Nutraceutical Prospects of Pumpkin Seeds: A Study on the Lipid Fraction Composition and Oxidative Stability Across Eleven Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction of Lipids from Pumpkin Seeds
2.2.2. Fatty Acid Composition Analysis
2.2.3. Phytosterol and Squalene Identification and Determination
2.2.4. Tocopherol and Carotenoid Identification and Determination
2.2.5. The Radical Scavenging Capacity
2.2.6. The Oxidative Stability Study
2.2.7. Statistical Analysis
3. Results
3.1. The Total Fat Content and Fatty Acid Composition
3.2. Phytosterol Composition and Content
3.3. Antioxidant Composition and Content
3.4. Oxidative Stability Studies, Quality Parameters, and Antioxidant Potential
3.5. PCA of Lipids Extracted from Various Pumpkin Seed Varieties Based on Nutritional Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ardabili, G.; Farhoosh, R.; Khodaparast, H. Chemical composition and physicochemical properties of pumpkin seeds (Cucurbita pepo subsp. pepo var. Styriaka) grown in Iran. J. Agric. Sci. Technol. 2011, 13, 1053–1063. [Google Scholar]
- Rezig, L.; Chouaibi, M.; Msaada, K.; Hamdi, S. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind. Crops Prod. 2012, 37, 82–87. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Kita, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Rabrenović, B.B.; Dimić, E.B.; Novaković, M.M.; Tešević, V.V.; Basić, Z.N. The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. LWT-Food Sci. Technol. 2014, 55, 521–527. [Google Scholar] [CrossRef]
- Mitra, P.; Ramaswamy, H.S.; Chang, K.S. Pumpkin (Cucurbita maxima) seed oil extraction using supercritical carbon dioxide and physicochemical properties of the oil. J. Food Eng. 2009, 95, 208–213. [Google Scholar] [CrossRef]
- Stevenson, D.G.; Eller, F.J.; Wang, L.; Jane, J.-L.; Wang, T.; Inglett, G.E. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem. 2007, 55, 4005–4013. [Google Scholar] [CrossRef] [PubMed]
- Andjelkovic, M.; Van Camp, J.; Trawka, A.; Verhé, R. Phenolic compounds and some quality parameters of pumpkin seed oil. Eur. J. Lipid Sci. Technol. 2010, 112, 208–217. [Google Scholar] [CrossRef]
- Grajzer, M.; Szmalcel, K.; Kuźmiński, Ł.; Witkowski, M.; Kulma, A.; Prescha, A. Characteristics and Antioxidant Potential of Cold-Pressed Oils—Possible Strategies to Improve Oil Stability. Foods 2020, 9, 1630. [Google Scholar] [CrossRef] [PubMed]
- Bardaa, S.; Halima, N.B.; Aloui, F.; Mansour, R.B.; Jabeur, H.; Bouaziz, M.; Sahnoun, Z. Oil from pumpkin (Cucurbita pepo L.) seeds: Evaluation of its functional properties on wound healing in rats. Lipids Health Dis. 2016, 15, 73. [Google Scholar] [CrossRef]
- Dotto, J.M.; Chacha, J.S. The potential of pumpkin seeds as a functional food ingredient: A review. Sci. Afr. 2020, 10, e00575. [Google Scholar] [CrossRef]
