Escherichia coli O157:H7, a Common Contaminant of Raw Milk from Ecuador: Isolation and Molecular Identification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
Sample Size Determination
2.2. Primers Design
2.3. Standard Curve Construction and Sensitivity Assay
2.4. Analysis of Specificity
2.5. Milk Enrichment
DNA Extraction for Enriched Milk
2.6. Bacteria Isolation
DNA Extraction for Isolated Bacteria
2.7. Molecular Detection of Escherichia coli O157:H7 Using qPCR
2.8. 16S Sequencing and Bioinformatic Analysis
2.9. Multilocus Typing Sequencing (MLSTs) for Strains Identification
2.10. Statistical Analysis
3. Results
3.1. Sensitivity Assay
3.2. Specificity Assay
3.3. qPCR Detection in Enriched Milk
3.4. Escherichia coli O157:H7 Isolation and qPCR Validation of Strains
3.5. 16S Analysis
3.6. MLSTs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto Nacional de Estadística y Censos (INEC). Encuesta de Producción Agropecuaria Continua. Available online: https://www.ecuadorencifras.gob.ec/encuesta-superficie-produccion-agropecuaria-continua-2021/ (accessed on 28 September 2024).
- Puga-Torres, B.; Aragón Vásquez, E.; Ron, L.; Álvarez, V.; Bonilla, S.; Guzmán, A.; Lara, D.; De la Torre, D. Milk Quality Parameters of Raw Milk in Ecuador between 2010 and 2020: A Systematic Literature Review and Meta-Analysis. Foods 2022, 11, 3351. [Google Scholar] [CrossRef] [PubMed]
- Vranješ, A.P.; Popović, M.; Jevtić, M. Raw Milk Consumption and Health. Srp. Arh. Celok. Lek. 2015, 143, 87–92. [Google Scholar] [CrossRef] [PubMed]
- FAO Portal Lácteo: Peligros Para La Salud. Available online: https://www.fao.org/dairy-production-products/products/health-hazards/es#:~:text=Las%20infecciones%20zoon%C3%B3ticas%20com%C3%BAnmente%20asociadas,la%20salmonelosis%20y%20la%20listeriosis (accessed on 28 September 2024).
- Pakbin, B.; Rossen, J.W.A.; Brück, W.M.; Montazeri, N.; Allahyari, S.; Dibazar, S.P.; Abdolvahabi, R.; Mahmoudi, R.; Peymani, A.; Samimi, R. Prevalence of Foodborne and Zoonotic Viral Pathogens in Raw Cow Milk Samples. FEMS Microbiol. Lett. 2022, 369, fnac108. [Google Scholar] [CrossRef]
- AGROCALIDAD. Guía de Buenas Prácticas Pecuarias de Producción. Available online: https://www.agrocalidad.gob.ec/wp-content/uploads/2023/03/Gu%C3%ADa-de-BPP-General-jul.pdf (accessed on 28 September 2024).
- Straley, B.A.; Donaldson, S.C.; Hedge, N.V.; Sawant, A.A.; Srinivasan, V.; Oliver, S.P.; Jayarao, B.M. Public Health Significance of Antimicrobial-Resistant Gram-Negative Bacteria in Raw Bulk Tank Milk. Foodborne Pathog. Dis. 2006, 3, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The Complex Microbiota of Raw Milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef]
- Shalaby, M.; Reboud, J.; Forde, T.; Zadoks, R.N.; Busin, V. Distribution and Prevalence of Enterotoxigenic Staphylococcus aureus and Staphylococcal enterotoxins in Raw Ruminants’ Milk: A Systematic Review. Food Microbiol. 2024, 118, 104405. [Google Scholar] [CrossRef] [PubMed]
