Hassim, M.H.; Ng, D.K.S.; Chemmangattuvalappil, N.G. Computer Aided Molecular Design for Alternative Sustainable Solvent to Extract Oil from Palm Pressed Fibre. Process Saf. Environ. Prot. 2017, 106, 211–223. [Google Scholar] [CrossRef]
- Armstrong, C. Longitudinal Neuropsychological Effects of N-Hexane Exposure: Neurotoxic Effects versus Depression. Arch. Clin. Neuropsychol. 1995, 10, 1–19. [Google Scholar] [CrossRef]
- Cravotto, C.; Fabiano-Tixier, A.-S.; Claux, O.; Abert-Vian, M.; Tabasso, S.; Cravotto, G.; Chemat, F. Towards Substitution of Hexane as Extraction Solvent of Food Products and Ingredients with No Regrets. Foods 2022, 11, 3412. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Tobón, J.F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Chen, Q.; Chaihu, L.; Yao, X.; Cao, X.; Bi, W.; Lin, J.; Chen, D.D.Y. Molecular Property-Tailored Soy Protein Extraction Process Using a Deep Eutectic Solvent. ACS Sustain. Chem. Eng. 2021, 9, 10083–10092. [Google Scholar] [CrossRef]
- Ballesteros-Gómez, A.; Lunar, L.; Sicilia, M.D.; Rubio, S. Hyphenating Supramolecular Solvents and Liquid Chromatography: Tips for Efficient Extraction and Reliable Determination of Organics. Chromatographia 2019, 82, 111–124. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green Extraction of Natural Products. Origins, Current Status, and Future Challenges. Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- United Nations Development Programme Sustainable Development Goals. Available online: https://www.undp.org/sustainable-development-goals (accessed on 30 November 2024).
- Soares, I.D.; Okiyama, D.C.G.; Rodrigues, C.E. da C. Simultaneous Green Extraction of Fat and Bioactive Compounds of Cocoa Shell and Protein Fraction Functionalities Evaluation. Food Res. Int. 2020, 137, 109622. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.d.O.; Honfoga, J.N.B.; de Medeiros, L.L.; Madruga, M.S.; Bezerra, T.K.A. Obtaining Bioactive Compounds from the Coffee Husk (Coffea arabica L.) Using Different Extraction Methods. Molecules 2020, 26, 46. [Google Scholar] [CrossRef] [PubMed]
- Amran, M.A.; Palaniveloo, K.; Fauzi, R.; Satar, N.M.; Mohidin, T.B.M.; Mohan, G.; Razak, S.A.; Arunasalam, M.; Nagappan, T.; Sathiya Seelan, J.S. Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques. Sustainability 2021, 13, 11432. [Google Scholar] [CrossRef]
- Panić, M.; Andlar, M.; Tišma, M.; Rezić, T.; Šibalić, D.; Cvjetko Bubalo, M.; Radojčić Redovniković, I. Natural Deep Eutectic Solvent as a Unique Solvent for Valorisation of Orange Peel Waste by the Integrated Biorefinery Approach. Waste Manag. 2021, 120, 340–350. [Google Scholar] [CrossRef]
- Mariatti, F.; Gunjević, V.; Boffa, L.; Cravotto, G. Process Intensification Technologies for the Recovery of Valuable Compounds from Cocoa By-Products. Innov. Food Sci. Emerg. Technol. 2021, 68, 102601. [Google Scholar] [CrossRef]
- Beltrán-Ramírez, F.; Orona-Tamayo, D.; Cornejo-Corona, I.; Luz Nicacio González-Cervantes, J.; de Jesús Esparza-Claudio, J.; Quintana-Rodríguez, E. Agro-Industrial Waste Revalorization: The Growing Biorefinery. In Biomass for Bioenergy—Recent Trends and Future Challenges. IntechOpen 2019, 11, 13. [Google Scholar]
- Hejna, A. Potential Applications of By-Products from the Coffee Industry in Polymer Technology—Current State and Perspectives. Waste Manag. 2021, 121, 296–330. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.F.; Alves, R.C.; Costa, A.S.G.; Nunes, M.A.; Oliveira, M.B.P.P. Coffea canephora Silverskin from Different Geographical Origins: A Comparative Study. Sci. Total Environ. 2018, 645, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.J.; Macrae, R.C. (Eds.) Coffee; Springer: Dordrecht, The Netherlands, 1987; ISBN 978-94-010-8028-6. [Google Scholar]
- Soares, M.; Christen, P.; Pandey, A.; Soccol, C.R. Fruity Flavour Production by Ceratocystis Fimbriata Grown on Coffee Husk in Solid-State Fermentation. Process Biochem. 2000, 35, 857–861. [Google Scholar] [CrossRef]
- Arango-Agudelo, E.; Rendón-Muñóz, Y.; Cadena-Chamorro, E.; Santa, J.F.; Buitrago-Sierra, R. Evaluation of Colombian Coffee Waste to Produce Antioxidant Extracts. Bioresources 2023, 18, 5703–5723. [Google Scholar] [CrossRef]
