Oxidative Stability of Novel Peptides (Linusorbs) in Flaxseed Meal-Fortified Gluten-Free Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Collection for Chemical Analysis
2.3. Extraction of LOs
2.4. High-Performance Liquid Chromatography (HPLC) Analysis of LOs
2.5. Statistical Analysis
3. Results and Discussion
3.1. Analysis of LO in Flaxseed-Fortified Bread
3.2. HPLC Chromatogram of Flaxseed-Fortified Flour and the Control
3.2.1. Expected Ratios of LOs
3.2.2. Pooling Data
3.3. Effects of Storage Temperature and Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, P.H.R.; Lebwohl, B.; Greywoode, R. Celiac disease. J. Allergy Clin. Immunol. 2015, 135, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Lebwohl, B.; Sanders, D.S.; Green, P.H.R. Coeliac disease. Lancet 2018, 391, 70–81. [Google Scholar] [CrossRef]
- Caio, G.; Volta, U.; Sapone, A.; Leffler, D.A.; De Giorgio, R.; Catassi, C.; Fasano, A. Celiac disease: A comprehensive current review. BMC Med. 2019, 17, 142. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global prevalence of celiac disease: Systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836. [Google Scholar] [CrossRef]
- Gallagher, E.; Gormley, T.R.; Arendt, E.K. Recent advances in the formulation of gluten–free cereal-based products. Trends Food Sci. Technol. 2004, 15, 143–152. [Google Scholar] [CrossRef]
- Anton, A.A.; Artfield, S.D. Hydrocolloids in gluten-free breads: A review. Int. J. Food Sci. Nutr. 2008, 59, 11–23. [Google Scholar] [CrossRef]
- Marti, A.; Pagani, M.A. What can play the role of gluten in gluten free pasta? Trends Food Sci. Technol. 2013, 31, 63–71. [Google Scholar] [CrossRef]
- Lucisano, M.; Cappa, C.; Fongaro, L.; Mariotti, M. Characterisation of gluten-free pasta through conventional and innovative methods: Evaluation of the cooking behaviour. J. Cereal Sci. 2012, 56, 667–675. [Google Scholar] [CrossRef]
- Li, K.-Y.; Ye, J.-T.; Yang, J.; Shao, J.-Q.; Jin, W.-P.; Zheng, C.; Wan, C.-Y.; Peng, D.-F.; Deng, Q.-C. Co-extraction of flaxseed protein and polysaccharide with a high emulsifying and foaming property: Enrichment through the sequence extraction approach. Foods 2023, 12, 1256. [Google Scholar] [CrossRef]
- Liu, J.; Shim, Y.Y.; Reaney, M.J.T. Ionic strength and hydrogen bonding effects on whey protein isolate–flaxseed gum coacervate rheology. Food Sci. Nutr. 2020, 8, 2102–2111. [Google Scholar] [CrossRef]
- Mercier, S.; Villeneuve, S.; Moresoli, C.; Mondor, M.; Marcos, B.; Power, K.A. Flaxseed-enriched cereal-based products: A review of the impact of processing conditions. Compr. Rev. Food Sci. Food Saf. 2014, 13, 400–412. [Google Scholar] [CrossRef]
- Pastuszka, D.; Gambus, H.; Sikora, M. Nutritional and dietary value of gluten-free rolls with flaxseeds added. Zywnosc-Nauka Technol. Jakosc 2012, 19, 155–167. [Google Scholar] [CrossRef]
- Parikh, M.; Maddaford, T.G.; Austria, J.A.; Aliani, M.; Netticadan, T.; Pierce, G.N. Dietary flaxseed as a strategy for improving human health. Nutrients 2019, 11, 1171. [Google Scholar] [CrossRef] [PubMed]
- Fojnica, A.; Gromilic, Z.; Vranic, S.; Murkovic, M. Anticancer potential of the cyclolinopeptides. Cancers 2023, 15, 3874. [Google Scholar] [CrossRef] [PubMed]
