Untargeted Metabolomics Comparison and Nutrition Evaluation of Geographical Indication Newhall Navel Oranges in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Determination of Quality Attributes
2.3. Untargeted Metabolomics Analysis
2.3.1. Sample Preparation
2.3.2. Metabolite Extraction
2.3.3. LC-MS/MS Analysis
2.3.4. Data Processing
2.3.5. Metabolite Identification
2.4. Statistical Analyses
3. Results
3.1. Soluble Solids Content, Titratable Acidity, and Vitamin C
3.2. Compound Identification
3.3. Metabolic Marker Discrimination
3.3.1. PCA, PLS-DA, and OPLS-DA Results
3.3.2. Top Ten Most Important Markers
3.4. Nutrition Evaluation
4. Discussion
4.1. Quality Attributes
4.2. The Discrimination of GI Orange Samples and Top Ten Most Important Markers
4.3. Nutritional Comparison
4.4. The Potential Association Between the Terroir and the Quality of Navel Orange
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Li, Y.; Liang, L.; Xu, C.; Yang, T.; Wang, Y. UPLC-Q-TOF/MS-based untargeted metabolomics for discrimination of navel oranges from different geographical origins of China. LWT 2021, 137, 110382. [Google Scholar] [CrossRef]
- Ollitrault, P.; Terol, J.; Chen, C.; Federici, C.T.; Lotfy, S.; Hippolyte, I.; Ollitrault, F.; Berard, A.; Chauveau, A.; Cuenca, J.; et al. A reference genetic map of C. clementina hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genom. 2012, 13, 593. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; He, C.; Liu, H.; Shen, G.; Xia, F.; Feng, J. NMR-based quantitative component analysis and geographical origin identification of China’s sweet orange. Food Control 2021, 130, 108292. [Google Scholar] [CrossRef]
- Hu, D.-Y.; Liao, Q.-H.; Xie, R.-J.; He, S.-L.; Qian, C.; Lv, Q.; Yi, S.-L.; Zheng, Y.-Q.; Deng, L. Effect of Geographical Location on Physical Characteristics and Chemical Compositions of Newhall Navel Orange (Citrus sinensis (L.) Osbeck). Food Sci. 2015, 36, 18–28. [Google Scholar] [CrossRef]
- Ben Mohamed, M.; Rocchetti, G.; Montesano, D.; Ben Ali, S.; Guasmi, F.; Grati-Kamoun, N.; Lucini, L. Discrimination of Tunisian and Italian extra-virgin olive oils according to their phenolic and sterolic fingerprints. Food Res. Int. 2018, 106, 920–927. [Google Scholar] [CrossRef]
- Sales, C.; Cervera, M.I.; Gil, R.; Portolés, T.; Pitarch, E.; Beltran, J. Quality classification of Spanish olive oils by untargeted gas chromatography coupled to hybrid quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization and metabolomics-based statistical approach. Food Chem. 2017, 216, 365–373. [Google Scholar] [CrossRef]
- Stavropoulou, M.I.; Termentzi, A.; Kasiotis, K.M.; Cheilari, A.; Stathopoulou, K.; Machera, K.; Aligiannis, N. Untargeted ultrahigh-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry (UHPLC-HRMS) metabolomics reveals propolis markers of Greek and Chinese origin. Molecules 2021, 26, 456. [Google Scholar] [CrossRef]
- Colantonio, V.; Ferra, L.F.V.; Tieman, D.M.; Bliznyuk, N.; Sims, C.; Klee, H.J.; Munoz, P.; Resende, M.F.R. Metabolomic selection for enhanced fruit flavor. Proc. Natl. Acad. Sci. USA 2022, 119, e2115865119. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef]
- Wang, X.L.; Wu, L.X.; Qiu, J.; Qian, Y.Z.; Wang, M. Comparative metabolomic analysis of the nutritional aspects from ten cultivars of the strawberry fruit. Foods 2023, 12, 1153. [Google Scholar] [CrossRef]