- Mihklepp, K.; Kivirand, K.; Juronen, D.; Lõokene, A.; Rinken, T. Immunodetection of Streptococcus uberis Pathogen in Raw Milk. Enzyme Microb. Technol. 2019, 130, 109360. [Google Scholar] [CrossRef]
- Mohamed, H.M.A.; Abd-Elhafeez, H.H.; Al-Jabr, O.A.; El-Zamkan, M.A. Characterization of Acinetobacter baumannii Isolated from Raw Milk. Biology 2022, 11, 1845. [Google Scholar] [CrossRef] [PubMed]
- Lobacz, A.; Zulewska, J. Fate of Salmonella spp. in the Fresh Soft Raw Milk Cheese during Storage at Different Temperatures. Microorganisms 2021, 9, 938. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.R.; Dunn, A.C.; Burnett, C.; McCullough, L.; Dimond, M.; Wagner, J.; Smith, L.; Carter, A.; Willardson, S.; Nakashima, A.K. Campylobacter jejuni Infections Associated with Raw Milk Consumption—Utah, 2014. Morb. Mortal. Wkly. Rep. 2016, 65, 301–305. [Google Scholar] [CrossRef]
- Praça, J.; Furtado, R.; Coelho, A.; Correia, C.B.; Borges, V.; Gomes, J.P.; Pista, A.; Batista, R. Listeria monocytogenes, Escherichia coli and Coagulase Positive Staphylococci in Cured Raw Milk Cheese from Alentejo Region, Portugal. Microorganisms 2023, 11, 322. [Google Scholar] [CrossRef]
- Feliciano, R.; Boué, G.; Mohssin, F.; Hussaini, M.M.; Membré, J.-M. Probabilistic Modelling of Escherichia coli Concentration in Raw Milk under Hot Weather Conditions. Food Res. Int. 2021, 149, 110679. [Google Scholar] [CrossRef]
- Riley, L.W. Distinguishing Pathovars from Nonpathovars: Escherichia coli. Microbiol. Spectr. 2020, 8, 1–23. [Google Scholar] [CrossRef]
- Barbosa, C.A.; Conceição, T.A.; Baliza, M.D.; Camilo, V.M.A.; Juiz, P.J.L.; Silva, I.M.M. Virulence Genes in Escherichia coli Isolates from Commercialized Saltwater Mussels Mytella guyanensis (Lamarck, 1819). Braz. J. Biol. 2019, 79, 625–628. [Google Scholar] [CrossRef]
- Xing-long, X.; Cong-cong, L.; Yang, Q.; Yi-gang, Y.; Hui, W. Molecular Monitoring of Escherichia coli O157: H7 Sterilization Rate Using QPCR and Propidium Monoazide Treatment. Lett. Appl. Microbiol. 2013, 56, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Maki, D.G. Don’t Eat the Spinach—Controlling Foodborne Infectious Disease. N. Engl. J. Med. 2006, 355, 1952–1955. [Google Scholar] [CrossRef]
- Hoff, C.; Higa, J.; Patel, K.; Gee, E.; Wellman, A.; Vidanes, J.; Holland, A.; Kozyreva, V.; Zhu, J.; Mattioli, M.; et al. Notes from the Field: An Outbreak of Escherichia coli O157:H7 Infections Linked to Romaine Lettuce Exposure—United States, 2019. Morb. Mortal. Wkly. Rep. 2021, 70, 689–690. [Google Scholar] [CrossRef] [PubMed]
- Tzschoppe, M.; Martin, A.; Beutin, L. A Rapid Procedure for the Detection and Isolation of Enterohaemorrhagic Escherichia coli (EHEC) Serogroup O26, O103, O111, O118, O121, O145 and O157 Strains and the Aggregative EHEC O104:H4 Strain from Ready-to-Eat Vegetables. Int. J. Food Microbiol. 2012, 152, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Ameer, M.A.; Wasey, A.; Salen, P. Escherichia coli (e. Coli 0157 H7). Available online: https://www.ncbi.nlm.nih.gov/books/NBK507845/ (accessed on 30 September 2024).
