Characterization of Key Aroma Compounds of Zhuyeqing by Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Recombination, and Omission Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Samples
2.2. Reagents and Chemicals
2.3. Sensory Analysis
2.4. Comparative Aroma Extract Dilution Analysis of Zhuyeqing and Base Fenjiu
2.4.1. Aroma Compound Extraction Methods
2.4.2. Gas Chromatography-Mass Spectrometry/Olfactometry (GC-MS/O) Analysis
2.4.3. Aroma Extract Dilution Analysis
2.5. Quantitative Analysis of Aroma Compounds
2.5.1. Liquid-Liquid Microextraction Combined with Gas Chromatography-Mass Spectrometry (LLME-GC-MS)
2.5.2. Liquid-Liquid Extraction Combined with Gas Chromatography-Mass Spectrometry (LLE-GC-MS)
2.6. Determination of Odor Thresholds
2.7. Aroma Recombination Tests and Omission Tests
Compounds | * Quantitative method | * IS | Quantitative ion (m/z) | Slope | Intercept | R2 | Odor Threshold (μg/L) | Concentrations (μg/L) | OAV | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Zhuyeqing | Base Fenjiu | Zhuyeqing | Base Fenjiu | ||||||||
ethyl cinnamate | LLME | IS7 | 131 | 1.6352 | −0.0068 | 0.9940 | 0.70 [28] | 290.06 ± 16.88 | 0.00 ± 0.00 | 414.37 | <0.01 |
β-damascenone | LLE | IS4 | 69 | 2.0132 | 0.0243 | 0.9935 | 0.10 [29] | 16.65 ± 1.35 | 28.53 ± 1.18 | 166.50 | 285.30 |
ethyl octanoate | LLME | IS2 | 88 | 1.0479 | −0.0156 | 0.9997 | 12.90 [30] | 1113.92 ± 120.50 | 2398.83 ± 50.03 | 86.35 | 185.96 |
ethyl hexanoate | LLE | IS2 | 88 | 0.3419 | 1.9693 | 0.9981 | 55.33 [29] | 3107.04 ± 234.61 | 7115.64 ± 174.68 | 56.15 | 128.60 |
ethyl acetate | LLME | IS2 | 43 | 0.7268 | −0.0175 | 0.9989 | 32,600.00 [30] | 1,696,667.43 ± 230,056.14 | 2,048,863.56 ± 9325.78 | 52.05 | 62.85 |
d-limonene | LLME | IS4 | 68 | 1.5852 | −0.2081 | 0.9993 | 34.00 [31] | 1302.01 ± 42.04 | 0.00 ± 0.00 | 38.29 | <0.01 |
ethyl butanoate | LLME | IS2 | 71 | 0.6505 | −0.0021 | 0.9995 | 81.50 [29] | 2596.35 ± 268.14 | 3214.48 ± 75.96 | 31.86 | 39.44 |
eugenol | LLME | IS6 | 164 | 0.9889 | 0.4755 | 0.9988 | 470.00 [31] | 13,617.04 ± 388.13 | 0.00 ± 0.00 | 28.97 | <0.01 |
3-methylbutyl acetate | LLE | IS2 | 43 | 2.8633 | 0.0002 | 0.9959 | 93.93 [29] | 1305.53 ± 58.25 | 578.79 ± 58.54 | 13.90 | 6.16 |
β-myrcene | LLE | IS3 | 93 | 4.6837 | 0.0598 | 0.9932 | 4.90 [31] | 40.32 ± 3.15 | 4.53 ± 0.32 | 8.23 | 0.92 |
ethyl pentanoate | LLE | IS2 | 85 | 0.8355 | −0.0044 | 0.9992 | 26.80 [30] | 144.23 ± 8.13 | 205.44 ± 7.14 | 5.38 | 7.67 |
phenylacetaldehyde | LLME | IS7 | 91 | 1.3633 | −0.0008 | 0.9982 | 25.00 [32] | 114.59 ± 9.99 | 263.06 ± 4.88 | 4.58 | 10.52 |
2-methyl-1-propanol | LLME | IS1 | 43 | 0.4691 | −0.0082 | 0.9998 | 1045.47 [29] | 4666.62 ± 24.52 | 8787.20 ± 334.79 | 4.46 | 8.41 |
3-methylbutanoic acid | LLE | IS5 | 60 | 0.0669 | −0.0499 | 0.9995 | 28,300.00 [30] | 114,253.65 ± 5675.61 | 175,888.78 ± 1010.46 | 4.04 | 6.22 |
bornyl acetate | LLME | IS4 | 95 | 1.0059 | −0.0020 | 0.9953 | 75.00 [31] | 210.51 ± 5.47 | 0.00 ± 0.00 | 2.81 | <0.01 |
guaiacol | LLME | IS6 | 109 | 1.6209 | −0.0107 | 0.9993 | 9.50 [17] | 23.70 ± 0.39 | 61.39 ± 1.38 | 2.50 | 6.46 |
1-nonanol | LLE | IS1 | 56 | 7.6307 | −0.0557 | 0.9987 | 50.00 [33] | 125.23 ± 20.3 | 213.25 ± 26.12 | 2.50 | 4.27 |
3-methyl-1-butanol | LLME | IS1 | 55 | 0.5552 | 0.2263 | 0.9993 | 179,000.00 [30] | 396,642.77 ± 25,104.53 | 581,270.14 ± 22,380.84 | 2.22 | 3.25 |
phenol | LLME | IS7 | 94 | 2.5256 | 0.0045 | 0.9979 | 30.00 [17] | 59.43 ± 4.05 | 34.23 ± 0.04 | 1.98 | 1.14 |
ethyl 2-hydroxybutanoate | LLME | IS2 | 59 | 0.5596 | −0.0007 | 0.9976 | 800.00 [31] | 1441.25 ± 82.99 | 730.12 ± 18.59 | 1.80 | 0.91 |
trans-isoeugenol | LLE | IS6 | 164 | −0.0210 | 0.1110 | 0.9930 | 22.54 [29] | 35.53 ± 1.62 | 0.00 ± 0.00 | 1.62 | <0.01 |
ethyl 3-phenylpropanoate | LLME | IS7 | 104 | 0.1195 | 0.0001 | 0.9965 | 125.00 [30] | 192.95 ± 37.03 | 600.15 ± 2.11 | 1.54 | 4.80 |
linalool | LLE | IS3 | 71 | 0.0294 | 0.4743 | 0.9918 | 30.00 [31] | 29.50 ± 0.27 | 0.00 ± 0.00 | 0.98 | <0.01 |
(-)-myrtenol | LLE | IS4 | 79 | 19.5732 | −0.0910 | 0.9967 | 7.00 [31] | 6.34 ± 0.85 | 2.63 ± 0.06 | 0.91 | 0.38 |
butanoic acid | LLME | IS5 | 60 | 1.2345 | −0.0081 | 0.9996 | 964.00 [30] | 613.63 ± 103.31 | 826.73 ± 23.23 | 0.64 | 0.86 |