- Pu, J.; Vinitchaikul, P.; Gu, Z.; Mao, H.; Zhang, F. The use of metabolomics to reveal differences in functional substances of milk whey of dairy buffaloes raised at different altitudes. Food Funct. 2021, 12, 5440–5450. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.X.; Gong, J.P.; Zhang, X.M.; Huang, Y.C.; Zhang, W.; Yang, J.Y.; Lin, J.J.; Chai, Y.; Liu, J.F. Evaluation of the combined toxicity of multi-walled carbon nanotubes and cadmium on earthworms in soil using multi-level biomarkers. Ecotoxicol. Environ. Saf. 2021, 221, 112441. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; Liu, M.; Liu, Y.; Strappe, P.; Sun, H.; Zhou, Z. Comparative non-targeted metabolomic analysis reveals insights into the mechanism of rice yellowing. Food Chem. 2020, 308, 125621. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, L.; Xu, Z.; Zhang, X.; Zhang, Z.; Qian, Y. Physicochemical quality and metabolomics comparison of the green food apple and conventional apple in China. Food Res. Int. 2021, 139, 109804. [Google Scholar] [CrossRef]
- Li, Q.; Yang, S.; Li, B.; Zhang, C.; Li, Y.; Li, J. Exploring critical metabolites of honey peach (Prunus persica (L.) Batsch) from five main cultivation regions in the north of China by UPLC-Q-TOF/MS combined with chemometrics and modeling. Food Res. Int. 2022, 157, 111213. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Liu, Q.; Zhang, L.; Liu, S.; Su, Y.; Ren, Y.; Yuan, C. Untargeted metabolomics analysis based on LC-IM-QTOF-MS for discriminating geographical origin and vintage of Chinese red wine. Food Res. Int. 2023, 165, 112547. [Google Scholar] [CrossRef]
- Pimenta, J.V.C.; dos Santos, L.B.; Almeida, M.R.; Augusti, R.; de Macedo, A.N. Geographic origin characterization of Brazilian green coffee beans via untargeted metabolomics. Food Chem. 2025, 464, 141683. [Google Scholar] [CrossRef]
- He, L.; Hu, Q.; Zhang, J.; Xing, R.; Zhao, Y.; Yu, N.; Chen, Y. An integrated untargeted metabolomic approach reveals the quality characteristics of black soybeans from different geographical origins in China. Food Res. Int. 2023, 169, 112908. [Google Scholar] [CrossRef]
- Huang, Y.; He, J.; Xu, Y.; Zheng, W.; Wang, S.; Chen, P.; Zeng, B.; Yang, S.; Jiang, X.; Liu, Z.; et al. Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nat. Genet. 2023, 55, 1964–1975. [Google Scholar] [CrossRef]
- Katz, E.; Boo, K.F.; Kim, H.Y.; Eigenheer, R.A.; Phinney, B.S.; Shulaev, V.; Negre-Zakharov, F.; Sadka, A.; Blumwald, E. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. J. Exp. Bot. 2011, 62, 5367–5384. [Google Scholar] [CrossRef]
- López-Bucio, J.; Nieto-Jacobo, M.F.; Ramírez-Rodríguez, V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J. Comparative Metabolomics Analysis of Citrus Varieties. Foods 2021, 10, 2826. [Google Scholar] [CrossRef] [PubMed]
- Jayarajan, S.; Sharma, R.R.; Sethi, S.; Saha, S.; Sharma, V.K.; Singh, S. Chemical and nutritional evaluation of major genotypes of nectarine (Prunus persica var nectarina) grown in North-Western Himalayas. J. Food Sci. Technol. 2019, 56, 4266–4273. [Google Scholar] [CrossRef]
- Sogvar, O.B.; Rabiei, V.; Razavi, F.; Gohari, G. Phenylalanine alleviates postharvest chilling injury of plum fruit by modulating antioxidant system and enhancing the accumulation of phenolic compound. Food Technol. Biotechnol. 2020, 58, 433–444. [Google Scholar] [CrossRef]
- Cercos, M.; Soler, G.; Iglesias, D.J.; Gadea, J.; Forment, J.; Talon, M. Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol. Biol. 2006, 62, 513–527. [Google Scholar] [CrossRef]
- Zhu, C.; Lu, Q.; Zhou, X.; Li, J.; Yue, J.; Wang, Z.; Pan, S. Metabolic variations of organic acids, amino acids, fatty acids and aroma compounds in the pulp of different pummelo varieties. LWT 2020, 130, 109445. [Google Scholar] [CrossRef]
- Nateghpour, B.; Kavoosi, G.; Mirakhorli, N. Amino acid profile of the peel of three citrus species and its effect on the combination of amino acids and fatty acids Chlorella vulgaris. J. Food Compos. Anal. 2021, 98, 103808. [Google Scholar] [CrossRef]