- Hussain, A.; Kausar, T.; Sehar, S.; Sarwar, A.; Ashraf, A.H.; Jamil, M.A.; Noreen, S.; Rafique, A.; Iftikhar, K.; Quddoos, M.Y. A Comprehensive review of functional ingredients, especially bioactive compounds present in pumpkin peel, flesh and seeds, and their health benefits. Food Chem. Adv. 2022, 1, 100067. [Google Scholar] [CrossRef]
- Parry, J.; Hao, Z.; Luther, M.; Su, L.; Zhou, K.; Yu, L.L. Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils. J. Am. Oil Chem. Soc. 2006, 83, 847–854. [Google Scholar] [CrossRef]
- Procida, G.; Stancher, B.; Cateni, F.; Zacchigna, M. Chemical composition and functional characterisation of commercial pumpkin seed oil. J. Sci. Food Agric. 2013, 93, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.S.; Ferdosh, S.; Haque Akanda, M.J.; Ghafoor, K.; Rukshana, A.H.; Ali, M.E.; Kamaruzzaman, B.Y.; Fauzi, M.B.; Hadijah, S.; Shaarani, S.; et al. Techniques for the extraction of phytosterols and their benefits in human health: A review. Sep. Sci. Technol. 2018, 53, 2206–2223. [Google Scholar] [CrossRef]
- Prescha, A.; Świędrych, A.; Biernat, J.; Szopa, J. Increase in Lipid Content in Potato Tubers Modified by 14-3-3 Gene Overexpression. J. Agric. Food Chem. 2001, 49, 3638–3643. [Google Scholar] [CrossRef]
- Shukla, V.; Dutta, P.; Artz, W. Camelina oil and its unusual cholesterol content. J. Am. Oil Chem. Soc. 2002, 79, 965–969. [Google Scholar] [CrossRef]
- Grajzer, M.; Prescha, A.; Korzonek, K.; Wojakowska, A.; Dziadas, M.; Kulma, A.; Grajeta, H. Characteristics of rose hip (Rosa canina L.) cold-pressed oil and its oxidative stability studied by the differential scanning calorimetry method. Food Chem. 2015, 188, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Hrabovski, N.; Sinadinović-Fišer, S.; Nikolovski, B.; Sovilj, M.; Borota, O. Phytosterols in pumpkin seed oil extracted by organic solvents and supercritical CO2. Eur. J. Lipid Sci. Technol. 2012, 114, 1204–1211. [Google Scholar] [CrossRef]
- Fromm, M.; Bayha, S.; Kammerer, D.R.; Carle, R. Identification and quantitation of carotenoids and tocopherols in seed oils recovered from different Rosaceae species. J. Agric. Food Chem. 2012, 60, 10733–10742. [Google Scholar] [CrossRef] [PubMed]
- Tuberoso, C.I.G.; Kowalczyk, A.; Sarritzu, E.; Cabras, P. Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chem. 2007, 103, 1494–1501. [Google Scholar] [CrossRef]
- Grajzer, M.; Wiatrak, B.; Jawień, P.; Marczak, Ł.; Wojakowska, A.; Wiejak, R.; Rój, E.; Grzebieluch, W.; Prescha, A. Evaluation of Recovery Methods for Fragaria vesca L. Oil: Characteristics, Stability and Bioactive Potential. Foods 2023, 12, 1852. [Google Scholar] [CrossRef] [PubMed]
- EN ISO 660:2009; Determination of Acid Value and Acidity (ISO 660:2009). Animal and Vegetable Fats and Oils; CEN: Brussels, Belgium, 2009.
- EN ISO 3960:2010:E; Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination (ISO 3960:2007, Corrected Version 2009-05-15). Animal and Vegetable Fats and Oils; CEN: Brussels, Belgium, 2010.