β-cyclocitral | LLE | IS4 | 137 | 0.0792 | 0.0001 | 0.9943 | 5.00 [31] | 2.65 ± 0.23 | 0.82 ± 0.12 | 0.53 | 0.16 |
(+)-2-bornanone | LLME | IS4 | 95 | 1.2116 | 0.0010 | 0.9954 | 1470.00 [31] | 674.80 ± 29.53 | 0.00 ± 0.00 | 0.46 | <0.01 |
acetic acid | LLME | IS5 | 43 | 0.7482 | −0.5177 | 0.9930 | 160,000.00 [30] | 71,164.03 ± 6150.23 | 70,146.27 ± 2227.35 | 0.44 | 0.44 |
4-ethylguaiacol | LLME | IS6 | 137 | 3.0432 | −0.0171 | 0.9993 | 123.00 [32] | 41.70 ± 0.91 | 96.50 ± 1.28 | 0.34 | 0.78 |
nonanal | LLE | IS2 | 57 | 2.2321 | −0.0998 | 0.9954 | 122.45 [29] | 40.59 ± 3.46 | 37.64 ± 1.01 | 0.33 | 0.31 |
2-phenylethyl acetate | LLME | IS7 | 104 | 2.6561 | −0.0008 | 0.9986 | 200.00 [34] | 58.48 ± 7.37 | 197.95 ± 1.80 | 0.29 | 0.99 |
2-furanmethanol | LLME | IS7 | 98 | 0.6940 | −0.0072 | 0.9983 | 2000.00 [35] | 545.01 ± 59.82 | 35.42 ± 12.88 | 0.27 | 0.02 |
hexanoic acid | LLME | IS5 | 60 | 1.4758 | −0.0786 | 0.9963 | 2520.00 [32] | 667.35 ± 58.42 | 804.02 ± 84.03 | 0.26 | 0.32 |
vanillin | LLE | IS6 | 151 | 6.2539 | −0.0601 | 0.9984 | 438.52 [29] | 106.70 ± 0.03 | 3.14 ± 0.30 | 0.24 | 0.01 |
4-vinylguaiacol | LLE | IS6 | 150 | 0.9611 | −0.0080 | 0.9989 | 209.30 [29] | 47.27 ± 0.19 | 4.96 ± 0.27 | 0.23 | 0.02 |
creosol | LLME | IS6 | 138 | 1.6221 | −0.0048 | 0.9988 | 315.00 [32] | 65.23 ± 0.74 | 90.44 ± 3.17 | 0.21 | 0.29 |
α-santalol | LLE | IS4 | 69 | 0.1410 | −0.0006 | 0.9936 | 1193.25 a | 138.00 ± 0.12 | 0.00 ± 0.00 | 0.12 | <0.01 |
benzaldehyde | LLME | IS7 | 106 | 0.9835 | 0.0003 | 0.9984 | 515.00 [36] | 56.25 ± 7.01 | 95.94 ± 4.57 | 0.11 | 0.19 |
α-ionone | LLE | IS4 | 121 | 1.3452 | 0.0016 | 0.9942 | 13.70 [37] | 1.54 ± 0.15 | 0.00 ± 0.00 | 0.11 | <0.01 |
geraniol | LLE | IS4 | 69 | 0.0942 | −0.0005 | 0.9931 | 80.00 [38] | 7.35 ± 0.46 | 4.32 ± 0.02 | 0.09 | 0.05 |
nerolidol | LLE | IS3 | 69 | 1.0404 | −0.0109 | 0.9990 | 250.00 [31] | 21.03 ± 1.93 | 7.37 ± 0.79 | 0.08 | 0.03 |
ethyl 2-phenylacetate | LLME | IS7 | 91 | 2.5002 | −0.0005 | 0.9983 | 407.00 [30] | 31.97 ± 2.02 | 70.07 ± 1.55 | 0.08 | 0.17 |
(2,2-diethoxyethyl) benzene | LLME | IS7 | 103 | 1.1973 | −0.0003 | 0.9984 | 995.50.00 a | 67.37 ± 6.18 | 209.08 ± 3.72 | 0.07 | 0.21 |
2-phenylethanol | LLME | IS7 | 91 | 2.7553 | 0.4170 | 0.9933 | 40,000.00 [34] | 2368.18 ± 40.49 | 3687.14 ± 131.73 | 0.06 | 0.09 |
α-bisabolol | LLE | IS4 | 109 | 0.2030 | −0.0026 | 0.9825 | 756.42.00 a | 44.50 ± 0.27 | 0.00 ± 0.00 | 0.06 | <0.01 |
furfural | LLME | IS7 | 96 | 0.7745 | 0.0093 | 0.9967 | 39,000.00 [31] | 1838.44 ± 10.45 | 4220.33 ± 171.02 | 0.05 | 0.11 |
p-cresol | LLE | IS6 | 107 | 2.2287 | −0.0035 | 0.9995 | 166.97 [29] | 8.31 ± 0.26 | 9.56 ± 0.42 | 0.05 | 0.06 |
β-caryophyllene | LLE | IS4 | 93 | 0.0163 | 0.0055 | 0.9876 | 150.00 [31] | 6.20 ± 0.72 | 0.65 ± 0.15 | 0.03 | <0.01 |
γ-terpinene | LLE | IS4 | 93 | 2.5737 | 0.0970 | 0.9939 | 1000.00 [31] | 33.90 ± 3.23 | 0.00 ± 0.00 | 0.03 | <0.01 |
ethyl nonanoate | LLE | IS2 | 88 | 1.2116 | 0.0084 | 0.9982 | 3150.00 [30] | 70.87 ± 6.67 | 204.84 ± 6.76 | 0.02 | 0.07 |
ethyl 3-hexenoate | LLE | IS7 | 69 | 2.4232 | −0.0094 | 0.9982 | 289.75 a | 8.43 ± 0.89 | 5.42 ± 0.47 | 0.03 | 0.02 |
isoamyl lactate | LLME | IS2 | 45 | 0.4669 | 0.0188 | 0.9971 | 131,703.40 [33] | 1932.33 ± 133.66 | 3402.51 ± 251.35 | 0.01 | 0.03 |
2-nonanol | LLE | IS1 | 45 | 0.6103 | 0.0023 | 0.9998 | 75.00 [39] | 0.68 ± 0.12 | 2.87 ± 0.42 | 0.01 | 0.04 |
4-allylphenol | LLE | IS6 | 134 | 1.6081 | 0.0112 | 0.9987 | 2934.70 a | 22.51 ± 0.82 | 0.00 ± 0.00 | 0.01 | <0.01 |
β-bisabolol | LLE | IS4 | 82 | 0.1757 | 0.0019 | 0.9939 | 1948.01 a | 19.50 ± 1.20 | 0.00 ± 0.00 | 0.01 | <0.01 |
β-ionone | LLME | IS4 | 177 | 2.0709 | 0.0001 | 0.9993 | 963.00 [40] | 6.25 ± 0.47 | 0.00 ± 0.00 | 0.01 | <0.01 |
terpinen-4-ol | LLE | IS4 | 71 | 0.0148 | 0.0452 | 0.9968 | 1540.00 [16] | 7.82 ± 0.24 | 0.45 ± 0.12 | <0.01 | <0.01 |
benzyl alcohol | LLME | IS7 | 108 | 1.1002 | −0.0018 | 0.9950 | 40,900.00 [28] | 61.06 ± 6.62 | 76.97 ± 4.15 | <0.01 | <0.01 |
2,3,5,6-tetramethylpyrazine | LLME | IS7 | 136 | 2.3661 | 0.0023 | 0.9978 | 80,073.16 [29] | 13.30 ± 2.80 | 60.70 ± 4.30 | <0.01 | <0.01 |
isoamyl isovalerate | LLE | IS7 | 70 | 0.0469 | −0.0031 | 0.9908 | 1000.00 [31] | 3.02 ± 0.21 | 1.59 ± 0.05 | <0.01 | <0.01 |