- Trueba, G.; Garcés, V.; Barragan, V.V.; Colman, R.E.; Seymour, M.; Vogler, A.J.; Keim, P. Escherichia coli O157:H7 in Ecuador: Animal Reservoirs, Yet No Human Disease. Vector-Borne Zoonotic Dis. 2013, 13, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, B.L.; Andrade, D.A.; Valdivia, C.A.; Ho-Palma, A.C.; Munguia, A.; Yucra, D.; Escobedo, M.; Crotta, M.; Limon, G.; Gonzalez, A.; et al. Detection and Isolation of Escherichia coli O157:H7 in Beef from Food Markets and Fecal Samples of Dairy Calves in the Peruvian Central Highlands. Am. J. Trop. Med. Hyg. 2023, 109, 568–570. [Google Scholar] [CrossRef]
- Mattar, S.; Vásquez, E. Escherichia coli O157:H7 Infection in Colombia. Emerg. Infect. Dis. 1998, 4, 126–127. [Google Scholar] [CrossRef]
- Prado-Silva, L.; Cadavez, V.; Gonzales-Barron, U.; Rezende, A.C.B.; Sant’Ana, A.S. Meta-Analysis of the Effects of Sanitizing Treatments on Salmonella, Escherichia coli O157:H7, and Listeria Monocytogenes Inactivation in Fresh Produce. Appl. Environ. Microbiol. 2015, 81, 8008–8021. [Google Scholar] [CrossRef] [PubMed]
- Contero Callay, R.E.; Requelme, N.; Cachipuendo, C.; Acurio, D. Calidad de La Leche Cruda y Sistema de Pago Por Calidad En El Ecuador. Granja 2021, 33, 31–43. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, X.; Fan, H.; He, K.; Zhang, X. The Fimbrial Gene Z3276 in Enterohemorrhagic Escherichia coli O157:H7 Contributes to Bacterial Pathogenicity. Front. Microbiol. 2018, 9, 1628. [Google Scholar] [CrossRef] [PubMed]
- MAG Acuerdo Ministerial No. 095. Available online: https://www.agricultura.gob.ec/wp-content/uploads/2022/01/ACUERDO-095-2021-1.pdf (accessed on 30 September 2024).
- Rodríguez del Águila, M.; González-Ramírez, A. Sample Size Calculation. Allergol. Immunopathol. 2014, 42, 485–492. [Google Scholar] [CrossRef]
- Pavlovic, M.; Luze, A.; Konrad, R.; Berger, A.; Sing, A.; Busch, U.; Huber, I. Development of a Duplex Real-Time PCR for Differentiation between E. coli and Shigella spp. J. Appl. Microbiol. 2011, 110, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Ravan, H.; Amandadi, M. Analysis of Yeh Fimbrial Gene Cluster in Escherichia coli O157:H7 in Order to Find a Genetic Marker for This Serotype. Curr. Microbiol. 2015, 71, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Dotmatics Geneious. Available online: https://www.geneious.com (accessed on 9 January 2024).
- Conte, J.; Potoczniak, M.J.; Tobe, S.S. Using Synthetic Oligonucleotides as Standards in Probe-Based QPCR. Biotechniques 2018, 64, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Suo, Y.; Zhang, Z.; Liu, D.; Ye, X.; Chen, S.; Zhao, Y. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-Enrichment. Front. Microbiol. 2017, 8, 989. [Google Scholar] [CrossRef] [PubMed]
- Dalla-Costa, L.M.; Morello, L.G.; Conte, D.; Pereira, L.A.; Palmeiro, J.K.; Ambrosio, A.; Cardozo, D.; Krieger, M.A.; Raboni, S.M. Comparison of DNA Extraction Methods Used to Detect Bacterial and Yeast DNA from Spiked Whole Blood by Real-Time PCR. J. Microbiol. Methods 2017, 140, 61–66. [Google Scholar] [CrossRef] [PubMed]
- ISO 16654:2001; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Escherichia coli O157. ISO (International Organization for Standardization): Geneva, Switzerland, 2023.
