Impact of Encapsulation Position in Pickering Emulsions on Color Stability and Intensity Turmeric Oleoresin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Ly/CMC NPs
2.3. Physical Properties of Ly/CMC NPs
2.3.1. Particle Size, Polydispersity Index, and Zeta Potential
2.3.2. Entrapment Efficiency
2.4. ATR-FTIR of Ly/CMC NPs
2.5. Preparation of Emulsion
2.6. Morphological Characterization of PE Stabilized by Ly/CMC NPs
2.7. Color Analysis of OPE and IPE
2.8. Stability of the OPE and IPE
2.8.1. Thermal Stability
2.8.2. pH Stability
2.8.3. Storage Stability
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties of Ly/CMC NPs
3.2. FTIR Analysis of Ly/CMC NPs
3.3. Morphological Characteristics of PE Stabilized by Ly/CMC NPs
3.4. Color Properties of OPE and IPE
3.5. Stability of OPE and IPE
3.5.1. Thermal Stability
3.5.2. pH Stability
3.5.3. Storage Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manzoor, M.; Singh, J.; Gani, A.; Noor, N. Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem. 2021, 362, 130141. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Das, A.; Chakraborty, R. Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT 2022, 153, 112527. [Google Scholar] [CrossRef]
- Sun, X.-H.; Zhou, T.; Wei, C.; Lan, W.; Zhao, Y.; Pan, Y.; Wu, V.C.H. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control 2018, 94, 155–161. [Google Scholar] [CrossRef]
- Halevas, E.; Mavroidi, B.; Swanson, C.H.; Smith, G.C.; Moschona, A.; Hadjispyrou, S.; Salifoglou, A.; Pantazaki, A.A.; Pelecanou, M.; Litsardakis, G. Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential. J. Inorg. Biochem. 2019, 199, 110778. [Google Scholar] [CrossRef]
- Squillace, P.; Adani, F.; Scaglia, B. Supercritical CO2 extraction of tomato pomace: Evaluation of the solubility of lycopene in tomato oil as limiting factor of the process performance. Food Chem. 2020, 315, 126224. [Google Scholar] [CrossRef]
- Elizondo-Luévano, J.H.; Hernández-García, M.E.; Pérez-Narváez, O.A.; Castro-Ríos, R.; Chávez-Montes, A. Berberine, curcumin and quercetin as potential antiparasitic agents.: Potential agents with antiparasitic capacity. Rev. Biol. Trop. 2020, 68, 1241–1249. [Google Scholar] [CrossRef]
- Ipar, V.S.; Singhal, R.S.; Devarajan, P.V. An innovative approach using microencapsulated turmeric oleoresin to develop ready-to-use turmeric milk powder with enhanced oral bioavailability. Food Chem. 2022, 373, 131400. [Google Scholar] [CrossRef]
- Dan, Y.; Baek, Y.; Jeong, E.W.; Lee, H.G. Development of a novel fat reduction system with quercetin-loaded annealed wheat starch for enhanced emulsifying and oxidative stability in low-fat mayonnaise. J. Food Eng. 2024, 264, 111812. [Google Scholar] [CrossRef]
- Madhusankha, G.D.M.P.; Siow, L.F.; Dos Santos Silva Amaral, M.; Marriott, P.J.; Thoo, Y.Y. Impact of thermal processing and emulsification methods on spice oleoresin blending: Insights for flavor release and emulsion stability. Food Chem. 2024, 460, 140751. [Google Scholar] [CrossRef]
- Lee, B.N.; Hong, S.J.; Yu, M.H.; Shin, G.H.; Kim, J.T. Enhancement of storage stability and masking effect of curcumin by turmeric extract-loaded nanoemulsion and water-soluble chitosan coating. Pharmaceutics 2022, 14, 1547. [Google Scholar] [CrossRef]