caryophyllene oxide | LLE | IS4 | 79 | 0.4438 | 0.1134 | 0.9950 | 410.00 [31] | 0.62 ± 0.09 | 0.00 ± 0.00 | <0.01 | <0.01 |
2,6-dimethyl-2,4,6-octatriene | LLE | IS3 | 121 | 0.0616 | 0.0035 | 0.9921 | 2137.24 a | 2.05 ± 0.07 | 0.00 ± 0.00 | <0.01 | <0.01 |
2.7.1. Aroma Recombination Tests by Descriptive Analysis
2.7.2. Omission Tests by Discrimination Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Sensory Analysis of Zhuyeqing and Base Fenjiu Samples
3.2. Identification of Aroma-Active Compounds in Zhuyeqing and Base Fenjiu Samples
3.3. Quantification of Aroma Compounds and OAV Analysis
3.4. Aroma Recombination
3.5. Omission Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, H.; Huang, J.; Wang, H.; Du, X.; Cheng, S.; Han, Y.; Wang, L.; Li, G.; Wang, J. Protective effect of Zhuyeqing liquor, a Chinese traditional health liquor, on acute alcohol-induced liver injury in mice. J. Inflamm. 2013, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Tang, K.; Xu, Y.; Li, J. Characterization of the Key Aroma Compounds in Chinese Vidal Icewine by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Tests. J. Agric. Food Chem. 2017, 65, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Tempere, S.; Peres, S.; Espinoza, A.F.; Darriet, P.; Giraud-Heraud, E.; Pons, A. Consumer preferences for different red wine styles and repeated exposure effects. Food Qual. Prefer. 2019, 73, 110–116. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, P.; Zeng, X.; Fang, Z. The art of flavored wine: Tradition and future. Trends Food Sci. Tech. 2021, 116, 130–145. [Google Scholar] [CrossRef]
- Nguyen, A.N.H.; Capone, D.L.; Johnson, T.E.; Jeffery, D.W.; Danner, L.; Bastian, S.E.P. Volatile Composition and Sensory Profiles of a Shiraz Wine Product Made with Pre- and Post-Fermentation Additions of Ganoderma lucidum Extract. Foods 2019, 8, 538. [Google Scholar] [CrossRef] [PubMed]
- Biehlmann, M.; Nazaryan, S.; Krauss, E.; Ardeza, M.I.; Flahaut, S.; Figueredo, G.; Ballester, J.; Lafarge, C.; Bou-Maroun, E.; Coelho, C. How Chemical and Sensorial Markers Reflect Gentian Geographic Origin in Chardonnay Wine Macerated with Gentiana lutea Roots? Foods 2020, 9, 1061. [Google Scholar] [CrossRef]
- Saltman, Y.; Culbert, J.A.; Johnson, T.E.; Ristic, R.; Wilkinson, K.L.; Bastian, S.E.P. Impact of Bottle Aging on the Composition and Sensory Properties of Flavored Chardonnay and Shiraz Wines. Foods 2020, 9, 1208. [Google Scholar] [CrossRef]
- Parker, M.; Barker, A.; Black, C.A.; Hixson, J.; Williamson, P.; Francis, I.L. Don’t miss the marc: Phenolic-free glycosides from white grape marc increase flavour of wine. Aust. J. Grape Wine Res. 2019, 25, 212–223. [Google Scholar] [CrossRef]
- Pineau, B.; Barbe, J.-C.; Van Leeuwen, C.; Dubourdieu, D. Contribution of grape skin and fermentation microorganisms to the development of red- and black-berry aroma in Merlot wines. OENO One 2011, 45, 27–37. [Google Scholar] [CrossRef]
- Rodríguez-Bencomo, J.J.; Selli, S.; Muñoz-González, C.; Martín-Álvarez, P.J.; Pozo-Bayón, M.A. Application of glycosidic aroma precursors to enhance the aroma and sensory profile of dealcoholised wines. Food Res. In. 2013, 51, 450–457. [Google Scholar] [CrossRef]
- Patel, S.; Shibamoto, T. Flavor Compounds in Wines Produced from Chardonnay Grapes Fermented with Fruit Juices. Food Sci. Technol. Res. 2003, 9, 84–86. [Google Scholar] [CrossRef]
- Fracassetti, D.; Bottelli, P.; Corona, O.; Foschino, R.; Vigentini, I. Innovative Alcoholic Drinks Obtained by Co-Fermenting Grape Must and Fruit Juice. Metabolites 2019, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.-U.; Lee, T.-S.; Kim, J.-S.; Baek, H.-H.; Noh, B.-S.; Lee, S.-J.; Park, J.-T.; Shim, J.-H.; Li, D.; Hong, I.-H.; et al. Flavor characteristics of rice-grape wine with starch-hydrolyzing enzymes. Food Sci. Biotechnol. 2013, 22, 937–943. [Google Scholar] [CrossRef]
- Vichi, S.; Riu-Aumatell, M.; Mora-Pons, M.; Buxaderas, S.; Lopez-Tamames, E. Characterization of volatiles in different dry gins. J. Agric. Food Chem. 2005, 53, 10154–10160. [Google Scholar] [CrossRef]
- Buck, N.; Goblirsch, T.; Beauchamp, J.; Ortner, E. Key Aroma Compounds in Two Bavarian Gins. Appl. Sci. 2020, 10, 7269. [Google Scholar] [CrossRef]