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S Ribosomal DNA Amplification for Phylogenetic Study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef]
- Lau, S.H.; Reddy, S.; Cheesbrough, J.; Bolton, F.J.; Willshaw, G.; Cheasty, T.; Fox, A.J.; Upton, M. Major Uropathogenic Escherichia coli Strain Isolated in the Northwest of England Identified by Multilocus Sequence Typing. J. Clin. Microbiol. 2008, 46, 1076–1080. [Google Scholar] [CrossRef]
- Weiler, N.; Martínez, L.J.; Campos, J.; Poklepovich, T.; Orrego, M.V.; Ortiz, F.; Alvarez, M.; Putzolu, K.; Zolezzi, G.; Miliwebsky, E.; et al. First Molecular Characterization of Escherichia coli O157:H7 Isolates from Clinical Samples in Paraguay Using Whole-Genome Sequencing. Rev. Argent. Microbiol. 2023, 55, 111–119. [Google Scholar] [CrossRef] [PubMed]
- da Silva Santos, A.C.; Gomes Romeiro, F.; Yukie Sassaki, L.; Rodrigues, J. Escherichia coli from Crohn’s Disease Patient Displays Virulence Features of Enteroinvasive (EIEC), Enterohemorragic (EHEC), and Enteroaggregative (EAEC) Pathotypes. Gut Pathog. 2015, 7, 2. [Google Scholar] [CrossRef]
- Sarkar, S.L.; Alam, A.R.U.; Das, P.K.; Pramanik, M.H.A.; Al-Emran, H.M.; Jahid, I.K.; Hossain, M.A. Development and Validation of Cost-Effective One-Step Multiplex RT-PCR Assay for Detecting the SARS-CoV-2 Infection Using SYBR Green Melting Curve Analysis. Sci. Rep. 2022, 12, 6501. [Google Scholar] [CrossRef]
- Haffar, M.; Gilbride, K.A. The Utility and Application of Real-Time PCR and FISH in the Detection of Single-Copy Gene Targets in Escherichia coli O157:H7 and Salmonella typhimurium. Can. J. Microbiol. 2010, 56, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Hu, Z.; Elkins, C.A. Detection of Live Escherichia coli O157:H7 Cells by PMA-QPCR. J. Vis. Exp. 2014, 84, e50967. [Google Scholar] [CrossRef]
- Arteaga Solórzano, R.A.; Armenteros Amaya, M.; Quintana García, D.; Martínez Vasallo, A. Evaluación de Las Buenas Prácticas En La Elaboración de Queso Artesanal En Manabí, Ecuador. Rev. Salud Anim. 2021, 43, 1–10. [Google Scholar]
- Currie, A.; Galanis, E.; Chacon, P.A.; Murray, R.; Wilcott, L.; Kirkby, P.; Honish, L.; Franklin, K.; Farber, J.; Parker, R.; et al. Outbreak of Escherichia coli O157:H7 Infections Linked to Aged Raw Milk Gouda Cheese, Canada, 2013. J. Food Prot. 2018, 81, 325–331. [Google Scholar] [CrossRef]
- Mead, P.S.; Griffin, P.M. Escherichia coli O157:H7. Lancet 1998, 352, 1207–1212. [Google Scholar] [CrossRef]
- Riley, L.W.; Remis, R.S.; Helgerson, S.D.; McGee, H.B.; Wells, J.G.; Davis, B.R.; Hebert, R.J.; Olcott, E.S.; Johnson, L.M.; Hargrett, N.T.; et al. Hemorrhagic Colitis Associated with a Rare Escherichia coli Serotype. N. Engl. J. Med. 1983, 308, 681–685. [Google Scholar] [CrossRef]
- Scott, L.; Mcgee, P.; Minihan, D.; Sheridan, J.; Earley, B.; Leonard, N. The Characterisation of E. coli O157:H7 Isolates from Cattle Faeces and Feedlot Environment Using PFGE. Vet. Microbiol. 2006, 114, 331–336. [Google Scholar] [CrossRef] [PubMed]
- AGROCALIDAD. Agencia de Regulación y Control Fito y Zoosanitario. Available online: https://www.agrocalidad.gob.ec/ (accessed on 25 November 2024).
- Baars, T. Regulations and Production of Raw Milk. In Raw Milk; Elsevier: Amsterdam, The Netherlands, 2019; pp. 65–89. [Google Scholar]
- Maffucci, I.; Laage, D.; Stirnemann, G.; Sterpone, F. Differences in Thermal Structural Changes and Melting between Mesophilic and Thermophilic Dihydrofolate Reductase Enzymes. Phys. Chem. Chem. Phys. 2020, 22, 18361–18373. [Google Scholar] [CrossRef] [PubMed]
- Onyeaka, H.; Ghosh, S.; Obileke, K.; Miri, T.; Odeyemi, O.A.; Nwaiwu, O.; Tamasiga, P. Preventing Chemical Contaminants in Food: Challenges and Prospects for Safe and Sustainable Food Production. Food Control 2024, 155, 110040. [Google Scholar] [CrossRef]
- Han, A.; Paek, J.; Lee, S.-Y. Thermal Resistance of Escherichia coli O157:H7 in Laboratory Media, Milk, and Beef Extracts during Non-Isothermal Processing at Various Heating Rates. Food Microbiol. 2023, 110, 104187. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Salud Pública (MSP). Subsistema de Vigilancia Sive-Alerta Enfermedades Transmitidas por Agua y Alimentos Ecuador. Available online: https://www.salud.gob.ec/wp-content/uploads/2021/06/GACETA-SE-21-ETAS.pdf (accessed on 25 November 2024).