- Tan, C.; Dadmohammadi, Y.; Lee, M.C.; Abbaspourrad, A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3164–3191. [Google Scholar] [CrossRef] [PubMed]
- Eisinaitė, V.; Leskauskaitė, D.; Pukalskienė, M.; Venskutonis, P.R. Freeze-drying of black chokeberry pomace extract–loaded double emulsions to obtain dispersible powders. J. Food Sci. 2020, 85, 628–638. [Google Scholar] [CrossRef]
- Kanha, N.; Surawang, S.; Pitchakarn, P.; Laokuldilok, T. Microencapsulation of copigmented anthocyanins using double emulsion followed by complex coacervation: Preparation, characterization and stability. LWT 2020, 133, 110154. [Google Scholar] [CrossRef]
- Kanha, N.; Surawang, S.; Pitchakarn, P.; Regenstein, J.M.; Laokuldilok, T. Copigmentation of cyanidin 3-O-glucoside with phenolics: Thermodynamic data and thermal stability. Food Biosci. 2019, 30, 100419. [Google Scholar] [CrossRef]
- Yang, H.; Su, Z.; Meng, X.; Zhang, X.; Kennedy, J.F.; Liu, B. Fabrication and characterization of Pickering emulsion stabilized by soy protein isolate-chitosan nanoparticles. Carbohydr. Polym. 2020, 247, 116712. [Google Scholar] [CrossRef]
- Xu, W.; Li, Z.; Li, H.; Sun, H.; Zheng, S.; Luo, D.; Li, Y.; Wang, Y.; Shah, B.R. Stabilization and microstructural network of Pickering emulsion using different xanthan gum/lysozyme nanoparticle concentrations. LWT 2022, 160, 113298. [Google Scholar] [CrossRef]
- Chen, H.; Dai, H.; Zhu, H.; Ma, L.; Fu, Y.; Feng, X.; Sun, Y.; Zhang, Y. Construction of dual-compartmental micro-droplet via shrimp ferritin nanocages stabilized Pickering emulsions for co-encapsulation of hydrophobic/hydrophilic bioactive compounds. Food Hydrocoll. 2022, 126, 107443. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, C.; Liu, X.; Mackie, A.; Zhang, M.; Dai, L.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Co-encapsulation of curcumin and β-carotene in Pickering emulsions stabilized by complex nanoparticles: Effects of microfluidization and thermal treatment. Food Hydrocoll. 2022, 122, 107064. [Google Scholar] [CrossRef]
- Aw, Y.Z.; Lim, H.P.; Low, L.E.; Goh, B.H.; Chan, E.S.; Tey, B.T. Pickering emulsion hydrogel beads for curcumin encapsulation and food application. J. Food Eng. 2023, 350, 111501. [Google Scholar] [CrossRef]
- Li, Z.; Xu, W.; Zhang, C.; Chen, Y.; Li, B. Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate. Int. J. Biol. Macromol. 2015, 75, 166–172. [Google Scholar] [CrossRef]
- Baek, Y.; Jeong, E.W.; Lee, H.G. Encapsulation of resveratrol within size-controlled nanoliposomes: Impact on solubility, stability, cellular permeability, and oral bioavailability. Colloids Surf. B Biointerfaces 2023, 224, 113205. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-B.; Wu, M.-Y.; Wang, C.; Wang, Z.-W.; Chen, T.-T.; Yan, J.-K. Constructing biocompatible carboxylic curdlan-coated zein nanoparticles for curcumin encapsulation. Food Hydrocoll. 2020, 108, 106028. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Xu, N.; Sun, W.; Ding, B.; Xu, W.; Li, Z. Effect of carboxymethylcellulose on the affinity between lysozyme and liposome monolayers: Evidence for its bacteriostatic mechanism. Food Hydrocoll. 2020, 98, 105263. [Google Scholar] [CrossRef]