- Ma, L.; Gao, W.; Chen, F.; Meng, Q. HS-SPME and SDE combined with GC-MS and GC-O for characterization of flavor compounds in Zhizhonghe Wujiapi medicinal liquor. Food Res. Int. 2020, 137, 109590. [Google Scholar] [CrossRef]
- Sun, X.; Du, J.; Xiong, Y.; Cao, Q.; Wang, Z.; Li, H.; Zhang, F.; Chen, Y.; Liu, Y. Characterization of the key aroma compounds in Chinese JingJiu by quantitative measurements, aroma recombination, and omission experiment. Food Chem. 2021, 352, 129450. [Google Scholar] [CrossRef]
- Schieberle, P.; Hofmann, T. Mapping the Combinatorial Code of Food Flavors by Means of Molecular Sensory Science Approach. In Chemical and Functional Properties of Food Components Series. In Food Flavors. Chemical, Sensory and Technological Properties; Jelen, H., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 413–438. [Google Scholar]
- Song, X.; Zhu, L.; Wang, X.; Zheng, F.; Zhao, M.; Liu, Y.; Li, H.; Zhang, F.; Zhang, Y.; Chen, F. Characterization of key aroma-active sulfur-containing compounds in Chinese Laobaigan Baijiu by gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography coupled with sulfur chemiluminescence detection. Food Chem. 2019, 297, 124959. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Wang, H.; Huang, W.; Li, F.; Wang, L.; Ho, C.-T.; Zhang, Y.; Zhang, L.; Zhai, X.; et al. Decoding the Specific Roasty Aroma Wuyi Rock Tea (Camellia sinensis: Dahongpao) by the Sensomics Approach. J. Agric. Food Chem. 2022, 70, 10571–10583. [Google Scholar] [CrossRef]
- Duensing, P.W.; Hinrichs, J.; Schieberle, P. Influence of Milk Pasteurization on the Key Aroma Compounds in a 30 Weeks Ripened Pilot-Scale Gouda Cheese Elucidated by the Sensomics Approach. J. Agric. Food Chem. 2024, 72, 11062–11071. [Google Scholar] [CrossRef]
- Pu, D.; Shan, Y.; Zhang, L.; Sun, B.; Zhang, Y. Identification and Inhibition of the Key Off-Odorants in Duck Broth by Means of the Sensomics Approach and Binary Odor Mixture. J. Agric. Food Chem. 2022, 70, 13367–13378. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fan, S.; Yan, Y.; Yang, L.; Chen, S.; Xu, Y. Characterization of Potent Odorants Causing a Pickle-like Off-Odor in Moutai-Aroma Type Baijiu by Comparative Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Addition, and Omission Studies. J. Agric. Food Chem. 2020, 68, 1666–1677. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhu, L.; Jing, S.; Li, Q.; Ji, J.; Zheng, F.; Zhao, Q.; Sun, J.; Chen, F.; Zhao, M.; et al. Insights into the Role of 2-Methyl-3-furanthiol and 2-Furfurylthiol as Markers for the Differentiation of Chinese Light, Strong, and Soy Sauce Aroma Types of Baijiu. J. Agric. Food Chem. 2020, 68, 7946–7954. [Google Scholar] [CrossRef] [PubMed]
- Cates, V.E.; Meloan, C.E. Separation of sulfones by gas chromatography. J. Chromatogr. A 1963, 11, 472–478. [Google Scholar] [CrossRef]
- Liu, M.; Xu, Z.; Zhong, Q.; Liu, C.; Li, X.; Yuan, X.; Xu, Z.; Xiong, Z. Comparison of the Threshold Determination Method for Chinese Liquor (Baijiu) Flavor Substances. J. Chin. Inst. Food Sci. Technol. 2018, 18, 253–260. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, L.; Zheng, F.; Zhang, F.; Shen, C.; Gao, X.; Sun, B.; Huang, M.; Li, H.; Chen, F. Determination and comparison of flavor (retronasal) threshold values of 19 flavor compounds in Baijiu. J. Food Sci. 2021, 86, 2061–2074. [Google Scholar] [CrossRef]
- Poisson, L.; Schieberle, P. Characterization of the Key Aroma Compounds in an American Bourbon Whisky by Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food Chem. 2008, 56, 5820–5826. [Google Scholar] [CrossRef]
- Fan, W.; Xu, Y. Determination of odor thresholds of volatile aroma compounds in Baijiu by a forced-choice ascending concentration series method of limits. Liquor Making 2011, 38, 80–84. [Google Scholar]
- Gao, W.; Fan, W.; Xu, Y. Characterization of the Key Odorants in Light Aroma Type Chinese Liquor by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food Chem. 2014, 62, 5796–5804. [Google Scholar] [CrossRef]
- Gemert, L.J.V. Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter & Partners BV: Zeist, The Netherlands, 2011. [Google Scholar]