- Hu, Z.; Hu, C.; Li, Y.; Jiang, Q.; Li, Q.; Fang, C. Pumpkin seed oil: A comprehensive review of extraction methods, nutritional constituents, and health benefits. J. Sci. Food Agric. 2024, 104, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Obiedzińska, A.; Waszkiewicz-Robak, B. Oleje tłoczone na zimno jako żywność funkcjonalna. Żywność. Nauka. Technol. Jakość 2012, 1, 27–44. [Google Scholar]
- Montesano, D.; Blasi, F.; Simonetti, M.S.; Santini, A.; Cossignani, L. Chemical and nutritional characterization of seed oil from Cucurbita maxima L. (var. Berrettina) pumpkin. Foods 2018, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Boujemaa, I.; El Bernoussi, S.; Harhar, H.; Tabyaoui, M. The influence of the species on the quality, chemical composition and antioxidant activity of pumpkin seed oil. OCL 2020, 27, 40. [Google Scholar] [CrossRef]
- Vorobyova, O.; Bolshakova, A.; Pegova, R.; Kol’chik, O.; Klabukova, I.; Krasilnikova, E.; Melnikova, N. Analysis of the components of pumpkin seed oil in suppositories and the possibility of its use in pharmaceuticals. J. Chem. Pharm. Res. 2014, 6, 1106–1116. [Google Scholar]
- Gorjanović, S.Ž.; Rabrenović, B.B.; Novaković, M.M.; Dimić, E.B.; Basić, Z.N.; Sužnjević, D.Ž. Cold-Pressed Pumpkin Seed Oil Antioxidant Activity as Determined by a DC Polarographic Assay Based on Hydrogen Peroxide Scavenge. J. Am. Oil Chem. Soc. 2011, 88, 1875–1882. [Google Scholar] [CrossRef]
- Naziri, E.; Mitić, M.N.; Tsimidou, M.Z. Contribution of tocopherols and squalene to the oxidative stability of cold-pressed pumkin seed oil (Cucurbita pepo L.). Eur. J. Lipid Sci. Technol. 2015, 118, 898–905. [Google Scholar] [CrossRef]
- Petkova, Z.; Antova, G. A comparative study on quality parameters of pumpkin, melon and sunflower oils during thermal treatment. OCL 2019, 26, 32. [Google Scholar] [CrossRef]
- Nakić, S.N.; Rade, D.; Škevin, D.; Štrucelj, D.; Mokrovčak, Ž.; Bartolić, M. Chemical characteristics of oils from naked and husk seeds of Cucurbita pepo L. Eur. J. Lipid Sci. Technol. 2006, 108, 936–943. [Google Scholar] [CrossRef]
- Parry, J.; Su, L.; Luther, M.; Zhou, K.; Yurawecz, M.P.; Whittaker, P.; Yu, L. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. J. Agric. Food Chem. 2005, 53, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Vujasinovic, V.; Djilas, S.; Dimic, E.; Romanic, R.; Takaci, A. Shelf life of cold-pressed pumpkin (Cucurbita pepo L.) seed oil obtained with a screw press. J. Am. Oil Chem. Soc. 2010, 87, 1497–1505. [Google Scholar] [CrossRef]
- Tan, C.; Che Man, Y.; Selamat, J.; Yusoff, M. Comparative studies of oxidative stability of edible oils by differential scanning calorimetry and oxidative stability index methods. Food Chem. 2002, 76, 385–389. [Google Scholar] [CrossRef]
- Zaunschirm, M.; Pignitter, M.; Kienesberger, J.; Hernler, N.; Riegger, C.; Eggersdorfer, M.; Somoza, V. Contribution of the ratio of tocopherol homologs to the oxidative stability of commercial vegetable oils. Molecules 2018, 23, 206. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Xie, B.; Fan, G.; Ma, S.; Zhu, X.; Pan, S. Effect of esterification with fatty acid of β-cryptoxanthin on its thermal stability and antioxidant activity by chemiluminescence method. Food Chem. 2010, 122, 602–609. [Google Scholar] [CrossRef]