- Esquivel, P.; Jiménez, V.M. Functional Properties of Coffee and Coffee By-Products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Santos, É.M.d.; Macedo, L.M.d.; Tundisi, L.L.; Ataide, J.A.; Camargo, G.A.; Alves, R.C.; Oliveira, M.B.P.P.; Mazzola, P.G. Coffee By-Products in Topical Formulations: A Review. Trends Food Sci. Technol. 2021, 111, 280–291. [Google Scholar] [CrossRef]
- Elba, C.-C.; Bonilla-Leiva, A.R.; Eva, G.-V. Coffee Berry Processing By-Product Valorization: Coffee Parchment as a Potential Fiber Source to Enrich Bakery Goods. J. Food Nutr. Popul. Health 2017, 1, 2–12. [Google Scholar]
- Mirón-Mérida, V.A.; Yáñez-Fernández, J.; Montañez-Barragán, B.; Barragán Huerta, B.E. Valorization of Coffee Parchment Waste (Coffea arabica) as a Source of Caffeine and Phenolic Compounds in Antifungal Gellan Gum Films. LWT 2019, 101, 167–174. [Google Scholar] [CrossRef]
- Blinová, L.; Sirotiak, M.; Bartošová, A.; Soldán, M. Review: Utilization of Waste From Coffee Production. Res. Pap. Fac. Mater. Sci. Technol. Slovak. Univ. Technol. 2017, 25, 91–101. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Schwarz, S.; Rieke-Zapp, J.; Cantergiani, E.; Rawel, H.; Martín-Cabrejas, M.A.; Martuscelli, M.; Gottstein, V.; Angeloni, S. Coffee By-Products as Sustainable Novel Foods: Report of the 2nd International Electronic Conference on Foods—“Future Foods and Food Technologies for a Sustainable World”. Foods 2021, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- González-González, G.M.; Palomo-Ligas, L.; Nery-Flores, S.D.; Ascacio-Valdés, J.A.; Sáenz-Galindo, A.; Flores-Gallegos, A.C.; Zakaria, Z.A.; Aguilar, C.N.; Rodríguez-Herrera, R. Coffee Pulp as a Source for Polyphenols Extraction Using Ultrasound, Microwave, and Green Solvents. Environ. Qual. Manag. 2022, 32, 451–461. [Google Scholar] [CrossRef]
- Bertolino, M.; Barbosa-Pereira, L.; Ghirardello, D.; Botta, C.; Rolle, L.; Guglielmetti, A.; Borotto Dalla Vecchia, S.; Zeppa, G. Coffee Silverskin as Nutraceutical Ingredient in Yogurt: Its Effect on Functional Properties and Its Bioaccessibility. J. Sci. Food Agric. 2019, 99, 4267–4275. [Google Scholar] [CrossRef] [PubMed]
- de Barros, H.E.A.; Natarelli, C.V.L.; de Abreu, D.J.M.; de Oliveira, A.L.M.; do Lago, R.C.; Dias, L.L.d.C.; de Carvalho, E.E.N.; Bilal, M.; Ruiz, H.A.; Franco, M.; et al. Application of Chemometric Tools in the Development of Food Bars Based on Cocoa Shell, Soy Flour and Green Banana Flour. Int. J. Food Sci. Technol. 2021, 56, 5296–5304. [Google Scholar] [CrossRef]
- Soares, I.D.; Cirilo, M.E.M.; Junqueira, I.G.; Vanin, F.M.; Rodrigues, C.E. da C. Production of Cookies Enriched with Bioactive Compounds through the Partial Replacement of Wheat Flour by Cocoa Bean Shells. Foods 2023, 12, 436. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective Extraction of Bioactive Compounds from Plants Using Recent Extraction Techniques: A Review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef] [PubMed]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Rubio, S. Green Solvents for the Extraction of High Added-Value Compounds from Agri-Food Waste. Food Eng. Rev. 2020, 12, 83–100. [Google Scholar] [CrossRef]
- Patrice Didion, Y.; Gijsbert Tjalsma, T.; Su, Z.; Malankowska, M.; Pinelo, M. What Is next? The Greener Future of Solid Liquid Extraction of Biobased Compounds: Novel Techniques and Solvents Overpower Traditional Ones. Sep. Purif. Technol. 2023, 320, 124147. [Google Scholar] [CrossRef]
- Silva, J.M.; Peyronel, F.; Huang, Y.; Boschetti, C.E.; Corradini, M.G. Extraction, Identification, and Quantification of Polyphenols from the Theobroma cacao L. Fruit: Yield vs. Environmental Friendliness. Foods 2024, 13, 2397. [Google Scholar] [CrossRef]
- Wypych, G. (Ed.) Handbook of Solvents; ChemTec Pu.: Toronto, ON, Canada, 2014; Volume 2, ISBN 978-1-895198-65-2. [Google Scholar]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Coscarella, M.; Nardi, M.; Alipieva, K.; Bonacci, S.; Popova, M.; Procopio, A.; Scarpelli, R.; Simeonov, S. Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs. Antioxidants 2023, 13, 62. [Google Scholar] [CrossRef] [PubMed]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry By-Products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef]