- Sun, X.; Qian, Q.; Xiong, Y.; Xie, Q.; Yue, X.; Liu, J.; Wei, S.; Yang, Q. Characterization of the key aroma compounds in aged Chinese Xiaoqu Baijiu by means of the sensomics approach. Food Chem. 2022, 384, 132452. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Zhu, T.; Wang, J.; Huang, M.; Wei, J.; Ye, H.; Wu, J.; Zhang, J.; Meng, N. Characterization of the key odorants and their content variation in Niulanshan Baijiu with different storage years using flavor sensory omics analysis. Food Chem. 2022, 376, 131851. [Google Scholar] [CrossRef] [PubMed]
- Engan, S. Organoleptic threshold values of some alcohols and esters in beer. J. I. Brewing 1972, 78, 33–36. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, B.; Zhao, M.; Zheng, F.; Huang, M.; Sun, J.; Sun, X.; Li, H. Characterization of the Key Odorants in Chinese Zhima Aroma-Type Baijiu by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food Chem. 2016, 64, 5367–5374. [Google Scholar] [CrossRef] [PubMed]
- Saison, D.; De Schutter, D.P.; Uyttenhove, B.; Delvaux, F.; Delvaux, F.R. Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds. Food Chem. 2009, 114, 1206–1215. [Google Scholar] [CrossRef]
- Langen, J.; Wegmann-Herr, P.; Schmarr, H.-G. Quantitative determination of α-ionone, β-ionone, and β-damascenone and enantiodifferentiation of α-ionone in wine for authenticity control using multidimensional gas chromatography with tandem mass spectrometric detection. Anal. Bioanal. Chem. 2016, 408, 6483–6496. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Tan, Y.; Siebert, K.J. Quantitative Structure-Activity Relationship Modeling of Alcohol, Ester, Aldehyde, and Ketone Flavor Thresholds in Beer from Molecular Features. J. Agric. Food Chem. 2004, 52, 3057–3064. [Google Scholar] [CrossRef]
- Ma, L.; Meng, Q.; Chen, F.; Gao, W. SAFE and SBSE combined with GC-MS and GC-O for characterization of flavor compounds in Zhizhonghe Wujiapi medicinal liquor. J. Food Sci. 2022, 87, 939–956. [Google Scholar] [CrossRef]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.-C. Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, C.; Gao, X.; Kang, Y.; Huang, M.; Wu, J.; Liu, Y.; Zhang, J.; Li, H.; Zhang, Y. Characterization of key aroma compounds in Huangjiu from northern China by sensory-directed flavor analysis. Food Res. Int. 2020, 134, 109238. [Google Scholar] [CrossRef]
- Dunkel, A.; Steinhaus, M.; Kotthoff, M.; Nowak, B.; Krautwurst, D.; Schieberle, P.; Hofmann, T. Nature’s chemical signatures in human olfaction: A foodborne perspective for future biotechnology. Angew. Chem. Int. Ed. 2014, 53, 7124–7143. [Google Scholar] [CrossRef] [PubMed]
- Buettner, A.; Schieberle, P. Evaluation of Key Aroma Compounds in Hand-Squeezed Grapefruit Juice (Citrus paradisi Macfayden) by Quantitation and Flavor Reconstitution Experiments. J. Agric. Food Chem. 2001, 49, 1358–1363. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.; Wollmann, N.; Schieberle, P.; Hofmann, T. Reconstitution of the Flavor Signature of Dornfelder Red Wine on the Basis of the Natural Concentrations of Its Key Aroma and Taste Compounds. J. Agric. Food Chem. 2011, 59, 8866–8874. [Google Scholar] [CrossRef] [PubMed]
No. | Aroma | Definition | Reference (in 45% v/v Ethanol/Water) |
---|---|---|---|
1 | medicinal | aroma of herbs | ethyl 2-hydroxybutanoate (50 mg/L) |
2 | sweet | aroma similar to honey and sweet fruits | β-damascenone (100 μg/L) |
3 | alcoholic | aromas presented by alcohols | 45% v/v ethanol/water |
4 | woody | like wood | extraction of Muxiang |
5 | floral | similar to the aroma of florals | extraction of Juhua |
6 | fruity | aroma like ripe fruits | ethyl acetate (2 g/L) and ethyl hexanoate (10 mg/L) |
7 | smokey | similar to smoke | sotolon (1 mg/L) |
8 | grain | aroma obtained by fermenting and distilling sorghum, rice, and wheat. | cooked sorghum |
9 | acid | aroma presented by volatile acidic components | acetic acid (1 g/L) |
10 | grass | grass-like aroma | hexanal (2 mg/L) |
11 | bitter almond | aroma presented by bitter almond | furfural (50 mg/L) |
No a | CAS | Compounds b | RI c | RT | Odor Descriptor d | Identification | FD Factor e | ||
---|---|---|---|---|---|---|---|---|---|
FFAP | DB-5 | DB-5 | Zhuyeqing | Base Fenjiu | |||||