- Panse, M.L.; Phalke, S.D. Fortification of food with omega-3 fatty acids. In Omega-3 Fatty Acids: Keys to Nutritional Health; Springer: Cham, Switzerland, 2016; pp. 89–100. [Google Scholar]
- Martin-Rubio, A.; Sopelana, P.; Guillén, M.D. A thorough insight into the complex effect of gamma-tocopherol on the oxidation process of soybean oil by means of 1H Nuclear Magnetic Resonance. Comparison with alpha-tocopherol. Food Res. Int. 2018, 114, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Güneş, F.E. Medical use of squalene as a natural antioxidant. Biochemistry 2013, 10, 11. [Google Scholar] [CrossRef]
- Schaich, K.M. Lipid oxidation: Theoretical aspects. Bailey’s Ind. Oil Fat Prod. 2005, 1, 273–303. [Google Scholar]
Sp. | Variety | Total Lipids [%] | Fatty Acids [%] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C16:0 | C18:0 | C18:1 n-9 | C18:2 | C18:3 n-3 | MUFAs | PUFAs | n-6/n-3 | |||
C. maxima | AG | 48.81 ± 1.50 AB | 13.65 ± 0.19 C | 5.20 ± 0.05 C | 14.65 ± 0.13 EF | 65.09 ± 0.34 CE | 0.75 ± 0.02 B | 14.88 ± 0.19 EG | 65.83 ± 0.33 BE | 87.13 ± 2.58 DE |
DM | 45.95 ± 0.44 C | 11.99 ± 0.09 EF | 5.64 ± 0.01 B | 14.79 ± 0.25 E | 65.78 ± 0.32 BCD | 0.99 ± 0.05 A | 15.14 ± 0.21 DE | 66.8 3 ± 0.33 ABC | 66.49 ± 3.09 E | |
GH | 48.13 ± 0.68 AB | 14.47 ± 0.05 B | 6.27 ± 0.01 A | 18.85 ± 0.06 B | 59.10 ± 0.01 F | 0.36 ± 0.04 DE | 19.24 ± 0.07 B | 59.46 ± 0.03 F | 165.51 ± 20.13 BC | |
PJB | 46.66 ± 0.58 BC | 15.24 ± 0.18 A | 5.17 ± 0.11 C | 14.00 ± 0.34 FG | 64.04 ± 0.58 E | 0.79 ± 0.03 B | 14.30 ± 0.34 G | 64.83 ± 0.60 DE | 80.90 ± 4.13 DE | |
RVd’E | 44.11 ± 2.13 C | 11.62 ± 0.03 EF | 6.62 ± 0.05 A | 14.75 ± 0.07 E | 65.94 ± 0.01 BC | 0.36 ± 0.02 DE | 15.05 ± 0.07 EF | 66.32 ± 0.05B CD | 183.56 ± 12.65 B | |
SW | 51.36 ± 2.27 A | 12.02 ± 0.42 E | 4.28 ± 0.12 DE | 15.60 ± 0.32 D | 66.82 ± 0.72 AB | 0.64 ± 0.03 C | 15.77 ± 0.26 D | 67.49 ± 0.71 AB | 104.94 ± 3.38 D | |
C. pepo | Mo | 51.29 ± 1.02 A | 14.70 ± 0.17 AB | 5.32 ± 0.11 BC | 13.89 ± 0.25 G | 64.70 ± 0.50 CE | 0.41 ± 0.02 D | 14.44 ± 0.22 FG | 65.16 ± 0.52 CE | 157.76 ± 8.24 C |
Mu | 44.11 ± 2.12 C | 10.20 ± 0.50 H | 4.45 ± 0.02 DE | 19.26 ± 0.03 B | 65.15 ± 0.56 BE | 0.31 ± 0.00 E | 19.50 ± 0.03 B | 65.47 ± 0.57 CE | 211.62 ± 2.42 A | |
JS | 43.13 ± 0.92 C | 10.65 ± 0.38 GH | 4.53 ± 0.06 DE | 19.98 ± 0.30 A | 63.72 ± 0.74 E | 0.38 ± 0.02 D | 20.38 ± 0.30 A | 64.1 ± 0.74 E | 166.24 ± 8.14 BC | |
Ob | 43.34 ± 0.67 C | 12.80 ± 0.21 D | 4.23 ± 0.01 E | 17.66 ± 0.31 C | 64.18 ± 0.60 DE | 0.40 ± 0.00 D | 17.87 ± 0.31 C | 64.58 ± 0.61 DE | 161.54 ± 2.00 BC | |
C. moschata | BR | 43.11 ± 0.37 C | 11.24 ± 0.40 FG | 4.64 ± 0.40 D | 14.14 ± 0.24 EG | 68.88 ± 0.69 A | 0.42 ± 0.01 D | 14.38 ± 0.32 FG | 68.60 ± 1.18 A | 162.24 ± 4.80 BC |