- Villa-Ruano, N.; Pérez-Hernández, N.; Zepeda-Vallejo, L.G.; Quiroz-Acosta, T.; Mendieta-Moctezuma, A.; Montoya-García, C.; García-Nava, M.L.; Becerra-Martínez, E. 1H-NMR based metabolomics profiling of citrus juices produced in Veracruz, México. Chem. Biodivers. 2019, 16, e1800479. [Google Scholar] [CrossRef]
- Rashmi, H.B.; Negi, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res.Int. 2020, 136, 109298. [Google Scholar] [CrossRef]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An overview on the role of dietary phenolics for the treatment of cancers. Nutr. J. 2016, 15, 99. [Google Scholar] [CrossRef]
- Stuper-Szablewska, K.; Perkowski, J. Phenolic acids in cereal grain: Occurrence, biosynthesis, metabolism and role in living organisms. Crit. Rev. Food Sci. Nutr. 2017, 59, 664–675. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Rocha, C.; Magnani, M.; Jensen Klososki, S.; Aparecida Marcolino, V.; dos Santos Lima, M.; Queiroz de Freitas, M.; Carla Feihrmann, A.; Eduardo Barão, C.; Colombo Pimentel, T. High-intensity ultrasound influences the probiotic fermentation of Baru almond beverages and impacts the bioaccessibility of phenolics and fatty acids, sensory properties, and in vitro biological activity. Food Res. Int. 2023, 173, 113372. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Wu, J.; Wang, X.; Cui, L.; Xiao, Q. Accumulation patterns of flavonoids and phenolic acids in different colored sweet potato flesh revealed based on untargeted metabolomics. Food Chem. X 2024, 23, 101551. [Google Scholar] [CrossRef]
- Pang, L.L.; Chen, L.; Jiang, Y.Q.; Zhou, C.; Liang, F.H.; Duan, L.H. Role of exogenous melatonin in quality maintenance of sweet cherry: Elaboration in links between phenolic and amino acid metabolism. Food Biosci. 2023, 56, 103223. [Google Scholar] [CrossRef]
- Clifford, M.N.; Ludwig, I.A.; Pereira-Caro, G.; Zeraik, L.; Borges, G.; Almutairi, T.M.; Dobani, S.; Bresciani, L.; Mena, P.; Gill, C.I.R.; et al. Exploring and disentangling the production of potentially bioactive phenolic catabolites from dietary (poly)phenols, phenylalanine, tyrosine and catecholamines. Redox Biol. 2024, 71, 103068. [Google Scholar] [CrossRef]
- Portu, J.; López-Alfaro, I.; Gómez-Alonso, S.; López, R.; Garde-Cerdán, T. Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea. Food Chem. 2015, 180, 171–180. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, H.; Hao, S.; Pan, D.; Wang, G.; Yu, W. Evaluation of phenolic composition and antioxidant properties of different varieties of Chinese citrus. Food Chem. 2021, 364, 130413. [Google Scholar] [CrossRef]
- Azuma, A.; Yakushiji, H.; Koshita, Y.; Kobayashi, S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 2012, 236, 1067–1080. [Google Scholar] [CrossRef]
- Androutsopoulos, V.P.; Papakyriakou, A.; Vourloumis, D.; Tsatsakis, A.M.; Spandidos, D.A. Dietary flavonoids in cancer therapy and prevention: Substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacol. Ther. 2010, 126, 9–20. [Google Scholar] [CrossRef]
- Zhu, C.; Zhou, X.; Long, C.; Du, Y.; Li, J.; Yue, J.; Pan, S. Variations of flavonoid composition and antioxidant properties among different cultivars, fruit tissues and developmental stages of Citrus fruits. Chem. Biodivers. 2020, 17, e1900690. [Google Scholar] [CrossRef]
- Carr, A.C.; Rosengrave, P.C.; Bayer, S.; Chambers, S.; Mehrtens, J.; Shaw, G.M. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit. Care 2017, 21, 300. [Google Scholar] [CrossRef] [PubMed]
- Maiani, G.; Periago Castón, M.J.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53, S194–S218. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Li, B.; Vachali, P.P.; Gorusupudi, A.; Shyam, R.; Henriksen, B.S.; Nolan, J.M. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retin. Eye Res. 2016, 50, 34–66. [Google Scholar] [CrossRef]