1 | 75-07-0 | acetaldehyde | 700 | 415 | 1.008 | pungent, ethereal | MS, RI, Odor, Std | 4 | 8 |
2 | 123-38-6 | propanal | 810 | 515 | 1.050 | pungent, ethereal | MS, RI, Odor, Std | 4 | 8 |
3 | 123-72-8 | butanal | 870 | 545 | 1.065 | fresh, aldehydic | MS, RI, Odor, Std | 16 | 8 |
4 | 141-78-6 | ethyl acetate | 870 | 612 | 1.453 | pineapple, fruity | MS, RI, Odor, Std | 64 | 32 |
5 | 105-57-7 | 1,1-diethoxyethane | 898 | 730 | 2.117 | fruity | MS, RI, Odor, Std | 2 | 64 |
6 | 105-37-3 | ethyl propanoate | 965 | 737 | 2.241 | fruity | MS, RI, Odor, Std | 1 | 32 |
7 | 431-03-8 | 2,3-butanedione | 989 | nd | nd | buttery | MS, RI, Odor, Std | n.d | 1 |
8 | 97-62-1 | ethyl 2-methylpropanoate | 998 | 760 | 2.725 | floral, fruity | MS, RI, Odor, Std | 8 | 16 |
9 | 78-92-2 | 2-butanol | 1005 | 615 | 1.523 | fruity | MS, RI, Odor, Std | n.d | 32 |
10 | 71-23-8 | propanol | 1015 | 575 | 1.125 | alcoholic, plant | MS, RI, Odor, Std | n.d | 16 |
11 | 105-54-4 | ethyl butanoate | 1035 | 791 | 3.362 | pineapple, fruity | MS, RI, Odor, Std | 128 | 512 |
12 | 108-64-5 | ethyl 3-methylbutanoate | 1075 | 855 | 4.681 | sweet, fruity | MS, RI, Odor, Std | n.d | 16 |
13 | 78-83-1 | 2-methyl-1-propanol | 1086 | 705 | 1.746 | mellow, nail polish | MS, RI, Odor, Std | 32 | 16 |
14 | 66-25-1 | hexanal | 1100 | 785 | 3.263 | green | MS, RI, Odor, Std | n.d | 8 |
15 | 71-36-3 | butanol | 1110 | 670 | 1.654 | alcoholic | MS, RI, Odor, Std | n.d | 1 |
16 | 123-92-2 | 3-methylbutyl acetate | 1122 | 867 | 4.956 | banana | MS, RI, Odor, Std | 128 | 64 |
17 | 539-82-2 | ethyl pentanoate | 1134 | 894 | 5.508 | fruity, strawberry | MS, RI, Odor, Std | 128 | 32 |
18 | 123-35-3 | β-myrcene | 1161 | 987 | 7.930 | grassy, woody | MS, RI, Odor, Std | 128 | n.d |
19 | 137-32-6 | 2-methyl-1-butanol | 1190 | 743 | 2.363 | alcoholic | MS, RI, Odor, Std | 8 | 16 |
20 | 123-51-3 | 3-methyl-1-butanol | 1198 | 748 | 2.465 | banana, ether | MS, RI, Odor, Std | 64 | 16 |
21 | 5989-27-5 | d-limonene | 1203 | 1024 | 8.946 | orange, lemon | MS, RI, Odor, Std | 128 | n.d |
22 | 123-66-0 | ethyl hexanoate | 1234 | 995 | 8.197 | sweet, fruity, pineapple | MS, RI, Odor, Std | 128 | 512 |
23 | 71-41-0 | pentanol | 1240 | 766 | 2.851 | fruity, alcoholic | MS, RI, Odor, Std | n.d | 2 |
24 | 99-85-4 | γ-terpinene | 1244 | 1059 | 9.952 | gasoline, turpentine | MS, RI, Odor, Std | 128 | n.d |
25 | 659-70-1 | isoamyl isovalerate | 1294 | nd | nd | sweet, fruity, green, apple | MS, RI, Odor, Std | 32 | 2 |
26 | 7789-92-6 | 1,1,3-triethoxypropane | 1298 | 1075 | 10.401 | fruity | MS, RI, Odor, Std | 8 | 4 |
27 | 2396-83-0 | ethyl 3-hexenoate | 1303 | nd | nd | fruity, pineapple, green, candy | MS, RI, Odor, Std | 64 | 1 |
28 | 513-86-0 | acetoin | 1349 | 731 | 2.149 | creamy, buttery | MS, RI, Odor, Std | 16 | 2 |
29 | 111-27-3 | hexanol | 1366 | 859 | 4.763 | ethereal, fusel | MS, RI, Odor, Std | 2 | 4 |
30 | 673-84-7 | 2,6-dimethyl-2,4,6-octatriene | 1372 | nd | nd | spices, nutty, skin, peppery, herbal | MS, RI, Odor, Std | 32 | n.d |
31 | 97-64-3 | ethyl lactate | 1382 | 815 | 3.862 | fatty, pineapple | MS, RI, Odor, Std | 8 | 4 |
32 | 124-19-6 | nonanal | 1393 | 1101 | 11.133 | citrus-like, soapy | MS, RI, Odor, Std | 128 | 32 |
33 | 3391-86-4 | 1-octene-3-ol | 1410 | 980 | 7.745 | soapy, mushroom | MS, RI, Odor, Std | n.d | 1 |
34 | 52089-54-0 | ethyl 2-hydroxybutanoate | 1427 | 900 | 5.621 | floral, fruity | MS, RI, Odor, Std | 128 | 64 |
35 | 106-32-1 | ethyl octanoate | 1434 | 1194 | 13.756 | pear, lychee | MS, RI, Odor, Std | 512 | 256 |
36 | 2441-06-7 | ethyl 2-hydroxy-3-methylbutanoate | 1441 | 959 | 7.197 | pineapple-like | MS, RI, Odor, Std | 64 | 32 |
37 | 616-09-1 | propyl lactate | 1451 | nd | nd | winey, yogurt, milky | MS, RI, Odor, Std | 1 | 4 |
38 | 64-19-7 | acetic acid | 1459 | 696 | 1.703 | vinegar | MS, RI, Odor, Std | 256 | 64 |
39 | 585-24-0 | isobutyl lactate | 1471 | 978 | 7.693 | buttery, fruity, caramellic | MS, RI, Odor, Std | 8 | 8 |
40 | 98-01-1 | furfural | 1473 | 822 | 3.998 | almond | MS, RI, Odor, Std | 256 | 8 |
41 | 1124-11-4 | 2,3,5,6-tetramethylpyrazine | 1492 | 1085 | 10.676 | roasted, nutty | MS, RI, Odor, Std | 32 | n.d |