- Cummins, E.A.; Hall, R.J.; Connor, C.; McInerney, J.O.; McNally, A. Distinct Evolutionary Trajectories in the Escherichia coli Pangenome Occur within Sequence Types. Microb. Genom. 2022, 8, 000903. [Google Scholar] [CrossRef]
- Qiu, J.; Jiang, Z.; Ju, Z.; Zhao, X.; Yang, J.; Guo, H.; Sun, S. Molecular and Phenotypic Characteristics of Escherichia coli Isolates from Farmed Minks in Zhucheng, China. BioMed Res. Int. 2019, 2019, 917841. [Google Scholar] [CrossRef]
- Leclercq, S.O.; Bochereau, P.; Foubert, I.; Baumard, Y.; Travel, A.; Doublet, B.; Baucheron, S. Persistence of Commensal Multidrug-Resistant Escherichia coli in the Broiler Production Pyramid Is Best Explained by Strain Recirculation from the Rearing Environment. Front. Microbiol. 2024, 15, 1406854. [Google Scholar] [CrossRef]
- Ogundare, S.T.; Fasina, F.O.; Makumbi, J.-P.; van der Zel, G.A.; Geertsma, P.F.; Kock, M.M.; Smith, A.M.; Ehlers, M.M. Epidemiology and Antimicrobial Resistance Profiles of Pathogenic Escherichia coli from Commercial Swine and Poultry Abattoirs and Farms in South Africa: A One Health Approach. Sci. Total Environ. 2024, 951, 175705. [Google Scholar] [CrossRef]
- Zheng, B.; Lv, T.; Xu, H.; Yu, X.; Chen, Y.; Li, J.; Huang, C.; Guo, L.; Zhang, J.; Jiang, X.; et al. Discovery and Characterisation of an Escherichia coli ST206 Strain Producing NDM-5 and MCR-1 from a Patient with Acute Diarrhoea in China. Int. J. Antimicrob. Agents 2018, 51, 273–275. [Google Scholar] [CrossRef]
- Wyrsch, E.; Chowdhury, P.R.; Abraham, S.; Santos, J.; Darling, A.E.; Charles, I.G.; Chapman, T.A.; Djordjevic, S.P. Comparative Genomic Analysis of a Multiple Antimicrobial Resistant Enterotoxigenic E. coli O157 Lineage from Australian Pigs. BMC Genom. 2015, 16, 165. [Google Scholar] [CrossRef] [PubMed]
- Samadpour, M.; Barbour, M.W.; Nguyen, T.; Cao, T.-M.; Buck, F.; Depavia, G.A.; Mazengia, E.; Yang, P.; Alfi, D.; Lopes, M.; et al. Incidence of Enterohemorrhagic Escherichia coli, Escherichia coli O157, Salmonella, and Listeria monocytogenes in Retail Fresh Ground Beef, Sprouts, and Mushrooms. J. Food Prot. 2006, 69, 441–443. [Google Scholar] [CrossRef] [PubMed]
- Abebe, E.; Gugsa, G.; Ahmed, M.; Awol, N.; Tefera, Y.; Abegaz, S.; Sisay, T. Occurrence and Antimicrobial Resistance Pattern of E. coli O157:H7 Isolated from Foods of Bovine Origin in Dessie and Kombolcha Towns, Ethiopia. PLoS Negl. Trop. Dis. 2023, 17, e0010706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhu, X.; Wu, Q.; Zhang, J.; Xu, X.; Li, H. Prevalence and Characterization of Escherichia coli O157 and O157:H7 in Retail Fresh Raw Meat in South China. Ann. Microbiol. 2015, 65, 1993–1999. [Google Scholar] [CrossRef]