- Sharav, O.; Shim, Y.Y.; Okinyo-Owiti, D.P.; Sammynaiken, R.; Reaney, M.J.T. Effect of cyclolinopeptides on the oxidative stability of flaxseed oil. J. Agric. Food Chem. 2013, 62, 88–96. [Google Scholar] [CrossRef]
- Zou, X.-G.; Hu, J.-N.; Zhu, X.-M.; Wang, Y.-F.; Deng, Z.-Y. Methionine sulfone-containing orbitides, good indicators to evaluate oxidation process of flaxseed oil. Food Chem. 2018, 250, 204–212. [Google Scholar] [CrossRef]
- Kaneda, T.; Yoshida, H.; Nakajima, Y.; Toishi, M.; Nugroho, A.E.; Morita, H. Cyclolinopeptides, cyclic peptides from flaxseed with osteoclast differentiation inhibitory activity. Bioorg. Med. Chem. Lett. 2016, 26, 1760–1761. [Google Scholar] [CrossRef]
- Zou, X.-G.; Hu, J.-N.; Li, J.; Yang, J.-Y.; Du, Y.-X.; Yu, Y.-F.; Deng, Z.-Y. iCellular uptake of [1–9-NαC]-linusorb B2 and [1–9-NαC]-linusorb B3 isolated from flaxseed, and their antitumor activities in human gastric SGC-7901 cells. J. Funct. Foods 2018, 48, 692–703. [Google Scholar] [CrossRef]
- Zou, X.-G.; Hu, J.-N.; Wang, M.; Du, Y.-X.; Li, J.; Mai, Q.-Y.; Deng, Z.-Y. [1–9-NαC]-linusorb B2 and [1–9-NαC]-linusorb B3 isolated from flaxseed induce G1 cell cycle arrest on SGC-7901 cells by modulating the AKT/JNK signaling pathway. J. Funct. Foods 2019, 52, 332–339. [Google Scholar] [CrossRef]
- Zou, X.-G.; Li, J.; Sun, P.-L.; Fan, Y.-W.; Yang, J.-Y.; Deng, Z.-Y. Orbitides isolated from flaxseed induce apoptosis against SGC-7901 adenocarcinoma cells. Int. J. Food Sci. Nutr. 2020, 71, 929–939. [Google Scholar] [CrossRef]
- Ratan, Z.A.; Jeong, D.; Sung, N.Y.; Shim, Y.Y.; Reaney, M.J.T.; Yi, Y.-S.; Cho, J.Y. LOMIX, a mixture of flaxseed linusorbs, exerts anti-Inflammatory effects through Src and Syk in the NF-κB pathway. Biomolecules 2020, 10, 859. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.-G.; Shim, Y.Y.; Cho, J.Y.; Jeong, D.; Yang, J.; Deng, Z.-Y.; Reaney, M.J.T. Flaxseed orbitides, linusorbs, inhibit LPS-induced THP-1 macrophage inflammation. RSC Adv. 2020, 10, 22622–22630. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.D.; Davis, S.F. The effect of soya flour and flaxseed as a partial replacement for bread flour in yeast bread. Inter. J. Food Sci. Technol. 2006, 41, 95–101. [Google Scholar] [CrossRef]
- Lee, R.E.; Manthey, F.A.; Hall, C.A., III. Content and stability of hexane extractable lipid at various steps of producing macaroni containing ground flaxseed. J. Food Process. Preserv. 2004, 28, 133–144. [Google Scholar] [CrossRef]
- Hall III, C.A.; Manthey, F.A.; Lee, R.E.; Niehaus, M. Stability of α-linolenic acid and secoisolariciresinol diglucoside in flaxseed-fortified macaroni. J. Food Sci. 2005, 70, c483–c489. [Google Scholar] [CrossRef]
- Shim, Y.Y.; Olivia, C.M.; Liu, J.; Boonen, R.; Shen, J.; Reaney, M.J.T. Secoisolariciresinol diglucoside and cyanogenic glycosides in gluten–free bread fortified with flaxseed meal. J. Agric. Food Chem. 2016, 64, 9551–9558. [Google Scholar] [CrossRef]
- Shim, Y.Y.; Kim, J.H.; Cho, J.Y.; Reaney, M.J.T. Health benefits of flaxseed and its peptides (linusorbs). Crit. Rev. Food Sci. Nutr. 2024, 64, 1845–1864. [Google Scholar] [CrossRef]
- Dianne, B. White Rice Flour Yeast Bread (Gluten-Free, Low-Fructose). 2016. Available online: https://keeprecipes.com/recipe/howtocook/white-rice-flour-yeast-bread-gluten-free-low-fructose (accessed on 2 January 2025).