- Vinitha, U.G.; Sathasivam, R.; Muthuraman, M.S.; Park, S.U. Intensification of Supercritical Fluid in the Extraction of Flavonoids: A Comprehensive Review. Physiol. Mol. Plant Pathol. 2022, 118, 101815. [Google Scholar] [CrossRef]
- Goti, D.; Dasgupta, S. A Comprehensive Review of Conventional and Non-Conventional Solvent Extraction Techniques. J. Pharmacogn. Phytochem. 2023, 12, 202–211. [Google Scholar] [CrossRef]
- Patra, A.; Abdullah, S.; Pradhan, R.C. Review on the Extraction of Bioactive Compounds and Characterization of Fruit Industry By-Products. Bioresour. Bioprocess 2022, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Benítez, V.; Bartolomé, B.; Aguilera, Y.; Martín-Cabrejas, M.A. Revalorization of Coffee Husk: Modeling and Optimizing the Green Sustainable Extraction of Phenolic Compounds. Foods 2021, 10, 653. [Google Scholar] [CrossRef]
- Macías-Garbett, R.; Sosa-Hernández, J.E.; Iqbal, H.M.N.; Contreras-Esquivel, J.C.; Chen, W.N.; Melchor-Martínez, E.M.; Parra-Saldívar, R. Combined Pulsed Electric Field and Microwave-Assisted Extraction as a Green Method for the Recovery of Antioxidant Compounds with Electroactive Potential from Coffee Agro-Waste. Plants 2022, 11, 2362. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, Y.; Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Martín-Cabrejas, M.A. Response Surface Methodology to Optimise the Heat-Assisted Aqueous Extraction of Phenolic Compounds from Coffee Parchment and Their Comprehensive Analysis. Food Funct. 2019, 10, 4739–4750. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Zhang, Z.; Rai, D.; Sun, D.; Tiwari, B.K. Ultrasound-assisted Extraction (UAE) of Bioactive Compounds from Coffee Silverskin: Impact on Phenolic Content, Antioxidant Activity, and Morphological Characteristics. J. Food Process Eng. 2019, 42, e13191. [Google Scholar] [CrossRef]
- Tello, J.; Viguera, M.; Calvo, L. Extraction of Caffeine from Robusta Coffee (Coffea canephora Var. Robusta) Husks Using Supercritical Carbon Dioxide. J. Supercrit. Fluids 2011, 59, 53–60. [Google Scholar] [CrossRef]
- Moreira, M.D.; Melo, M.M.; Coimbra, J.M.; Reis, K.C.d.; Schwan, R.F.; Silva, C.F. Solid Coffee Waste as Alternative to Produce Carotenoids with Antioxidant and Antimicrobial Activities. Waste Manag. 2018, 82, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Román-Montalvo, D.; Sánchez, A.; Lorenzana-Licea, E.; Domínguez, Z.; Matus, M.H. Extraction of Caffeine from Coffee Husk Employing Choline-Based Ionic Liquids: Optimization of the Process and Theoretical Study on Solute-Salts Interactions. J. Mol. Liq. 2024, 398, 124286. [Google Scholar] [CrossRef]
- Tolesa, L.D.; Gupta, B.S.; Lee, M.-J. Treatment of Coffee Husk with Ammonium-Based Ionic Liquids: Lignin Extraction, Degradation, and Characterization. ACS Omega 2018, 3, 10866–10876. [Google Scholar] [CrossRef] [PubMed]
- Andrade, K.S.; Gonalvez, R.T.; Maraschin, M.; Ribeiro-Do-Valle, R.M.; Martínez, J.; Ferreira, S.R.S. Supercritical Fluid Extraction from Spent Coffee Grounds and Coffee Husks: Antioxidant Activity and Effect of Operational Variables on Extract Composition. Talanta 2012, 88, 544–552. [Google Scholar] [CrossRef]
- Thaiphanit, S.; Wedprasert, W.; Srabua, A. Conventional and Microwave-Assisted Extraction for Bioactive Compounds from Dried Coffee Cherry Peel by-Products and Antioxidant Activity of the Aqueous Extracts. ScienceAsia 2020, 46S, 12–18. [Google Scholar] [CrossRef]
- Barcellos Silva, I.G.C.; Antonio, A.d.S.; de Carvalho, E.M.; dos Santos, G.R.C.; Pereira, H.M.G.; Veiga Junior, V.F. da Method Optimization for the Extraction of Chlorogenic Acids from Coffee Parchment: An Ecofriendly Alternative. Food Chem. 2024, 458, 139842. [Google Scholar] [CrossRef]
- da Silva, M.R.; Jelley, R.E.; Carneiro, R.L.; Fedrizzi, B.; Weber, C.C.; Funari, C.S. Green Solvents for the Selective Extraction of Bioactive Compounds from By-Products of the Coffee Production Chain. Innov. Food Sci. Emerg. 2023, 86, 103365. [Google Scholar] [CrossRef]