- Pan, Y.; Hu, B.; Bai, X.; Yang, X.; Cao, L.; Liu, Q.; Sun, H.; Li, J.; Zhang, J.; Jin, D.; et al. Antimicrobial Resistance of Non-O157 Shiga Toxin-Producing Escherichia coli Isolated from Humans and Domestic Animals. Antibiotics 2021, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, S.; Huang, Y.; Ye, Q.; Zhang, J.; Wu, Q.; Wang, J.; Chen, M.; Xue, L. Isolation and Characterization of Non-O157 Shiga Toxin–Producing Escherichia coli in Foods Sold at Retail Markets in China. J. Food Prot. 2020, 83, 460–466. [Google Scholar] [CrossRef]
- Projahn, M.; Lamparter, M.C.; Ganas, P.; Goehler, A.; Lorenz-Wright, S.C.; Maede, D.; Fruth, A.; Lang, C.; Schuh, E. Genetic Diversity and Pathogenic Potential of Shiga Toxin-Producing Escherichia coli (STEC) Derived from German Flour. Int. J. Food Microbiol. 2021, 347, 109197. [Google Scholar] [CrossRef]
- Thomas, C.M.; Marr, J.H.; Durso, L.M.; Golwalkar, M.; Irving, D.J.; Orejuela, K.; Rasnic, R.; Ripley, D.; Rue, B.; Thomas, L.S.; et al. Notes from the Field: Shiga Toxin-Producing Escherichia coli O157:H7 Linked to Raw Milk Consumption Associated with a Cow-Share Arrangement—Tennessee, 2022. Morb. Mortal. Wkly. Rep. 2023, 72, 469–470. [Google Scholar] [CrossRef]
- Jenkins, C.; Bird, P.K.; Wensley, A.; Wilkinson, J.; Aird, H.; Mackintosh, A.; Greig, D.R.; Simpson, A.; Byrne, L.; Wilkinson, R.; et al. Outbreak of STEC O157:H7 Linked to a Milk Pasteurisation Failure at a Dairy Farm in England, 2019. Epidemiol. Infect. 2022, 150, e114. [Google Scholar] [CrossRef]
- Cerva, C.; Bremm, C.; dos Reis, E.M.; Bezerra, A.V.A.; Loiko, M.R.; da Cruz, C.E.F.; Cenci, A.; Mayer, F.Q. Food Safety in Raw Milk Production: Risk Factors Associated to Bacterial DNA Contamination. Trop. Anim. Health Prod. 2014, 46, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Singha, S.; Ceciliani, F.; Rahman, M.d.M.; Mannan, M.A.; Chowdhury, S.; Nath, S.C.; Paul, O.B.; Persson, Y.; Boqvist, S. Factors Influencing Somatic Cell Counts and Bacterial Contamination in Unpasteurized Milk Obtained from Water Buffalo in Bangladesh. Trop. Anim. Health Prod. 2023, 55, 242. [Google Scholar] [CrossRef] [PubMed]
Name | Target | Sequence | Reference |
---|---|---|---|
EClpma (−1) | lacY gene | 5′-ACCAGACCCAGCACCAGATAAG-3′ | [31] |
lacY_t_rev1 | 5′-CTGCTTCTTTAAGCAACTGGCGA-3′ | ||
lacY_p1 | FAM/5′-CATACATATTGCCCGCCAGTACAGAC-3′/1BHQ | ||
E. coli 0157:H7-F | z3276 locus | 5′-TGCGTGGTAAAACAGATAATGGTG-3′ | This study [AE005174] |
E. coli 0157:H7-R | 5′-TGTTTTCCATAATGATGTCGC-3′ | ||
E. coli 0157:H7-P | CY5/5′-ACAGAACCACCAAAAGGGACTGAGGCTG-3′/3BHQ |
Province | Producer Size | Climate/Collection Date | Escherichia coli (non-O157:H7) | Escherichia coli O157:H7 | Negative Samples | Total of Samples |
---|---|---|---|---|---|---|
Pichincha | Small * | Warm/Jun–Sep | △38 (22%) | △85 (49%) | 49 | 172 |