42 | 628-99-9 | 2-nonanol | 1514 | nd | nd | cucumber | MS, RI, Odor, Std | 32 | 64 |
43 | 464-49-3 | (+)-2-bornanone | 1519 | 1138 | 12.202 | camphoraceous | MS, RI, Odor, Std | 32 | n.d |
44 | 100-52-7 | benzaldehyde | 1532 | 951 | 6.967 | almond | MS, RI, Odor, Std | 32 | 8 |
45 | 123-29-5 | ethyl nonanoate | 1534 | 1294 | 16.394 | fruity, grassy, grape | MS, RI, Odor, Std | 64 | 32 |
46 | 78-70-6 | linalool | 1542 | 1099 | 11.078 | floral, woody | MS, RI, Odor, Std | 256 | n.d |
47 | 6946-90-3 | ethyl dl-2-hydroxycaproate | 1545 | 1055 | 9.848 | floral, herbal | MS, RI, Odor, Std | 128 | 32 |
48 | 79-09-4 | propionic acid | 1548 | 700 | 1.719 | fruity, creamy | MS, RI, Odor, Std | 16 | 8 |
49 | 76-49-3 | bornyl acetate | 1569 | 1282 | 16.043 | woody, herbal | MS, RI, Odor, Std | 32 | n.d |
50 | 19329-89-6 | isoamyl lactate | 1571 | 1064 | 10.091 | fruity, creamy, nutty | MS, RI, Odor, Std | 128 | 64 |
51 | 513-85-9 | 2, 3-butanediol | 1579 | 796 | 3.463 | fruity, creamy | MS, RI, Odor, Std | n.d | 1 |
52 | 620-02-0 | 5-methylfurfural | 1585 | 972 | 7.532 | sweet, caramel | MS, RI, Odor, Std | 16 | 2 |
53 | 87-44-5 | β-caryophyllene | 1598 | 1418 | 19.608 | woody, spices, citrus | MS, RI, Odor, Std | 64 | n.d |
54 | 562-74-3 | terpinen-4-ol | 1600 | 1173 | 13.181 | woody, earthy, peppery | MS, RI, Odor, Std | 128 | n.d |
55 | 432-25-7 | β-cyclocitral | 1624 | nd | nd | herbal, clean, sweet, damascone | MS, RI, Odor, Std | 32 | n.d |
56 | 107-92-6 | butanoic acid | 1631 | 894 | 5.491 | cheesy, creamy | MS, RI, Odor, Std | 128 | 32 |
57 | 110-38-3 | ethyl decanoate | 1638 | 1392 | 19.036 | grape | MS, RI, Odor, Std | 8 | 16 |
58 | 122-78-1 | phenylacetaldehyde | 1651 | 1040 | 9.402 | honey-like, floral, rose | MS, RI, Odor, Std | 128 | 16 |
59 | 503-74-2 | 3-methylbutanoic acid | 1652 | 875 | 5.097 | sour, cheese, sweaty, fruity | MS, RI, Odor, Std | 256 | 2 |
60 | 96-48-0 | butyrolactone | 1653 | nd | nd | milk, creamy | MS, RI, Odor, Std | 8 | 8 |
61 | 143-08-8 | 1-nonanol | 1656 | 1172 | 13.154 | citrus, rose, fatty | MS, RI, Odor, Std | 32 | 64 |
62 | 98-00-0 | 2-furanmethanol | 1668 | 860 | 4.784 | bitter | MS, RI, Odor, Std | 128 | 32 |
63 | 93-89-0 | ethyl benzoate | 1673 | 1225 | 14.609 | fruity, sweet, herbal | MS, RI, Odor, Std | 8 | 16 |
64 | 123-25-1 | ethyl succinate | 1678 | 1171 | 13.107 | fruity | MS, RI, Odor, Std | 2 | 4 |
65 | 10482-56-1 | (-)-α-terpineol | 1696 | 1189 | 13.622 | grapefruit | MS, RI, Odor, Std | 8 | n.d. |
66 | 507-70-0 | endo-borneol | 1701 | 1160 | 12.818 | woody, camphor, balsamic | MS, RI, Odor, Std | 16 | n.d. |
67 | 6314-97-2 | (2,2-diethoxyethyl) benzene | 1709 | 1321 | 17.093 | fresh, green, almond, sweet | MS, RI, Odor, Std | 32 | 8 |
68 | 109-52-4 | n-pentanoic acid | 1736 | 979 | 7.706 | cheesy, dairy-like | MS, RI, Odor, Std | 8 | 4 |
69 | 105-87-3 | geranyl acetate | 1753 | nd | nd | rose | MS, RI, Odor, Std | 16 | n.d |
70 | 19894-97-4 | (-)-myrtenol | 1788 | nd | nd | woody, sweet, mint, medicinal | MS, RI, Odor, Std | 64 | n.d |
71 | 101-97-3 | ethyl 2-phenylacetate | 1790 | 1240 | 14.949 | fruity, floral, cocoa | MS, RI, Odor, Std | 128 | 64 |
72 | 103-45-7 | 2-phenylethyl acetate | 1817 | 1252 | 15.343 | fruity, floral | MS, RI, Odor, Std | 128 | 128 |
73 | 23726-93-4 | β-damascenone | 1820 | 1382 | 18.609 | honey, floral, apple-like | MS, RI, Odor, Std | 512 | 512 |
74 | 106-24-1 | geraniol | 1842 | nd | nd | rose, geranium | MS, RI, Odor, Std | 256 | n.d |
75 | 142-62-1 | hexanoic acid | 1844 | 981 | 7.762 | rotten cheesy | MS, RI, Odor, Std | 32 | 32 |
76 | 127-41-3 | α-ionone | 1855 | 1424 | 19.748 | orris, fruity, sweet, floral, woody | MS, RI, Odor, Std | 64 | n.d |
77 | 90-05-1 | guaiacol | 1869 | 1086 | 10.732 | spices, smokey | MS, RI, Odor, Std | 128 | 16 |
78 | 2021-28-5 | ethyl 3-phenylpropanoate | 1881 | 1344 | 17.677 | dried, floral | MS, RI, Odor, Std | 64 | 128 |
79 | 100-51-6 | benzyl alcohol | 1884 | 1034 | 9.254 | floral, phenolic | MS, RI, Odor, Std | 32 | 16 |
80 | 60-12-8 | 2-phenylethanol | 1919 | 1106 | 11.275 | floral, rose, fresh-bread | MS, RI, Odor, Std | 128 | 16 |
81 | 79-77-6 | β-ionone | 1953 | nd | nd | orris, fruity, sweet, floral, woody | MS, RI, Odor, Std | 256 | n.d |