- Zhang, Z.; Poojary, M.M.; Choudhary, A.; Rai, D.K.; Lund, M.N.; Tiwari, B.K. Ultrasound Processing of Coffee Silver Skin, Brewer’s Spent Grain and Potato Peel Wastes for Phenolic Compounds and Amino Acids: A Comparative Study. J. Food Sci. Technol. 2021, 58, 2273–2282. [Google Scholar] [CrossRef] [PubMed]
- Nasti, R.; Galeazzi, A.; Marzorati, S.; Zaccheria, F.; Ravasio, N.; Bozzano, G.L.; Manenti, F.; Verotta, L. Valorisation of Coffee Roasting By-Products: Recovery of Silverskin Fat By Supercritical CO2 Extraction. Waste Biomass Valorization 2021, 12, 6021–6033. [Google Scholar] [CrossRef]
- Brzezińska, R.; Wirkowska-Wojdyła, M.; Piasecka, I.; Górska, A. Application of Response Surface Methodology to Optimize the Extraction Process of Bioactive Compounds Obtained from Coffee Silverskin. Appl. Sci. 2023, 13, 5388. [Google Scholar] [CrossRef]
- Kulkarni, R.M.; Mentha, S.S.; Aishwarya, R.; Mascarenhas, E.W.; Polavarapu, S.; Appaiah, T. Valorization of Waste Coffee Silverskin as a Source of Antioxidant by Extraction with Agitation. Environ. Qual. Manag. 2024, 34, e22209. [Google Scholar] [CrossRef]
- Peixoto, J.A.B.; Andrade, N.; Machado, S.; Costa, A.S.G.; Puga, H.; Oliveira, M.B.P.P.; Martel, F.; Alves, R.C. Valorizing Coffee Silverskin Based on Its Phytochemicals and Antidiabetic Potential: From Lab to a Pilot Scale. Foods 2022, 11, 1671. [Google Scholar] [CrossRef] [PubMed]
- Buyong, N.L.; Nillian, E. Physiochemical Properties of Sarawak’s Adapted Liberica Coffee Silverskin Utilizing Varying Solvents. Food Sci. Nutr. 2023, 11, 6052–6059. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Rubio, S. Supramolecular Solvent Extraction of Bioactives from Coffee Cherry Pulp. J. Food Eng. 2020, 278, 109933. [Google Scholar] [CrossRef]
- Tran, T.M.K.; Akanbi, T.O.; Kirkman, T.; Nguyen, M.H.; Vuong, Q. Van Recovery of Phenolic Compounds and Antioxidants from Coffee Pulp (Coffea canephora) Waste Using Ultrasound and Microwave-Assisted Extraction. Processes 2022, 10, 1011. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Zeppa, G.; Ferrocino, I.; Stévigny, C.; Barbosa-Pereira, L. Chemometric Classification of Cocoa Bean Shells Based on Their Polyphenolic Profile Determined by RP-HPLC-PDA Analysis and Spectrophotometric Assays. Antioxidants 2021, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Jokić, S.; Nastić, N.; Vidović, S.; Flanjak, I.; Aladić, K.; Vladić, J. An Approach to Value Cocoa Bean By-Product Based on Subcritical Water Extraction and Spray Drying Using Different Carriers. Sustainability 2020, 12, 2174. [Google Scholar] [CrossRef]
- Jensch, C.; Schmidt, A.; Strube, J. Versatile Green Processing for Recovery of Phenolic Compounds from Natural Product Extracts towards Bioeconomy and Cascade Utilization for Waste Valorization on the Example of Cocoa Bean Shell (CBS). Sustainability 2022, 14, 3126. [Google Scholar] [CrossRef]
- Mazzutti, S.; Rodrigues, L.G.G.; Mezzomo, N.; Venturi, V.; Ferreira, S.R.S. Integrated Green-Based Processes Using Supercritical CO2 and Pressurized Ethanol Applied to Recover Antioxidant Compouds from Cocoa (Theobroma cacao) Bean Hulls. J. Supercrit. Fluids 2018, 135, 52–59. [Google Scholar] [CrossRef]
- Okiyama, D.C.G.; Soares, I.D.; Cuevas, M.S.; Crevelin, E.J.; Moraes, L.A.B.; Melo, M.P.; Oliveira, A.L.; Rodrigues, C.E.C. Pressurized Liquid Extraction of Flavanols and Alkaloids from Cocoa Bean Shell Using Ethanol as Solvent. Food Res. Int. 2018, 114, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Correa, E.; Bastías-Montes, J.M.; Acuña-Nelson, S.; Muñoz-Fariña, O. Effect of Choline Chloride-Based Deep Eutectic Solvents on Polyphenols Extraction from Cocoa (Theobroma cacao L.) Bean Shells and Antioxidant Activity of Extracts. Curr. Res. Food Sci. 2023, 7, 100614. [Google Scholar] [CrossRef] [PubMed]
- Valencia, A.; Elías-Peñafiel, C.; Encina-Zelada, C.R.; Anticona, M.; Ramos-Escudero, F. Circular Bioeconomy for Cocoa By-Product Industry: Development of Whey Protein-Cocoa Bean Shell Concentrate Particles Obtained by Spray-Drying and Freeze-Drying for Commercial Applications. Food Bioprod. Process. 2024, 146, 38–48. [Google Scholar] [CrossRef]