Rainy/Oct–May | △30 (30.6%) | △66 (67.3%) | 2 | 98 | ||
Medium | Warm/Jun–Sep | △9 (36.5%) | ◍14 (41.2%)/13 (38.2%) | 11 | 34 | |
Rainy/Oct–May | △9 (45%) | △11 (55%) | 0 | 20 | ||
Manabí * | Small * | Warm/Jun–Sep | △29 (13.8%) | △142 (67.6%) * | 39 | 210 |
Rainy/Oct–May | △1 (2.1%) | △44 (93.6%) | 2 | 47 | ||
Medium | Warm/Jun–Sep | △5 (12.2%) | △28 (68.3%) | 8 | 41 | |
Rainy/Oct–May | △0 (0.0%) | △11 (100%) | 0 | 11 | ||
Total of positives | 121 (19.1%) | 401 (63.3%) | 111 | 633 |
Sample ID | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. | 16. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. AY513502 USA | - | 99.926 | 99.242 | 98.951 | 99.408 | 98.975 | 99.255 | 99.367 | 98.176 | 98.362 | 98.436 | 98.660 | 99.330 | 98.362 | 99.479 | 99.032 |
2. HM007589 GERMANY | 99.926 | - | 99.335 | 98.867 | 99.387 | 98.939 | 99.231 | 99.346 | 98.115 | 98.308 | 98.385 | 98.615 | 99.308 | 98.308 | 99.462 | 99.000 |
3. HQ658163 VIETNAM | 99.242 | 99.335 | - | 97.830 | 98.890 | 98.553 | 98.883 | 98.846 | 97.655 | 97.915 | 97.915 | 98.138 | 98.809 | 97.915 | 98.958 | 98.585 |
4. KX984112 INDIA | 98.951 | 98.867 | 97.830 | - | 99.071 | 98.683 | 98.921 | 99.033 | 97.842 | 97.954 | 98.028 | 98.251 | 98.903 | 97.954 | 99.070 | 98.698 |
5. OM442028 IRAQ | 99.408 | 99.387 | 98.890 | 99.071 | - | 99.646 | 99.851 | 99.963 | 98.696 | 98.733 | 98.808 | 99.106 | 99.777 | 98.808 | 99.851 | 99.627 |
6. MT705744 EGYPT | 98.975 | 98.939 | 98.553 | 98.683 | 99.646 | - | 99.644 | 99.728 | 98.388 | 98.388 | 98.388 | 98.723 | 99.561 | 98.472 | 99.560 | 99.477 |
7. LM 89 ECUADOR | 99.255 | 99.231 | 98.883 | 98.921 | 99.851 | 99.644 | - | 99.814 | 98.547 | 98.584 | 98.659 | 98.957 | 99.628 | 98.659 | 99.702 | 99.478 |
8. LM 92 ECUADOR | 99.367 | 99.346 | 98.846 | 99.033 | 99.963 | 99.728 | 99.814 | - | 98.659 | 98.696 | 98.770 | 99.069 | 99.739 | 98.770 | 99.814 | 99.590 |
9. LM 94 ECUADOR | 98.176 | 98.115 | 97.655 | 97.842 | 98.696 | 98.388 | 98.547 | 98.659 | - | 98.845 | 99.218 | 98.696 | 98.511 | 98.696 | 98.621 | 98.323 |
10. LM 96 ECUADOR | 98.362 | 98.308 | 97.915 | 97.954 | 98.733 | 98.388 | 98.584 | 98.696 | 98.845 | - | 98.733 | 98.882 | 98.511 | 99.478 | 98.882 | 98.510 |
11. LM 98 ECUADOR | 98.436 | 98.385 | 97.915 | 98.028 | 98.808 | 98.388 | 98.659 | 98.770 | 99.218 | 98.733 | - | 98.957 | 98.585 | 98.510 | 98.957 | 98.584 |
12. LM 100 ECUADOR | 98.660 | 98.615 | 98.138 | 98.251 | 99.106 | 98.723 | 98.957 | 99.069 | 98.696 | 98.882 | 98.957 | - | 98.883 | 99.255 | 99.106 | 98.733 |
13. LM 101 ECUADOR | 99.330 | 99.308 | 98.809 | 98.903 | 99.777 | 99.561 | 99.628 | 99.739 | 98.511 | 98.511 | 98.585 | 98.883 | - | 98.585 | 99.628 | 99.404 |
14. LM 169 ECUADOR | 98.362 | 98.308 | 97.915 | 97.954 | 98.808 | 98.472 | 98.659 | 98.770 | 98.696 | 99.478 | 98.510 | 99.255 | 98.585 | - | 98.808 | 98.584 |