- Liu, Q.; Chang, X.; Shan, Y.; Fu, F.; Ding, S. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles. J. Sci. Food Agric. 2021, 101, 3630–3643. [Google Scholar] [CrossRef]
- Lee, G.R.; Baek, Y.; Jeong, E.; Lee, H.G. Development and characterization of a novel bigel system based on candelilla wax oleogel and guar gum hydrogel for heat-triggered release properties. Food Hydrocoll. 2024, 152, 109892. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Huang, Y.; Hu, M.; Lv, X.; Zhang, Y.; Dai, H. Gelatin-nanocellulose stabilized emulsion-filled hydrogel beads loaded with curcumin: Preparation, encapsulation and release behavior. Int. J. Biol. Macromol. 2024, 275, 133551. [Google Scholar] [CrossRef]
- Kim, E.S.; Baek, Y.; Yoo, H.J.; Lee, J.S.; Lee, H.G. Chitosan-tripolyphosphate nanoparticles prepared by ionic gelation improve the antioxidant activities of astaxanthin in the in vitro and in vivo model. Antioxidants 2022, 11, 479. [Google Scholar] [CrossRef]
- Lee, J.-S.; Hong, D.Y.; Kim, E.S.; Lee, H.G. Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation. Colloids Surf. B Biointerfaces 2017, 154, 171–177. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Pei, Y.; Xiong, W.; Zhang, C.; Xu, W.; Liu, S.; Li, B. Curcumin encapsulated in the complex of lysozyme/carboxymethylcellulose and implications for the antioxidant activity of curcumin. Food Res. Int. 2015, 75, 98–105. [Google Scholar] [CrossRef]
- Suresh, D.; Gurudutt, K.; Srinivasan, K. Degradation of bioactive spice compound: Curcumin during domestic cooking. Eur. Food Res. Technol. 2009, 228, 807–812. [Google Scholar] [CrossRef]
- Cui, J.; Zhou, J.; Huang, L.; Jing, J.; Wang, N.; Wang, L. Curcumin encapsulation and protection based on lysozyme nanoparticles. Food Sci. Nutr. 2019, 7, 2702–2707. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liang, X.; Chen, Y.; Ding, B.; Sun, W.; Li, Z.; Luo, Y. Understanding the effects of carboxymethyl cellulose on the bioactivity of lysozyme at different mass ratios and thermal treatments. Food Hydrocoll. 2021, 113, 106446. [Google Scholar] [CrossRef]
- Du, S.; Chen, X.; Chen, X.; Li, S.; Yuan, G.; Zhou, T.; Li, J.; Jia, Y.; Xiong, D.; Tan, H. Covalent chitosan-cellulose hydrogels via Schiff-base reaction containing macromolecular microgels for pH-sensitive drug delivery and wound dressing. Macromol. Chem. Phys. 2019, 220, 1900399. [Google Scholar] [CrossRef]
- Ning, J.; Luo, X.; Wang, F.; Huang, S.; Wang, J.; Liu, D.; Liu, D.; Chen, D.; Wei, J.; Liu, Y. Synergetic sensing effect of sodium carboxymethyl cellulose and bismuth on cadmium detection by differential pulse anodic stripping voltammetry. Sensors 2019, 19, 5482. [Google Scholar] [CrossRef]
- Cai, H.; Yao, P. In situ preparation of gold nanoparticle-loaded lysozyme–dextran nanogels and applications for cell imaging and drug delivery. Nanoscale 2013, 5, 2892–2900. [Google Scholar] [CrossRef]
- Rezaei, A.; Nasirpour, A. Encapsulation of curcumin using electrospun almond gum nanofibers: Fabrication and characterization. Int. J. Food Prop. 2018, 21, 1608–1618. [Google Scholar] [CrossRef]
- Xu, W.; Ge, P.; Huang, L.; Du, Z.; Liu, X.; Li, J.; Yang, N. Solubilization and protection of curcumin based on lysozyme/albumin nano-complex. AIP Adv. 2018, 8, 115221. [Google Scholar] [CrossRef]