- Ramos-Escudero, F.; Rojas-García, A.; Cádiz-Gurrea, M.d.l.L.; Segura-Carretero, A. High Potential Extracts from Cocoa Byproducts through Sonotrode Optimal Extraction and a Comprehensive Characterization. Ultrason. Sonochem. 2024, 106, 106887. [Google Scholar] [CrossRef] [PubMed]
- Švarc-Gajić, J.; Brezo-Borjan, T.; Dzedik, V.; Rodrigues, F.; Morais, S.; Delerue-Matos, C. ESG Approach in the Valorization of Cocoa (Theobroma Cacao) by-Products by Subcritical Water: Application in the Cosmetic Industry. Sustain. Chem. Pharm. 2023, 31, 100908. [Google Scholar] [CrossRef]
- Llerena, W.; Samaniego, I.; Vallejo, C.; Arreaga, A.; Zhunio, B.; Coronel, Z.; Quiroz, J.; Angós, I.; Carrillo, W. Profile of Bioactive Components of Cocoa (Theobroma cacao L.) By-Products from Ecuador and Evaluation of Their Antioxidant Activity. Foods 2023, 12, 2583. [Google Scholar] [CrossRef] [PubMed]
- Pagliari, S.; Celano, R.; Rastrelli, L.; Sacco, E.; Arlati, F.; Labra, M.; Campone, L. Extraction of Methylxanthines by Pressurized Hot Water Extraction from Cocoa Shell By-Product as Natural Source of Functional Ingredient. LWT 2022, 170, 114115. [Google Scholar] [CrossRef]
- Pavlović, N.; Jokić, S.; Jakovljević, M.; Blažić, M.; Molnar, M. Green Extraction Methods for Active Compounds from Food Waste—Cocoa Bean Shell. Foods 2020, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Pavlović, N.; Jakovljević, M.; Molnar, M.; Jokić, S. Ultrasound-Assisted Extraction of Active Compounds from Cocoa Bean Shell. Sci. Prof. J. Nutr. Diet. 2021, 10, 77–88. [Google Scholar]
- Disca, V.; Travaglia, F.; Carini, C.; Coïsson, J.D.; Cravotto, G.; Arlorio, M.; Locatelli, M. Improving the Extraction of Polyphenols from Cocoa Bean Shells by Ultrasound and Microwaves: A Comparative Study. Antioxidants 2024, 13, 1097. [Google Scholar] [CrossRef] [PubMed]
- Huynh, G.H.; Van Pham, H.; Hong Nguyen, H.V. Effects of Enzymatic and Ultrasonic-Assisted Extraction of Bioactive Compounds from Cocoa Bean Shells. J. Food Meas. Charact. 2023, 17, 4650–4660. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef]
- Cañadas, R.; Díaz, I.; Rodríguez, M.; González, E.J.; González-Miquel, M. An Integrated Approach for Sustainable Valorization of Winery Wastewater Using Bio-Based Solvents for Recovery of Natural Antioxidants. J. Clean. Prod. 2022, 334, 130181. [Google Scholar] [CrossRef]
- Ballesteros-Gómez, A.; Caballero-Casero, N.; García-Fonseca, S.; Lunar, L.; Rubio, S. Multifunctional Vesicular Coacervates as Engineered Supramolecular Solvents for Wastewater Treatment. Chemosphere 2019, 223, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Musarurwa, H.; Tavengwa, N.T. Supramolecular Solvent-Based Micro-Extraction of Pesticides in Food and Environmental Samples. Talanta 2021, 223, 121515. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.-H.; Wang, J.-D.; Wang, L.-T.; Zhang, S.; Yan, X.-Y.; Wang, Y.-Q.; Zhao, P.-Q.; Fu, L.-N.; Zhao, C.-J.; Yang, Q.; et al. Green Efficient Octanoic Acid Based Supramolecular Solvents for Extracting Active Ingredients from Zanthoxylum Bungeanum Maxim. Peels. J. Clean. Prod. 2022, 331, 129731. [Google Scholar] [CrossRef]
- Yang, X.; Ji, Q.; Liu, J.; Liu, Y. In Situ Supramolecular Polymerization via Organometallic-Catalyzed Macromolecular Metamorphosis. CCS Chem. 2023, 5, 761–771. [Google Scholar] [CrossRef]
- Azizi, M.; Tasharofi, S.; Koolivand, A.; Oloumi, A.; Rion, H.; Khaledi, M.G. Improving Identification of Low Abundance and Hydrophobic Proteins Using Fluoroalcohol Mediated Supramolecular Biphasic Systems with Quaternary Ammonium Salts. J. Chromatogr. A 2021, 1655, 462483. [Google Scholar] [CrossRef]
- Bravo, J.; Juániz, I.; Monente, C.; Caemmerer, B.; Kroh, L.W.; De Peña, M.P.; Cid, C. Evaluation of Spent Coffee Obtained from the Most Common Coffeemakers as a Source of Hydrophilic Bioactive Compounds. J. Agric. Food Chem. 2012, 60, 12565–12573. [Google Scholar] [CrossRef] [PubMed]