Sp. | Variety | Phytosterols [mg/kg] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Campesterol | Δ7,22,25- Stigmastatrienol | β-Sitosterol | Spinasterol | Δ7,25-Stigmastadienol | Δ7- Stigmastenol | Δ7- Avenasterol | 24-Methylene-Cycloartenol | Total Sterols | ||
C. maxima | AG | 10.24 ± 0.45 B | 40.63 ± 1.67 EF | 37.89 ± 1.42 C | 104.83 ± 3.94 F | 89.04 ± 3.79 A | 43.71 ± 1.10 BC | 240.1 ± 9.13 B | 2.13 ± 0.01 FG | 568.50 ± 18.13 B |
DM | 8.38 ± 0.37 DE | 34.10 ± 1.50 G | 42.41 ± 1.49 B | 108.18 ± 3.81 EF | 51.89 ± 2.00 F | 40.82 ± 1.79 C | 185.9 ± 6.61 CD | 3.45 ± 0.01 AB | 475.13 ± 17.14 DE | |
GH | 9.87 ± 0.40 BC | 36.7 ± 0.50 EG | 31.90 ± 1.22 D | 139.20 ± 0.17 D | 55.75 ± 0.98 EF | 30.41 ± 0.02 EF | 161.5 ± 0.56 F | 3.80 ± 0.03 A | 469.10 ± 1.93 E | |
PJB | 14.46 ± 0.62 A | 56.0 ± 2.45 D | 51.4 ± 1.03 A | 154.32 ± 3.09 BC | 74.75 ± 1.40 B | 45.72 ± 0.32 AB | 167.1 ± 6.52 EF | 3.35 ± 0.05 B | 567.11 ± 13.17 B | |
RVd’E | 5.63 ± 0.23 F | 41.5 ± 1.84 E | 51.71 ± 0.98 A | 147.80 ± 1.66 BD | 75.88 ± 0.01 B | 47.69 ± 0.22 A | 172.6 ± 3.37 DF | 2.17 ± 0.31 EF | 545.00 ± 6.77 BC | |
SW | 7.62 ± 0.31 E | 72.84 ± 1.30 B | 18.38 ± 0.28 F | 170.52 ± 2.62 A | 56.79 ± 0.55 EF | 33.05 ± 1.22 DE | 265.2 ± 7.32 A | 2.82 ± 0.09 CD | 627.26 ± 12.38 A | |
C. pepo | Mo | 9.00 ± 0.35 CD | 34.5 ± 1.68 FG | 37.89 ± 0.70 C | 99.61 ± 1.84 F | 60.99 ± 2.73 DE | 43.64 ± 1.83 BC | 188.5 ± 9.03 CD | 3.13 ± 0.09 BC | 477.23 ± 12.73 DE |
Mu | 3.03 ± 0.22 H | 68.4 ± 3.31 BC | 23.4 ± 1.66 E | 81.30 ± 0.57 G | 91.89 ± 1.25 A | 35.81 ± 2.19 D | 197.2 ± 3.57 C | 2.10 ± 0.10 DE | 503.56 ± 11.25 DE | |
JS | 4.33 ± 0.40 G | 71.7 ± 3.88 B | 29.30 ± 1.23 D | 157.20 ± 4.14 B | 79.08 ± 2.65 B | 35.42 ± 0.67 D | 248.7 ± 5.83 AB | 1.78 ± 0.04 GH | 627.49 ± 14.47 A | |
Ob | 2.36 ± 0.06 HI | 62.6 ± 0.52 C | 39.0 ± 0.44 C | 144.60 ± 8.47 CD | 64.60 ± 1.92 CD | 31.83 ± 0.04 E | 233.0 ± 9.10 B | 2.53 ± 0.13D E | 580.52 ± 13.00 B | |
C. moschata | BR | 1.82 ± 0.03 I | 91.4 ± 2.56 A | 17.90 ± 0.75 F | 117.60 ± 2.60 E | 68.10 ± 3.38 C | 26.89 ± 1.37 F | 183.5 ± 3.96 CDE | 1.55 ± 0.05 H | 508.66 ± 13.05 CD |
Sp. | Variety | Tocopherols [mg/kg] | Carotenoids [mg/kg] | Squalene [mg/kg] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
α-Tocopherol | γ- Tocopherol | δ-Tocopherol | Total | All-Trans-β-Carotene | All-Trans-Lutein +All-Trans-Zeaxanthin | All-Trans-Neoxanthin | All-Trans-Lutein- 5,6-Epoxid | All-Trans-α-Crypto-Xanthin | All-Trans- β-Crypto- Xanthin | Viola- Xanthin | Total | |||
C. maxima | AG | 16.30 ± 2.57 D | 217.50 ± 11.55 F | nd | 233.84 ± 14.05 F | 2.20 ± 0.06 B | 6.62 ± 0.18 E | 0.25 ± 0.02 D | 0.58 ± 0.03 C | 0.15 ± 0.00 C | 0.19 ± 0.01 C | nd | 9.99 ± 0.16 F | 616.6 ± 25.1 H |
DM | 19.98 ± 1.29 D | 397.28 ± 11.36 A | 15.87 ± 1.75 DE | 433.12 ± 11.59 BC | 2.05 ± 0.42 B | 3.90 ± 0.25 G | 0.48 ± 0.05 C | 0.73 ± 0.15 BC | 0.08 ± 0.00 D | 0.14 ± 0.02 D | nd | 7.39 ± 0.05 I | 774.4 ± 15.2 GH | |