- Gunathilake, T.M.S.U.; Ching, Y.C.; Uyama, H.; Hai, N.D.; Chuah, C.H. Enhanced curcumin loaded nanocellulose: A possible inhalable nanotherapeutic to treat COVID-19. Cellulose 2022, 29, 1821–1840. [Google Scholar] [CrossRef]
- Khaleghi, N.; Forouzandeh-Malati, M.; Ganjali, F.; Rashvandi, Z.; Zarei-Shokat, S.; Taheri-Ledari, R.; Maleki, A. Silver-assisted reduction of nitroarenes by an Ag-embedded curcumin/melamine-functionalized magnetic nanocatalyst. Sci. Rep. 2023, 13, 5225. [Google Scholar] [CrossRef]
- Huang, W.; Wang, L.; Wei, Y.; Cao, M.; Xie, H.; Wu, D. Fabrication of lysozyme/κ-carrageenan complex nanoparticles as a novel carrier to enhance the stability and in vitro release of curcumin. Int. J. Biol. Macromol. 2020, 146, 444–452. [Google Scholar] [CrossRef]
- Vergara, L.P.; dos Santos Hackbart, H.C.; Jansen Alves, C.; Reissig, G.N.; Wachholz, B.S.; Borges, C.D.; Chim, J.F.; Zambiazi, R.C. Encapsulation of phenolic compounds through the complex coacervation technique for the enrichment of diet chewable candies. Food Biosci. 2023, 51, 102256. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. An overview of Pickering emulsions: Solid-particle materials, classification, morphology, and applications. Front. Pharmacol. 2017, 8, 287. [Google Scholar] [CrossRef]
- Gonzalez Ortiz, D.G.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Current trends in Pickering emulsions: Particle morphology and applications. Engineering 2020, 6, 468–482. [Google Scholar] [CrossRef]
- Mirhosseini, H.; Tan, C.P.; Hamid, N.S.A.; Yusof, S. Optimization of the contents of Arabic gum, xanthan gum and orange oil affecting turbidity, average particle size, polydispersity index and density in orange beverage emulsion. Food Hydrocoll. 2008, 22, 1212–1223. [Google Scholar] [CrossRef]
- Chantrapornchai, W.; Clydesdale, F.M.; McClements, D.J. Influence of flocculation on optical properties of emulsions. J. Food Sci. 2001, 66, 464–469. [Google Scholar] [CrossRef]
- Low, L.E.; Siva, S.P.; Ho, Y.K.; Chan, E.S.; Tey, B.T. Recent advances of characterization techniques for the formation, physical properties and stability of Pickering emulsion. Adv. Colloid Interface Sci. 2020, 277, 102117. [Google Scholar] [CrossRef]
- Zheng, B.; McClements, D.J. Formulation of more efficacious curcumin delivery systems using colloid science: Enhanced solubility, stability, and bioavailability. Molecules 2020, 25, 2791. [Google Scholar] [CrossRef]
- Minaker, S.A.; Mason, R.H.; Chow, D.R. Optimizing color performance of the ngenuity 3-dimensional visualization system. Ophthalmol. Sci. 2021, 1, 100054. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, T.; Li, S.; Wang, Z.; Wen, C.; Wang, H.; Yu, C.; Ji, C. Stability, microstructure, and digestibility of whey protein isolate—Tremella fuciformis polysaccharide complexes. Food Hydrocoll. 2019, 89, 379–385. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Zhang, S.; Gu, Q.; McClements, D.J.; Chen, S.; Liu, X.; Liu, F. Lactoferrin-based ternary composite nanoparticles with enhanced dispersibility and stability for curcumin delivery. ACS Appl. Mater. Interfaces 2023, 15, 18166–18181. [Google Scholar] [CrossRef]