- Bouhzam, I.; Cantero, R.; Balcells, M.; Margallo, M.; Aldaco, R.; Bala, A.; Fullana-i-Palmer, P.; Puig, R. Environmental and Yield Comparison of Quick Extraction Methods for Caffeine and Chlorogenic Acid from Spent Coffee Grounds. Foods 2023, 12, 779. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Gómez, A.; Rubio, S. Environment-Responsive Alkanol-Based Supramolecular Solvents: Characterization and Potential as Restricted Access Property and Mixed-Mode Extractants. Anal. Chem. 2012, 84, 342–349. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Cannavacciuolo, C.; Pagliari, S.; Frigerio, J.; Giustra, C.M.; Labra, M.; Campone, L. Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods 2022, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- López, R.; D’Amato, R.; Trabalza-Marinucci, M.; Regni, L.; Proietti, P.; Maratta, A.; Cerutti, S.; Pacheco, P. Green and Simple Extraction of Free Seleno-Amino Acids from Powdered and Lyophilized Milk Samples with Natural Deep Eutectic Solvents. Food Chem. 2020, 326, 126965. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Yang, Z. Toxicity and Biodegradability of Deep Eutectic Solvents. In Deep Eutectic Solvents; Rámon, J.D., Guillena, G., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 43–60. [Google Scholar]
- Frade, R.F.M.; Simeonov, S.; Rosatella, A.A.; Siopa, F.; Afonso, C.A.M. Toxicological Evaluation of Magnetic Ionic Liquids in Human Cell Lines. Chemosphere 2013, 92, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Hayyan, M.; Hashim, M.A.; Hayyan, A.; Al-Saadi, M.A.; AlNashef, I.M.; Mirghani, M.E.S.; Saheed, O.K. Are Deep Eutectic Solvents Benign or Toxic? Chemosphere 2013, 90, 2193–2195. [Google Scholar] [CrossRef]
- Vieira, V.; Prieto, M.A.; Barros, L.; Coutinho, J.A.P.; Ferreira, I.C.F.R.; Ferreira, O. Enhanced Extraction of Phenolic Compounds Using Choline Chloride Based Deep Eutectic Solvents from Juglans regia L. Ind. Crops Prod. 2018, 115, 261–271. [Google Scholar] [CrossRef]
Byproduct | Extraction Target | Solvent | Extraction Conditions | Extraction Method | Results | References |
---|---|---|---|---|---|---|
CH | Total phenolic compounds | Methanol | 90 min 100 °C | Conventional | 15.99 mg GAE a/g extract | [62] |
Total phenolic compounds Flavonoids | Water–ethanol (1:1 v/v) | 60 min 60 °C 60 min 40 kHz 35 °C | Conventional Ultrasonic bath-assisted extraction | 97.89 mg CGA b/g CH 9.93 mg CE c/g CH 90.95 mg CGA b/g CH 15.69 mg CE c/gCH | [29] | |
Caffeine | Supercritical carbon dioxide (CO2) | 300 Bar 373 K | SFE | 84% caffeine extraction yield | [66] | |
Carotenoids | Acetone–methanol (7:3 v/v) | 30 min 55 °C | Conventional | 221.35 mg β-carotene/L extract | [67] | |
Caffeine | Ethanol ILs (choline hexanoate) | 7 h 78 °C 37 min 70 °C | Soxhlet Conventional | 823 mg caffeine/kg CH 4221.1 mg caffeine/kg CH | [68] | |
Lignin | ILs (diisopropylethylammonium acetate) | 4 h 120 °C | Conventional | 71.2% lignin extraction yield | [69] | |
CH | Lipids Total phenolic compounds | Supercritical carbon dioxide (CO2) Ethanol Ethanol | 300 Bar 323.15 K 6 h 78 °C 2 h 55 kHz 25 °C | SFE Soxhlet Ultrasonic bath-assisted extraction | 1.97 g extract/g CH 28.1 mg CGA/g extract 4.8 g extract/g CH 151 mg CGA/g extract 3.1 g extract/g CH 133.4 mg CGA/g extract | [70] |
Caffeine Total phenolic compounds | Water | 100 °C 5 min 900 W 5 min | Conventional MAE | 1.64 µg caffeine/mL extract 130.39 µg GAE/mL extract 1.55 µg caffeine/mL extract 82.25 GAE/mL extract | [71] | |
PS | Total phenolic compounds Caffeine | Ethanol–water: (7:3 v/v) | 50 min 75 °C | Conventional | 2.14 g GAE/kg PS 1.34 g caffeine/kg PS | [42] |
Total phenolic compounds | Methanol–HCl (4:1 v/v) | 90 min 100 °C | Conventional | 2.3 mg GAE/g PS | [64] | |
PS | Total phenolic compounds Flavonoids | Water | 5 min 5 Hz pulse frequency 6 kV/cm | PEF pretreatment and MAE | 321.17 mg GAE/100 g PS 164.328 mg rutin/100 g PS | [63] |
Total phenolic compounds Caffeine Chlorogenic acid Epicatechin | Ethanol | 4 h 40 KHz 25 °C | Ultrasonic bath-assisted extraction | 2.515 mg GAE/g extract 24.478 mg de caffeine/100 g extract 7.047 mg CGA/100 g extract 1.155 mg de epicatechin/g extract | [38] | |