- Kristensen, M.; Jensen, M.G.; Aarestrup, J.; Petersen, K.E.; Søndergaard, L.; Mikkelsen, M.S.; Astrup, A. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. Nutr. Metab. 2012, 9, 8. [Google Scholar] [CrossRef]
- Mason, J.K.; Thompson, L.U. Flaxseed and its lignan and oil components: Can they play a role in reducing the risk of and improving the treatment of breast cancer? Appl. Physiol. Nutr. Metab. 2014, 39, 663–678. [Google Scholar] [CrossRef]
- Mercier, S.; Mondor, M.; Moresoli, C.; Villeneuve, S.; Marcos, B. Drying of durum wheat pasta and enriched pasta: A review of modeling approaches. Crit. Rev. Food Sci. Nutr. 2016, 56, 1146–1168. [Google Scholar] [CrossRef]
- Petitot, M.; Boyer, L.; Minier, C.; Micard, V. Fortification of pasta with split pea and faba bean flours: Pasta processing and quality evaluation. Food Res. Int. 2010, 43, 634–641. [Google Scholar] [CrossRef]
- Guo, X.; Shi, L.; Yang, S.; Yang, R.; Dai, X.; Zhang, T.; Liu, R.; Chang, M.; Jin, Q.; Wang, X. Effect of sea-buckthorn pulp and flaxseed residues on quality and shelf life of bread. Food Funct. 2019, 10, 4220–4230. [Google Scholar] [CrossRef]
- Edel, A.L.; Aliani, M.; Pierce, G.N. Stability of bioactives in flaxseed and flaxseed-fortified foods. Food Res. Int. 2015, 77, 140–155. [Google Scholar] [CrossRef]
- Fojnica, A.; Leis, H.-J.; Murkovic, M. Identification and characterization of the stability of hydrophobic cyclolinopeptides from flaxseed oil. Front. Nutr. 2022, 9, 903611. [Google Scholar] [CrossRef] [PubMed]
- Aladedunye, F.; Sosinska, E.; Przybylski, R. Flaxseed cyclolinopeptides: Analysis and storage stability. J. Am. Oil Chem. Soc. 2013, 90, 419–428. [Google Scholar] [CrossRef]
- Jadhav, P.D.; Okinyo-Owiti, D.P.; Ahiahonu, P.W.; Reaney, M.J.T. Detection, isolation and characterisation of cyclolinopeptides J and K in ageing flax. Food Chem. 2013, 138, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Brühl, L.; Bonte, A.; N’Diaye, K.; Matthäus, B. Oxidation of cyclo-lino peptides in linseed oils during storage. Eur. J. Lipid Sci. Technol. 2022, 124, 2200137. [Google Scholar] [CrossRef]
- Brühl, L.; Matthäus, B.; Fehling, E.; Wiege, B.; Lehmann, B.; Luftmann, H.; Bergander, K.; Quiroga, K.; Scheipers, A.; Frank, O. Identification of bitter off-taste compounds in the stored cold pressed linseed oil. J. Agric. Food Chem. 2007, 55, 7864–7868. [Google Scholar] [CrossRef]
- Reaney, M.J.T.; Jia, Y.; Shen, J.; Schock, C.; Tyler, N.; Elder, J.; Singh, S. Recovery of Hydrophobic Peptides from Oils. U.S. Patent 8,383,172 B2, 26 February 2013. Available online: https://patentimages.storage.googleapis.com/3b/e7/67/7f7b966ece52f8/US8383172.pdf (accessed on 2 January 2025).
- Olivia, C.M.; Burnett, P.-G.G.; Okinyo-Owiti, D.P.; Shen, J.; Reaney, M.J.T. Rapid reversed-phase liquid chromatography separation of cyclolinopeptides with monolithic and microparticulate columns. J. Chromatogr. B 2012, 904, 128–134. [Google Scholar] [CrossRef]