- Zhu, K.; Ye, T.; Liu, J.; Peng, Z.; Xu, S.; Lei, J.; Deng, H.; Li, B. Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. Int. J. Pharm. 2013, 441, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshi, R.; Ezati, P.; Rhim, J.W. Recent advances in intelligent food packaging applications using natural food colorants. ACS Food Sci. Technol. 2021, 1, 124–138. [Google Scholar] [CrossRef]
- Xu, W.; Jin, W.; Li, Z.; Liang, H.; Wang, Y.; Shah, B.R.; Li, Y.; Li, B. Synthesis and characterization of nanoparticles based on negatively charged xanthan gum and lysozyme. Food Res. Int. 2015, 71, 83–90. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Pei, Y.; Xiong, W.; Xu, W.; Li, B.; Li, J. Effect of substitution degree on carboxymethylcellulose interaction with lysozyme. Food Hydrocoll. 2017, 62, 222–229. [Google Scholar] [CrossRef]
- Da Silva, M.P.; Rosales, T.K.O.; Pedrosa, L.F.; Fabi, J.P. Creation of a new proof-of-concept pectin/lysozyme nanocomplex as potential β-lactose delivery matrix: Structure and thermal stability analyses. Food Hydrocoll. 2023, 134, 108011. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, X.; Zheng, H.; Li, J.; Wu, X.; Xu, J.; Zhen, Z.; Du, C. The application of encapsulation technology in the food Industry: Classifications, recent Advances, and perspectives. Food Chem. X 2024, 21, 101240. [Google Scholar] [CrossRef]
- Haseli, S.; Pourmadadi, M.; Samadi, A.; Yazdian, F.; Abdouss, M.; Rashedi, H.; Navaei-Nigjeh, M. A novel pH-responsive nanoniosomal emulsion for sustained release of curcumin from a chitosan-based nanocarrier: Emphasis on the concurrent improvement of loading, sustained release, and apoptosis induction. Biotechnol. Prog. 2022, 38, e3280. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Singh, S.; Bahmid, N.A.; Mehany, T.; Shyu, D.J.H.; Assadpour, E.; Malekjani, N.; Castro-Muñoz, R.; Jafari, S.M. Release of encapsulated bioactive compounds from active packaging/coating materials and its modeling: A systematic review. Colloids Interfaces 2023, 7, 25. [Google Scholar] [CrossRef]
- Milivojević, M.; Popović, A.; Pajić-Lijaković, I.; Šoštarić, I.; Kolašinac, S.; Stevanović, Z.D. Alginate gel-based carriers for encapsulation of carotenoids: On challenges and applications. Gels 2023, 9, 620. [Google Scholar] [CrossRef]
Particle Size (nm) | PDI | ZP (mV) | EE (%) | |
---|---|---|---|---|
Ly/CMC NPs | 78.2 ± 7.2 b | 0.47 ± 0.02 a | −50.0 ± 3.5 a | - |
Tur-Ly/CMC NPs | 295.4 ± 23.6 a | 0.39 ± 0.03 b | −50.1 ± 1.2 a | 48.7 ± 2.6 |
Temperature (°C) | Sample | Retention Rate (%) | ΔL* | Δa* | Δb* | ΔE |
---|---|---|---|---|---|---|
70 | Free Tur | 65.35 ± 0.49 b | 0.17 ± 0.58 a | 0.57 ± 0.65 a | 2.13 ± 0.64 a | 2.34 ± 0.55 a |
Tur-CE | 89.11 ± 1.36 a | −0.10 ± 0.06 a | −0.18 ± 0.03 b | 0.89 ± 0.12 b | 0.92 ± 0.12 b | |
Tur-OPE | 92.43 ± 1.41 a | 0.47 ± 0.08 a | −0.49 ± 0.12 b | 0.66 ± 0.17 b | 0.97 ± 0.06 b | |
Tur-IPE | 93.74 ± 1.43 a | 0.20 ± 0.29 a | −0.47 ± 0.24 b | 0.78 ± 0.05 b | 0.98± 0.14 b | |
90 | Free Tur | 51.61 ± 2.95 b | 1.47 ± 0.85 a | −0.67 ± 0.61 a | 3.67 ± 0.32 a | 4.08 ± 0.57 a |
Tur-CE | 79.32 ± 1.54 a | −0.09 ± 0.07 b | −0.51 ± 0.09 a | 1.65 ± 0.19 b | 1.73 ± 0.21 b | |
Tur-OPE | 81.22 ± 1.57 a | 1.02 ± 0.27 ab | −0.21 ± 0.04 a | 1.43 ± 0.19 b | 1.79 ± 0.12 b | |
Tur-IPE | 83.62 ± 1.62 a | 0.19 ± 0.50 ab | −0.57 ± 0.28 a | 1.20 ± 0.03 b | 1.42 ± 0.20 b |
pH | Sample | ΔL* | Δa* | Δb* | ΔE |