Chlorogenic acid | Ethanol | 70 °C 5 min 400 W 2.45 GHz | MAE | 7.8 µg CGA/g extract | [72] | |
SS | Caffeine Chlorogenic acid | NADES (choline chloride–lactic acid–water 1:2:2) Water | 30 min 60 °C | Conventional | 8.19 mg caffeine/g SS 12.56 mg CGA/g SS 8.04 mg caffeine/mg SS 13.82 mg CGA/g SS | [73] |
SS | Total phenolic compounds | Water | 30 min 25 °C 38 W/cm2 | UAE | 2.79 mg GAE/g SS | [74] |
Total phenolic compounds Caffeine | Methanol–water (4:1 v/v) | 10 min 60 °C 38 W/cm2 | UAE | 8.94 mg GAE/g SS 4.29 mg caffeine/g SS | [65] | |
Lipids Caffeine | Supercritical carbon dioxide (CO2)–ethanol (95:5 m/m) | 120 min 50 °C 300 Bar | SFE | 3.3 g lipids/100 g SS 0.14 g caffeine/g SS | [75] | |
Total phenolic compounds Caffeine | Water–ethanol (1:1 v/v) | 60 °C 30 min | Ultrasonic bath-assisted extraction | 54.37 µmol GAE/g SS 6.75 mg caffeine/g SS | [76] | |
Total phenolic compounds | Water–ethanol (1:1 v/v) Acetone Ethyl acetate | 40 °C 90 min | Conventional | 161 mg GAE/L extract 22 mg GAE/L extract 9 mg GAE/L extract | [77] | |
Caffeine | Water | 20 kHz 600 W 40 °C 10 min | UAE | 27.73 mg caffeine/g freeze-dried extract | [78] | |
SS | Total phenolic compounds | Ethanol–water (63:37 v/v) | 1.37 kV·cm−1 100 A 50 Hz 1000 pulses 25 °C 60 rpm 75 min | PEF pretreatment and conventional | 12.12 mg GAE/g SS | [57] |
Total phenolic compounds | Ethanol–water (95:5 m/m) Water Methanol | 30 min 60 °C | Conventional | 11.2 mg GAE/g extract 9.48 mg GAE/g extract 15.24 mg GAE/g extract | [79] | |
Proteins | Sodium hydroxide solution (NaOH) in water 0.6 M | 50 °C 200 rpm 10 min 20 kHz 50 °C 10 min 38 W/cm2 434.7 W 10 min | Conventional UAE MAE | 6.23% recovered protein 14.04% recovered protein 43.53% recovered protein | [13] | |
CP | Caffeine | SUPRAS (octanoic acid–ethanol–water) | 5 min 25 °C | Conventional | 3.6 mg caffeine/g CP | [80] |
Total phenolic compounds | Water | 5 min 5 Hz pulse frequency 6 kV/cm | PEF pretreatment and MAE | 1433 mg GAE/100 g CP | [63] | |
Total phenolic compounds | Ethanol–water (7:3 v/v) | 20 min 40 kHz 25 °C 5 min 70 °C 800 W | Ultrasonic bath-assisted extraction and MAE | 328.9 mg GAE/g CP | [45] | |
Total phenolic compounds Caffeine Epicatechin | Ethanol | 4 h 40 KHz 25 °C | Ultrasonic bath-assisted extraction | 12.628 mg GAE/g extract 85.219 mg caffeine/100 g extract 3.458 mg epicatechin/g extract | [38] | |
Caffeine | NADES (guanidinium chloride–lactic acid–water 10:17:15) Water | 30 min 60 °C | Conventional | 8.88 mg caffeine/g CP 8.47 mg caffeine/mg CP | [73] | |
Caffeine Chlorogenic acid | NADES (choline chloride–lactic acid–water 1:2:1.5) | 60 min 60 °C 200 W | UAE | 0.4 g caffeine/100 g CP 0.4 g theobromine/100 g CP | [17] | |
CP | Total phenolic compounds Flavonoids Chlorogenic acid Caffeine | Water–ethanol (1:1 v/v) | 70 min 700 W 70 °C 35 min 250 W 60 °C | MAE UAE | 47 g GAE/g CP 36 g catechin/g CP 8 mg CGA/g CP 6 mg caffeine/g CP 20.86 g GAE/g CP 18.77 g catechin/g CP 2.64 mg CGA/g CP 3.32 mg caffeine/g CP | [81] |
CBS | Total phenolic compounds | Water–ethanol (1:1 v/v) | 120 min 25 °C | Conventional | 42.97 mg GAE/g CBS | [82] |
Total phenolic compounds | Water | 1 min 25 °C | Conventional | 8.44 mg GAE/g CBS | [3] | |
Total phenolic compounds Flavonoids | Water | 15 min 30 bar 150 °C | PLE | 37.68 mg GAE/g extract 7.66 g CE/g extract | [83] | |
Caffeine Catechin | Water–ethanol (8:2 to 2:8 v/v) Ethanol | 140 °C | PLE | 2.5 mg de caffeine/g CBS 5 mg CE/g CBS | [84] | |
CBS | Total phenolic compounds | Water–ethanol (61:39 v/v) | 1.74 kV·cm−1 100 A 50 Hz 991.28 pulses 25 °C 60 rpm 75 min | PEF pretreatment and conventional | 33.05 mg GAE/g CBS | [57] |
Total phenolic compounds | Supercritical carbon dioxide (CO2) Ethanol Hexane | 2 h 20 MPa 50 °C 11 g/min 20 min 70 °C 10 MPa 6 h | SFE PLE Soxhlet | 4.0 mg GAE/g extract 7.2 mg GAE/g extract 5.6 mg GAE/g extract | [85] | |
Total phenolic compounds Proteins | Water | 90 min 100 °C 5 min 97 °C 500 W 400 rpm 20 °C/min | Conventional MAE | 22.1 mg GAE/g CBS 87.0 mg BSA/g CBS 35.9 mg GAE/g CBS 580.0 mg BSA/g CBS | [4] | |