- Lao, Y.W.; Mackenzie, K.; Vincent, W.; Krokhin, O.V. Characterization and complete separation of major cyclolinopeptides in flaxseed oil by reversed-phase chromatography. J. Sep. Sci. 2014, 37, 1788–1796. [Google Scholar] [CrossRef]
- Gui, B.; Shim, Y.Y.; Datla, R.S.S.; Covello, P.S.; Stone, S.L.; Reaney, M.J.T. Identification and quantification of cyclolinopeptides in five flaxseed cultivars. J. Agric. Food Chem. 2012, 60, 8571–8579. [Google Scholar] [CrossRef]
LO Name a | Literature Name b (Code) | Amino Acid Sequence (NαC-) c |
---|---|---|
[1–8-NαC]-linusorb A1 | CLM (1) | Met-Leu-Met-Pro-Phe-Phe-Trp-Ile |
[1–8-NαC],[3-(Rs,Ss)-MetO]-linusorb A1 | CLN (2) | Met-Leu-[(Rs,Ss)-MetO]-Pro-Phe-Phe-Trp-Ile |
[1–8-NαC],[1,3-(Rs,Ss)-MetO]-linusorb A1 | CLG (3) d | [(Rs,Ss)-MetO]-Leu-[(Rs,Ss)-MetO]-Pro-Phe-Phe-Trp-Ile |
[1–8-NαC]-linusorb A2 | CLO (4) | Met-Leu-Leu-Pro-Phe-Phe-Trp-Ile |
[1–8-NαC],[1-(Rs,Ss)-MetO]-linusorb A2 | CLD (5) e | [(Rs,Ss)-MetO]-Leu-Leu-Pro-Phe-Phe-Trp-Ile |
[1–8-NαC]-linusorb A3 | CLL (6) | Met-Leu-Met-Pro-Phe-Phe-Trp-Val |
[1–8-NαC],[1-(Rs,Ss)-MetO]-linusorb A3 | [1–8-NαC],[1-MetO]-CLF (7) | [(Rs,Ss)-MetO]-Leu-Met-Pro-Phe-Phe-Trp-Val |
[1–8-NαC],[3-(Rs,Ss)-MetO]-linusorb A3 | CLI (8) | Met-Leu-[(Rs,Ss)-MetO]-Pro-Phe-Phe-Trp-Val |
[1–8-NαC],[1,3-(Rs,Ss)-MetO]-linusorb A3 | CLF (9) d | [(Rs,Ss)-MetO]-Leu-[(Rs,Ss)-MetO]-Pro-Phe-Phe-Trp-Val |
[1–8-NαC]-linusorb B1 | CLP (10) f | Met-Leu-Val-Phe-Pro-Leu-Phe-Ile |
[1–8-NαC],[1-(Rs,Ss)-MetO]-linusorb B1 | CLE (11) | [(Rs,Ss)-MetO]-Leu-Val-Phe-Pro-Leu-Phe-Ile |
[1–8-NαC],[1-MetO2]-linusorb B1 | CLJ (12) | MetO2-Leu-Val-Phe-Pro-Leu-Phe-Ile |
[1–9-NαC]-linusorb B2 | CLB (13) f | Met-Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile |
[1–9-NαC],[1-(Rs,Ss)-MetO]-linusorb B2 | CLC (14) | [(Rs,Ss)-MetO]-Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile |
[1–9-NαC],[1-MetO2]-linusorb B2 | CLK (15) | MetO2-Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile |
[1–9-NαC],[1-Abu]-linusorb B2 | CLB-S (16) | Abu-Leu-Ile-Pro-Pro-Phe-Phe-Val-Ile |
[1–9-NαC]-linusorb B3 | CLA (17) g | Ile-Leu-Val-Pro-Pro-Phe-Phe-Leu-Ile |
Ingredient | GF-Bread (Control, g) | Flaxseed Meal-Fortified GF-Bread (g) |
---|---|---|
White rice flour | 846 | 1054 |
Potato starch | 194 | 389 |
Tapioca flour | 82 | 164 |
Flaxseed meal | 0 | 637 |
Sugar | 12 | 24 |
Total dry ingredients | 1134 | 2268 |
Instant yeast | 6 | 13 |
Salt | 7 | 14 |
Milk (45 °C) | 242 | 484 |
Unsalted butter | 57 | 113 |
Eggs | 146 | 293 |
Total wet ingredients | 458 | 917 |
Total ingredients | 1592 | 3185 |
Samples | Meal | Flour | Dough | Bread | Total | |
---|---|---|---|---|---|---|
Week 0 | Average | 115 | 125 | 161 | 109 | 127 |
Variance | 0.1 | 32 | 34 | 25 | 471 | |
Week 1 | Average | 135 | 102 | 141 | 141 | 130 |
Variance | 334 | 44 | 512 | 419 | 530 | |
Week 2 | Average | 116 | 123 | 162 | 128 | 132 |
Variance | 527 | 34 | 1112 | 23 | 646 | |
Week 4 | Average | 112 | 100 | 105 | 88 | 101 |