---|---|---|---|---|---|
3 | Free Tur | 1.91 ± 0.57 a | −1.28 ± 0.77 b | 7.85 ± 1.10 a | 8.22 ± 1.20 a |
Tur-CE | −0.52 ± 0.44 b | 0.00 ± 0.06 a | 0.20 ± 0.20 b | 0.59 ± 0.44 b | |
Tur-OPE | 0.20 ± 0.43 b | 0.63 ± 0.25 a | −0.71 ± 0.40 b | 1.12 ± 0.19 b | |
Tur-IPE | −0.06 ± 0.56 b | 0.28 ± 0.06 a | 0.13 ± 0.05 b | 0.62 ± 0.24 b | |
5 | Free Tur | 0.75 ± 0.41 a | −0.62 ± 0.46 b | 0.96 ± 0.33 a | 1.40 ± 0.66 a |
Tur-CE | −0.35 ± 0.31 b | 0.00 ± 0.15 ab | 0.31 ± 0.28 ab | 0.60 ± 0.16 a | |
Tur-OPE | 0.15 ± 0.38 ab | 0.66 ± 0.27 a | −0.57 ± 0.39 b | 1.01 ± 0.34 a | |
Tur-IPE | 0.00 ± 0.47 ab | 0.27 ± 0.04 a | −0.16 ± 0.44 b | 0.71 ± 0.18 a | |
7 | Free Tur | 1.08 ± 0.42 a | −1.83 ± 0.19 c | 0.36 ± 0.43 a | 2.24 ± 0.08 a |
Tur-CE | −0.25 ± 0.07 b | −0.16 ± 0.08 b | 0.53 ± 0.05 a | 0.62 ± 0.05 b | |
Tur-OPE | 0.24 ± 0.43 b | 0.39 ± 0.08 a | −0.27 ± 0.31 a | 0.71 ± 0.11 b | |
Tur-IPE | −0.06 ± 0.23 b | 0.03 ± 0.18 ab | 0.19 ± 0.43 a | 0.48 ± 0.15 b | |
9 | Free Tur | 5.97 ± 1.14 a | −14.49 ± 2.57 b | 7.43 ± 1.27 a | 17.35 ± 3.07 a |
Tur-CE | 0.39 ± 0.46 b | −1.22 ± 0.55 a | 1.06 ± 0.53 b | 1.73 ± 0.68 b | |
Tur-OPE | 1.39 ± 0.37 b | −1.32 ± 0.25 a | −0.33 ± 0.32 b | 1.97 ± 0.47 b | |
Tur-IPE | 1.03 ± 0.16 b | −1.29 ± 0.07 a | 0.23 ± 0.27 b | 1.69 ± 0.15 b |
Sample | ΔL* | Δa* | Δb* | ΔE |
---|---|---|---|---|
Free Tur | 0.20 ± 0.81 a | 1.06 ± 0.81 a | 4.22 ± 0.37 a | 5.89 ± 0.32 a |
Tur-CE | −0.28 ± 0.13 a | −0.39 ± 0.08 b | 1.21 ± 0.08 b | 1.31 ± 0.13 b |
Tur-OPE | −0.67 ± 0.63 a | −0.14 ± 0.59 b | −0.64 ± 0.07 b | 1.17 ± 0.16 b |
Tur-IPE | 0.65 ± 0.12 a | −0.56 ± 0.10 b | −0.33 ± 0.21 b | 0.94 ± 0.13 b |
Sample | Time (Week) | Retention Rate (%) | K (day−1) | t1/2 (day) | R2 |
---|---|---|---|---|---|
Free Tur | 0 | 100.00 ± 0.00 a | 0.0378 | 18.34 | 0.9496 |
1 | 62.67 ± 2.68 b | ||||
2 | 53.03 ± 5.38 c | ||||
3 | 37.41 ± 1.68 d | ||||
4 | 34.40 ± 2.32 d | ||||
Tur-CE | 0 | 100.00 ± 0.00 a | 0.0069 | 100.46 | 0.9615 |
1 | 92.34 ± 3.80 b | ||||
2 | 89.15 ± 6.48 b | ||||
3 | 87.00 ± 3.15 b | ||||
4 | 80.95 ± 10.29 b | ||||
Tur-OPE | 0 | 100.00 ± 0.00 a | 0.0042 | 165.04 | 0.8839 |
1 | 97.84 ± 4.16 a | ||||
2 | 97.17 ± 2.66 a | ||||
3 | 93.97 ± 6.95 a | ||||
4 | 88.06 ± 6.27 a | ||||
Tur-IPE | 0 | 100.00 ± 0.00 a | 0.0051 | 135.91 | 0.9645 |
1 | 94.91 ± 1.55 ab | ||||
2 | 94.20 ± 2.68 bc | ||||
3 | 89.00 ± 2.67 cd | ||||
4 | 86.41 ± 2.32 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, A.; Baek, Y.; Lee, H.G. Impact of Encapsulation Position in Pickering Emulsions on Color Stability and Intensity Turmeric Oleoresin. Foods 2025, 14, 385. https://doi.org/10.3390/foods14030385
Han A, Baek Y, Lee HG. Impact of Encapsulation Position in Pickering Emulsions on Color Stability and Intensity Turmeric Oleoresin. Foods. 2025; 14(3):385. https://doi.org/10.3390/foods14030385
Chicago/Turabian StyleHan, Ahreum, Youjin Baek, and Hyeon Gyu Lee. 2025. "Impact of Encapsulation Position in Pickering Emulsions on Color Stability and Intensity Turmeric Oleoresin" Foods 14, no. 3: 385. https://doi.org/10.3390/foods14030385
APA StyleHan, A., Baek, Y., & Lee, H. G. (2025). Impact of Encapsulation Position in Pickering Emulsions on Color Stability and Intensity Turmeric Oleoresin. Foods, 14(3), 385. https://doi.org/10.3390/foods14030385