CBS | Theobromine Catechin | Ethanol | 25 min 60, 75 and 90 °C 10.32 MPa | PLE | 9.89 mg theobromine /g CBS 3.5 mg CE/g CBS | [86] |
Flavonoids Total phenolic compounds Lipids | Ethanol–water (94:6 m/m) | 180 min 90 °C | Conventional | 39% total flavanol extraction yield 26.8% total phenolic extraction yield 50% fat extraction yield | [28] | |
Total phenolic compounds | NADES (choline chloride–lactic acid 1:2) with 50% of water NADES (choline chloride–glycerol 1:2) with 50% of water NADES (choline chloride–ethylene glycol 1:2) with 50% of water Ethanol–water (7:3 v/v) | 140 min 30 °C | Conventional | 14.33 mg GAE/g CBS 11.71 mg GAE/g CBS 11.62 mg GAE/g CBS 9.45 mg GAE/g CBS | [87] | |
CBS | Total phenolic compounds | Ethanol–water (1:1 v/v) | 2 h 1500 rpm 40 kHz 25 °C | Ultrasonic bath-assisted extraction | 21.57 mg GAE/g CBS | [88] |
Total phenolic compounds | Ethanol–water (1:1 v/v) | 15 min 20 kHz 80% amplitude | UAE | 263.69 mg GAE/g CBS | [89] | |
Proteins Total phenolic compounds | Water | 30 min 30 Bar 150 °C | PLE | 5.71 g protein/100 g dried extract 37 mg GAE/g extract | [90] | |
Total phenolic compounds Flavonoids | Methanol–water–formic acid (70:30:0.1%; v/v/v) | 60 min 25 °C | Ultrasonic bath-assisted extraction | 42.17 mg GAE/100 mL extract 20.57 mg CE/100 mL extract | [91] | |
Caffeine Theobromine | NADES (choline chloride–lactic acid–water 1:2:1.5) | 60 min 60 °C 200 W | UAE | 0.1 g caffeine/100 g CBS 0.5 g theobromine/100 g CBS | [17] | |
Caffeine Theobromine | Water–ethanol (85:15 v/v) | 69 Bar 90 °C | PLE | 0.45 mg caffeine/100 g CBS 1.95 mg theobromine/100 g CBS | [92] | |
CBS | Caffeine Theobromine | NADES (choline chloride–oxalic acid 1:1) with 30% of water | 10 min 60 °C 600–800 W | MAE | 1.6 mg caffeine/g CBS 5 mg theobromine/g CBS | [93] |
Total phenolic compounds Caffeine | Water | 44 min 37 kHz 70 °C 70% ultrasound power | Ultrasonic bath-assisted extraction | 118.38 mg GAE/g extract 0.741 mg caffeine/g CBS | [94] | |
Total phenolic compounds | Acidified methanol (trifluoroacetic acid 0.3% v/v) | 60 min 38 °C 7 h 60 min 38 °C 20.6 kHz 80 W 30 min 90 °C 21.5 kHz 60 W 60 min 50 or 90 °C 21.5 kHz 60 W | Conventional Soxhlet UAE MAE UAE and MAE at 50 °C UAE and MAE at 90 °C | 4.53 mg CE/g CBS 3.54 mg CE/g CBS 15.0 mg CE/g CBS 7.16 mg CE/g CBS 3.53 mg CE/g CBS 4.01 mg CE/g CBS | [95] | |
CBS | Total phenolic compounds Theobromine | Water | 55 min 55 °C 40 kHz 40 min 60 °C 1.5% Viscozyme L | Ultrasonic bath-assisted extraction Enzyme-assisted extraction | 3.89 g GAE/100 g CBS 1.03 g theobromine/100 g CBS 3.90 g GAE/100 g CBS 1.29 g theobromine/100 g CBS | [96] |
HBD | HBA | Byproduct | Biomolecule | Reference |
---|---|---|---|---|
Lactic acid Sorbitol | Guanidinium chloride Choline chloride | CP | Caffeine Chlorogenic acid | [73] |
Lactic acid | Choline chloride | SS | Caffeine Chlorogenic acid | [73] |
Lactic acid | Choline chloride | CBS | Theobromine Caffeine Catechin Epicatechin | [87] |
Lactic acid | Choline chloride | CBS CP | Caffeine Theobromine Chlorogenic acid | [17] |
Acetamide Butan 1,4-diole Fructose Levulinic acid Malic acid Oxalic acid | Choline chloride | CBS | Galic acid Theobromine Catechin Caffeine Epicatechin | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado, J.P.Z.; Basso, R.C.; Rodrigues, C.E.d.C. Extraction of Biomolecules from Coffee and Cocoa Agroindustry Byproducts Using Alternative Solvents. Foods 2025, 14, 342. https://doi.org/10.3390/foods14030342
Prado JPZ, Basso RC, Rodrigues CEdC. Extraction of Biomolecules from Coffee and Cocoa Agroindustry Byproducts Using Alternative Solvents. Foods. 2025; 14(3):342. https://doi.org/10.3390/foods14030342
Chicago/Turabian StylePrado, José Pedro Zanetti, Rodrigo Corrêa Basso, and Christianne Elisabete da Costa Rodrigues. 2025. "Extraction of Biomolecules from Coffee and Cocoa Agroindustry Byproducts Using Alternative Solvents" Foods 14, no. 3: 342. https://doi.org/10.3390/foods14030342
APA StylePrado, J. P. Z., Basso, R. C., & Rodrigues, C. E. d. C. (2025). Extraction of Biomolecules from Coffee and Cocoa Agroindustry Byproducts Using Alternative Solvents. Foods, 14(3), 342. https://doi.org/10.3390/foods14030342