15. LM 196 ECUADOR | 99.479 | 99.462 | 98.958 | 99.070 | 99.851 | 99.560 | 99.702 | 99.814 | 98.621 | 98.882 | 98.957 | 99.106 | 99.628 | 98.808 | - | 99.478 |
16. LM 201 ECUADOR | 99.032 | 99.000 | 98.585 | 98.698 | 99.627 | 99.477 | 99.478 | 99.590 | 98.323 | 98.510 | 98.584 | 98.733 | 99.404 | 98.584 | 99.478 | - |
Sample | N° of Alleles | ST | Complex | ||||||
---|---|---|---|---|---|---|---|---|---|
gyrB | mdh | recA | icd | fumC | adk | purA | |||
86 LM | 4 | 8 | 2 | 1 | 7 | 6 | 251 | 2701 | ST206 Cplx |
89 LM | 49 | 16 | 34 | 13 | 44 | 13 | 10 | 134 | ND |
137 LM | 155 | 24 | 42 | 322 | 209 | 12 | 2 | 4387 | ND |
139 LM | 8 | 16 | 34 | 13 | 12 | 12 | 10 | 2650 | ND |
143 LM | 8 | 15 | 2 | 12 | 12 | 12 | 2 | 11 | ST11 Cplx |
260 LM | 4 | 7 | 2 | 109 | 11 | 57 | 8 | 5044 | ND |
261 LM | 4 | 8 | 2 | 8 | 11 | 10 | 13 | 167 | ST10 Cplx |
277 LM | 4 | 8 | 2 | 8 | 11 | 10 | 8 | 10 | ST10 Cplx |
480 LM | 75 | 27 | 42 | 141 | 161 | 127 | 1 | 717 | ND |
483 LM | 1 | 8 | 2 | 8 | 11 | 6 | 8 | 11771 | ST10 Cplx |
484 LM | 4 | 8 | 2 | 8 | 11 | 6 | 8 | 48 | ST10 Cplx |
501 LM | 41 | 5 | 2 | 43 | 45 | 20 | 957 | 11749 | ND |
505 LM | 8 | 15 | 2 | 12 | 1153 | 12 | 2 | 8345 | ST11 Cplx |
540 LM | 8 | 15 | 2 | 12 | 1182 | 12 | 2 | 8559 | ST11 Cplx |
562 LM | 8 | 15 | 2 | 12 | 698 | 12 | 2 | 5537 | ST11 Cplx |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loor-Giler, A.; Robayo-Chico, M.; Puga-Torres, B.; Hernandez-Alomia, F.; Santander-Parra, S.; Piantino Ferreira, A.; Muslin, C.; Nuñez, L. Escherichia coli O157:H7, a Common Contaminant of Raw Milk from Ecuador: Isolation and Molecular Identification. Foods 2025, 14, 410. https://doi.org/10.3390/foods14030410
Loor-Giler A, Robayo-Chico M, Puga-Torres B, Hernandez-Alomia F, Santander-Parra S, Piantino Ferreira A, Muslin C, Nuñez L. Escherichia coli O157:H7, a Common Contaminant of Raw Milk from Ecuador: Isolation and Molecular Identification. Foods. 2025; 14(3):410. https://doi.org/10.3390/foods14030410
Chicago/Turabian StyleLoor-Giler, Anthony, Marcela Robayo-Chico, Byron Puga-Torres, Fernanda Hernandez-Alomia, Silvana Santander-Parra, Antonio Piantino Ferreira, Claire Muslin, and Luis Nuñez. 2025. "Escherichia coli O157:H7, a Common Contaminant of Raw Milk from Ecuador: Isolation and Molecular Identification" Foods 14, no. 3: 410. https://doi.org/10.3390/foods14030410
APA StyleLoor-Giler, A., Robayo-Chico, M., Puga-Torres, B., Hernandez-Alomia, F., Santander-Parra, S., Piantino Ferreira, A., Muslin, C., & Nuñez, L. (2025). Escherichia coli O157:H7, a Common Contaminant of Raw Milk from Ecuador: Isolation and Molecular Identification. Foods, 14(3), 410. https://doi.org/10.3390/foods14030410