Variance | 0.2 | 28 | 243 | 3 | 132 | |
Total | Average | 119 | 113 | 142 | 116 | NA |
Variance | 258 | 172 | 927 | 524 | NA |
LO | Area Meal | Area Flour | Area Dough | Area Bread |
---|---|---|---|---|
9 | 1.175 ± 0.004 | 0.280 ± 0.001 | 0.127 ± 0.000 | 0.246 ± 0.001 |
3 | 3.063 ± 0.422 | 0.844 ± 0.090 | 1.011 ± 0.014 | 0.564 ± 0.000 |
14 | 1.751 ± 0.124 | 0.462 ± 0.022 | 0.176 ± 0.000 | 0.283 ± 0.000 |
11, 15 | 1.693 ± 0.156 | 0.447 ± 0.007 | 0.320 ± 0.006 | 0.215 ± 0.001 |
7 | 2.403 ± 0.222 | 0.524 ± 0.005 | 0.357 ± 0.003 | 1.383 ± 0.061 |
8 | 1.062 ± 0.101 | 0.487 ± 0.002 | 0.312 ± 0.000 | 0.652 ± 0.004 |
5, 12 | 5.983 ± 0.282 | 2.643 ± 0.112 | 1.591 ± 0.010 | 1.401 ± 0.005 |
2 | 2.414 ± 0.076 | 0.581 ± 0.002 | 0.407 ± 0.002 | 0.490 ± 0.002 |
16 | 1.000 ± 0.000 | 1.000 ± 0.000 | 1.000 ± 0.000 | 1.000 ± 0.000 |
13 | 5.663 ± 2.262 | 1.647 ± 0.048 | 0.631 ± 0.001 | 0.677 ± 0.003 |
17, 10 | 19.44 ± 1.924 | 4.783 ± 0.362 | 1.850 ± 0.005 | 1.714 ± 0.004 |
6, 1 | 18.12 ± 1.502 | 4.141 ± 0.360 | 1.356 ± 0.005 | 1.141 ± 0.009 |
4 | 14.12 ± 1.122 | 3.173 ± 0.134 | 1.334 ± 0.004 | 1.119 ± 0.001 |
LO | Area Flour/Area Meal | Area Dough/Area Flour | Area Bread/Area Dough |
---|---|---|---|
9 | 0.231 ± 0.001 | 0.941 ± 0.051 | 0.936 ± 0.061 |
3 | 0.267 ± 0.002 | 0.866 ± 0.077 | 0.776 ± 0.005 |
14 | 0.256 ± 0.001 | 0.511 ± 0.002 | 1.206 ± 0.021 |
11, 15 | 0.257 ± 0.001 | 0.744 ± 0.006 | 0.681 ± 0.003 |
7 | 0.215 ± 0.002 | 0.661 ± 0.001 | 1.014 ± 0.011 |
8 | 0.453 ± 0.003 | 0.675 ± 0.001 | 0.777 ± 0.006 |
5, 12 | 0.441 ± 0.003 | 0.596 ± 0.004 | 0.891 ± 0.081 |
2 | 0.242 ± 0.001 | 0.896 ± 0.071 | 0.945 ± 0.009 |
13 | 0.271 ± 0.001 | 0.376 ± 0.002 | 1.101 ± 0.004 |
17, 10 | 0.243 ± 0.001 | 0.377 ± 0.001 | 0.952 ± 0.011 |
6, 1 | 0.226 ± 0.001 | 0.318 ± 0.003 | 0.903 ± 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, Y.Y.; Burnett, P.-G.G.; Olivia, C.M.; Zou, X.-G.; Lee, S.J.; Kim, H.-J.; Kim, Y.J.; Reaney, M.J.T. Oxidative Stability of Novel Peptides (Linusorbs) in Flaxseed Meal-Fortified Gluten-Free Bread. Foods 2025, 14, 439. https://doi.org/10.3390/foods14030439
Shim YY, Burnett P-GG, Olivia CM, Zou X-G, Lee SJ, Kim H-J, Kim YJ, Reaney MJT. Oxidative Stability of Novel Peptides (Linusorbs) in Flaxseed Meal-Fortified Gluten-Free Bread. Foods. 2025; 14(3):439. https://doi.org/10.3390/foods14030439
Chicago/Turabian StyleShim, Youn Young, Peta-Gaye G. Burnett, Clara M. Olivia, Xian-Guo Zou, Sung Jin Lee, Hye-Jin Kim, Young Jun Kim, and Martin J. T. Reaney. 2025. "Oxidative Stability of Novel Peptides (Linusorbs) in Flaxseed Meal-Fortified Gluten-Free Bread" Foods 14, no. 3: 439. https://doi.org/10.3390/foods14030439
APA StyleShim, Y. Y., Burnett, P.-G. G., Olivia, C. M., Zou, X.-G., Lee, S. J., Kim, H.-J., Kim, Y. J., & Reaney, M. J. T. (2025). Oxidative Stability of Novel Peptides (Linusorbs) in Flaxseed Meal-Fortified Gluten-Free Bread. Foods, 14(3), 439. https://doi.org/10.3390/foods14030439