GH | 29.74 ± 2.42 C | 317.91 ± 14.29 CD | 25.90 ± 0.81 BC | 373.55 ± 14.05 D | 1.29 ± 0.13 C | 9.03 ± 0.13 C | 0.15 ± 0.04 D | 0.31 ± 0.07 D | 0.41 ± 0.01 B | 1.21 ± 0.00 A | 0.50 ± 0.02 C | 12.87 ± 0.09 C | 1365.5 ± 61.2 F | |
PJB | 33.17 ± 2.57 C | 423.62 ± 18.58 A | 45.01 ± 2.37 A | 498.37 ± 19.85 A | 2.35 ± 0.04 B | 4.05 ± 0.04 G | 0.75 ± 0.09 A | 0.81 ± 0.06 B | 0.17 ± 0.00C | 0.14 ± 0.00 D | nd | 8.21 ± 0.05 H | 947.3 ± 25.1 G | |
RVd’E | 20.43 ± 1.44 D | 268.49 ± 4.91 E | 21.52 ± 0.75 CD | 310.44 ± 2.90 E | 3.14 ± 0.17 A | 6.20 ± 0.48 E | nd | nd | 0.84 ± 0.07 A | 0.23 ± 0.03 BC | 0.48 ± 0.04 C | 10.89 ± 0.55 E | 2247.9 ± 51.9 DE | |
SW | 88.45 ± 5.36 A | 348.63 ± 16.18 BC | 22.39 ± 1.02 BC | 466.47 ± 15.05 AB | 2.46 ± 0.05 B | 7.85 ± 0.03 D | 0.59 ± 0.03 B | 0.37 ± 0.03 D | 0.16 ± 0.02 C | 0.11 ± 0.01 E | 0.94 ± 0.07 B | 11.54 ± 0.08 D | 1927.7 ± 33.9 E | |
C. pepo | Mo | 7.43 ± 0.35 E | 54.08 ± 5.22 G | 10.43 ± 0.99 E | 71.94 ± 4.94 G | 2.96 ± 0.05 A | 9.67 ± 0.21 B | 0.53 ± 0.02 BC | 1.32 ± 0.06 A | 0.2 ± 0.00 C | 0.25 ± 0.00 B | nd | 14.92 ± 0.22 B | 634.9 ± 31.0 H |
Mu | 41.56 ± 1.84 B | 238.97 ± 6.91 EF | nd | 280.53 ± 8.53 E | 0.41 ± 0.03 E | 17.21 ± 0.11 A | nd | nd | nd | nd | 1.78 ± 0.09 A | 19.40 ± 0.13 A | 3175.1 ± 170.1 A | |
JS | 49.22 ± 4.38 B | 321.86 ± 14.47 BD | nd | 371.08 ± 18.77 D | 0.59 ± 0.03 E | 8.03 ± 0.03 D | nd | nd | nd | nd | 0.41 ± 0.02 C | 9.03 ± 0.06 G | 2693.1 ± 28.2 C | |
Ob | 43.37 ± 0.56 B | 357.10 ± 9.09 B | nd | 400.48 ± 9.27 CD | 0.29 ± 0.04 E | 6.49 ± 0.07 E | nd | nd | nd | nd | 1.04 ± 0.12 B | 7.82 ± 0.13 HI | 3092.0 ± 16.8 A | |
C. moschata | BR | 45.97 ± 2.54 B | 311.04 ± 18.52 D | 31.84 ± 3.7 B | 388.85 ± 17.87 D | 0.36 ± 0.02 D | 5.26 ± 0.16 F | nd | nd | nd | nd | 0.06 ± 0.00 D | 5.68 ± 0.14 I | 2889.1 ± 15.2 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grajzer, M.; Kozłowska, W.; Zalewski, I.; Matkowski, A.; Wiland-Szymańska, J.; Rękoś, M.; Prescha, A. Nutraceutical Prospects of Pumpkin Seeds: A Study on the Lipid Fraction Composition and Oxidative Stability Across Eleven Varieties. Foods 2025, 14, 354. https://doi.org/10.3390/foods14030354
Grajzer M, Kozłowska W, Zalewski I, Matkowski A, Wiland-Szymańska J, Rękoś M, Prescha A. Nutraceutical Prospects of Pumpkin Seeds: A Study on the Lipid Fraction Composition and Oxidative Stability Across Eleven Varieties. Foods. 2025; 14(3):354. https://doi.org/10.3390/foods14030354
Chicago/Turabian StyleGrajzer, Magdalena, Weronika Kozłowska, Iwan Zalewski, Adam Matkowski, Justyna Wiland-Szymańska, Monika Rękoś, and Anna Prescha. 2025. "Nutraceutical Prospects of Pumpkin Seeds: A Study on the Lipid Fraction Composition and Oxidative Stability Across Eleven Varieties" Foods 14, no. 3: 354. https://doi.org/10.3390/foods14030354
APA StyleGrajzer, M., Kozłowska, W., Zalewski, I., Matkowski, A., Wiland-Szymańska, J., Rękoś, M., & Prescha, A. (2025). Nutraceutical Prospects of Pumpkin Seeds: A Study on the Lipid Fraction Composition and Oxidative Stability Across Eleven Varieties. Foods, 14(3), 354. https://doi.org/10.3390/foods14030354