82 | 93-51-6 | creosol | 1978 | 1190 | 13.661 | smokey, spices, herbal | MS, RI, Odor, Std | 128 | 16 |
83 | 1139-30-6 | caryophyllene oxide | 1992 | 1927 | 30.961 | sweet, fresh, dry, woody | MS, RI, Odor, Std | 32 | n.d |
84 | 108-95-2 | phenol | 2021 | 990 | 8.008 | phenol, smokey | MS, RI, Odor, Std | 64 | 16 |
85 | 7212-44-4 | nerolidol | 2036 | nd | nd | floral, green, citrus, woody | MS, RI, Odor, Std | 32 | n.d |
86 | 2785-89-9 | 4-ethylguaiacol | 2037 | 1274 | 15.927 | smokey, spices, herbal, woody | MS, RI, Odor, Std | 128 | 2 |
87 | 2305-25-1 | ethyl 3-hydroxyhexanoate | 2046 | nd | nd | fresh | MS, RI, Odor | 8 | 4 |
88 | 106-44-5 | p-cresol | 2089 | 1076 | 10.446 | phenol, smokey-like | MS, RI, Odor, Std | 32 | 16 |
89 | 103-36-6 | ethyl cinnamate | 2140 | 1460 | 20.570 | cinnamon, sweet and fruity notes | MS, RI, Odor, Std | 512 | 32 |
90 | 15352-77-9 | β-bisabolol | 2152 | 1666 | 25.907 | citrus, floral, sweet, herbal | MS, RI, Odor, Std | 128 | n.d |
91 | 123-07-9 | 4-ethylphenol | 2170 | 1175 | 13.256 | spices, clove | MS, RI, Odor, Std | 16 | 8 |
92 | 97-53-0 | eugenol | 2179 | 1353 | 17.970 | smokey, clove, spices | MS, RI, Odor, Std | 2048 | n.d |
93 | 134-96-3 | syringaldehyde | 2196 | 1651 | 25.480 | sweet, clove | MS, RI, Odor, Std | 2 | n.d |
94 | 7786-61-0 | 4-vinylguaiacol | 2211 | 1308 | 16.838 | smokey | MS, RI, Odor, Std | 2048 | 32 |
95 | 515-69-5 | α-bisabolol | 2221 | 1683 | 26.425 | floral, peppery, balsamic, clean | MS, RI, Odor, Std | 128 | n.d |
96 | 5932-68-3 | trans-isoeugenol | 2271 | 1445 | 20.243 | sweet, clove, spices | MS, RI, Odor, Std | 1024 | n.d |
97 | 501-92-8 | 4-allylphenol | 2349 | nd | nd | anise-like, clove | MS, RI, Odor, Std | 64 | 32 |
98 | 115-71-9 | α-santalol | 2442 | 1674 | 26.131 | woody, sweety, nut | MS, RI, Odor, Std | 512 | n.d |
99 | 644-30-4 | α-curcumene | 2502 | 1480 | 21.108 | herbal | MS, RI, Odor | 8 | n.d |
100 | 67-47-0 | 5-hydroxymethylfurfural | 2526 | 1223 | 14.556 | smokey-like | MS, RI, Odor | 16 | n.d |
101 | 121-33-5 | vanillin | 2601 | 1391 | 18.940 | vanilla, sweet, creamy | MS, RI, Odor, Std | 512 | 8 |
102 | 81944-08-3 | (E)-ligustilide | 2622 | 1730 | 27.655 | sweet | MS, RI, Odor, Std | 16 | n.d |
No. | Omitted Compounds | n/10 | Significance a |
---|---|---|---|
M1 | all esters | 10/10 | *** |
M1-1 | ethyl cinnamate | 9/10 | *** |
M1-2 | ethyl octanoate | 9/10 | *** |
M1-3 | ethyl acetate | 9/10 | *** |
M1-4 | ethyl hexanoate | 4/10 | ns |
M1-5 | ethyl butanoate | 3/10 | ns |
M1-6 | 3-methylbutyl acetate | 7/10 | * |
M1-7 | ethyl pentanoate | 2/10 | ns |
M1-8 | ethyl 2-hydroxybutanoate | 3/10 | ns |
M1-9 | ethyl 3-phenylpropanoate | 2/10 | ns |
M2 | all terpenes | 10/10 | *** |
M2-1 | β-damascenone | 10/10 | *** |
M2-2 | d-limonene | 5/10 | ns |
M2-3 | β-myrcene | 3/10 | ns |
M2-4 | bornyl acetate | 8/10 | ** |
M3 | all phenols | 10/10 | *** |
M3-1 | eugenol | 10/10 | *** |
M3-2 | guaiacol | 8/10 | ** |
M3-3 | phenol | 5/10 | ns |
M4 | all acids | 4/10 | ns |
M4-1 | 3-methylbutanoic acid | 5/10 | ns |
M5 | all alcohols | 4/10 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Han, Y.; Zhang, X.; Gao, X.; Xu, Y.; Wu, Q.; Tang, K. Characterization of Key Aroma Compounds of Zhuyeqing by Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Recombination, and Omission Studies. Foods 2025, 14, 344. https://doi.org/10.3390/foods14030344
Wang L, Han Y, Zhang X, Gao X, Xu Y, Wu Q, Tang K. Characterization of Key Aroma Compounds of Zhuyeqing by Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Recombination, and Omission Studies. Foods. 2025; 14(3):344. https://doi.org/10.3390/foods14030344
Chicago/Turabian StyleWang, Lihua, Ying Han, Xing Zhang, Xiaojuan Gao, Yan Xu, Qun Wu, and Ke Tang. 2025. "Characterization of Key Aroma Compounds of Zhuyeqing by Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Recombination, and Omission Studies" Foods 14, no. 3: 344. https://doi.org/10.3390/foods14030344
APA StyleWang, L., Han, Y., Zhang, X., Gao, X., Xu, Y., Wu, Q., & Tang, K. (2025). Characterization of Key Aroma Compounds of Zhuyeqing by Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Recombination, and Omission Studies. Foods, 14(3), 344. https://doi.org/10.3390/foods14030344