- Assefa, A.D.; Saini, R.K.; Keum, Y.-S. Fatty acids, tocopherols, phenolic and antioxidant properties of six citrus fruit species: A comparative study. J. Food Meas. Charact. 2017, 11, 1665–1675. [Google Scholar] [CrossRef]
- Matsuo, Y.; Miura, L.A.; Araki, T.; Yoshie-Stark, Y. Proximate composition and profiles of free amino acids, fatty acids, minerals and aroma compounds in Citrus natsudaidai peel. Food Chem. 2019, 279, 356–363. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Baira, E.; Iosifidou, S.; Manea-Karga, E.; Tsipi, D.; Gounari, S.; Theologidis, I.; Barmpouni, T.; Danieli, P.P.; Lazzari, F.; et al. Fingerprinting chemical markers in the mediterranean orange Blossom Honey: UHPLC-HRMS metabolomics study integrating melissopalynological analysis, GC-MS and HPLC-PDA-ESI/MS. Molecules 2023, 28, 3967. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Smith, J.; Fulgoni, V.L. The new hybrid nutrient density score NRFh 4:3:3 tested in relation to affordable nutrient density and healthy eating index 2015: Analyses of NHANES data 2013-16. Nutrients 2021, 13, 1734. [Google Scholar] [CrossRef]
- Fu, H.; Lee, C.H.; Nolden, A.A.; Kinchla, A.J.; Chen, B. Nutrient density, added sugar, and fiber content of commercially available fruit snacks in the United States from 2017 to 2022. Nutrients 2024, 16, 292. [Google Scholar] [CrossRef]
- Drewnowski, A.; Fulgoni, V.L. New nutrient rich food nutrient density models that include nutrients and myplate food groups. Front. Nutr. 2020, 7, 107. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Hui, D.F.; Kumar, A.; Yu, Z.G.; Huang, Y.H. Climate change and/or pollution on the carbon cycle in terrestrial ecosystems. Front. Environ. Sci. 2023, 11, 1253172. [Google Scholar] [CrossRef]
Samples | Number | Metabolites | Assigned Score | Mass Error (ppm) | ||
---|---|---|---|---|---|---|
FJ | GZ | ZG | ||||
Peeled | 1 | L-aspartic acid | 1 | 2 | 3 | 0.68 |
2 | D-β-phenylalanine | 1 | 2 | 3 | 9.90 | |
3 | L-glutamic γ-semialdehyde | 1 | 2 | 3 | 16.77 | |
4 | Hesperetin | 1 | 1 | 2 | 2.28 | |
5 | Hydrocinnamic acid | 1 | 2 | 3 | 29.56 | |
6 | 4-hydroxycinnamic acid | 1 | 2 | 2 | 4.69 | |
7 | DHA | 1 | 2 | 3 | 6.52 | |
Total score | 7 | 13 | 19 | |||
Whole | 1 | L-aspartic acid | 1 | 3 | 2 | 0.68 |
2 | L-glutamic-semialdehyde | 1 | 2 | 3 | 16.77 | |
3 | Isovitexin 2′-O-β-D-glucoside | 1 | 2 | 3 | 0.80 | |
4 | Isovitexin | 1 | 2 | 2 | 4.56 | |
5 | Trans-2-hydrocinnamate | 1 | 2 | 2 | 2.28 | |
6 | Trans-cinnamate | 1 | 2 | 2 | 2.40 | |
7 | Diosmetin | 1 | 2 | 2 | 1.08 | |
8 | Hydrocinnamic acid | 1 | 3 | 2 | 29.56 | |
9 | β-carotene | 1 | 3 | 2 | 0.85 | |
Total score | 9 | 21 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, X.; Xie, M.; Zhang, X.; Wang, N.; Zhang, W.; Lin, J.; Yang, J.; Yang, X.; Li, Y. Untargeted Metabolomics Comparison and Nutrition Evaluation of Geographical Indication Newhall Navel Oranges in China. Foods 2025, 14, 355. https://doi.org/10.3390/foods14030355
Shu X, Xie M, Zhang X, Wang N, Zhang W, Lin J, Yang J, Yang X, Li Y. Untargeted Metabolomics Comparison and Nutrition Evaluation of Geographical Indication Newhall Navel Oranges in China. Foods. 2025; 14(3):355. https://doi.org/10.3390/foods14030355
Chicago/Turabian StyleShu, Xiao, Manli Xie, Xuemei Zhang, Na Wang, Wei Zhang, Junjie Lin, Junying Yang, Xiaoxia Yang, and Yingkui Li. 2025. "Untargeted Metabolomics Comparison and Nutrition Evaluation of Geographical Indication Newhall Navel Oranges in China" Foods 14, no. 3: 355. https://doi.org/10.3390/foods14030355
APA StyleShu, X., Xie, M., Zhang, X., Wang, N., Zhang, W., Lin, J., Yang, J., Yang, X., & Li, Y. (2025). Untargeted Metabolomics Comparison and Nutrition Evaluation of Geographical Indication Newhall Navel Oranges in China. Foods, 14(3), 355. https://doi.org/10.3390/foods14030355