Comprehensive Extraction and Biological Activities of Mycosporine-like Amino Acids and Glyceroglycolipids Extracts from Two Macroalgae Ecklonia kurome and Ulva lactuca
Abstract
:1. Introduction
2. Materials and Methods
2.1. Macroalgae Materials and Reagents
2.2. Extraction of Crude MAAs and Glyceroglycolipids from Macroalgae
2.2.1. Optimization of MAA Extraction Conditions
2.2.2. Optimization of Glyceroglycolipid Extraction Conditions
2.3. Assessment of Antioxidant Activity of Different Extracts
2.3.1. Determination of DPPH Free Radical Scavenging Ability
2.3.2. Assessment of ABTS Free Radical Scavenging Ability
2.3.3. Analysis of Ferric Ion Reducing Antioxidant Power (FRAP)
2.3.4. Determination of Total Reducing Capacity
2.3.5. Evaluation of the Ability of MAA Extracts to Protect Flaxseed Oil from Oxidation
2.4. Determination of Moisturizing Activity
2.4.1. Hygroscopic and Hydrating Properties of MAA and Glyceroglycolipid Extracts
2.4.2. Preparation of Biological Water-Retaining Agent
2.4.3. Evaluation of Water-Retaining Agent Performance
2.5. Purification and Identification of Glyceroglycolipids
2.5.1. Purification of Glyceroglycolipids from Crude Extract
2.5.2. Thin Layer Chromatography Detection
2.5.3. Infrared Spectrum and HPLC Detection
2.6. Statistical Analysis
3. Results and Discussion
3.1. Extraction of MAAs from Two Macroalgae
3.2. Extraction of Glyceroglycolipids from Two Macroalgae
3.3. Antioxidant Activity and Applications of MAA and Glyceroglycolipid Extracts
3.3.1. Determination of Antioxidant Properties of Different Extracts
3.3.2. Antioxidant Properties of Flaxseed Oil Protected by MAA Extract
3.4. Moisturizing Activity and Applications of MAA and Glyceroglycolipid Extracts
3.4.1. Moisturizing Absorption and Moisturizing Retention Ability of Different Extracts
3.4.2. Preparation and Characterization of Water-Retaining Agent from Glyceroglycolipid Extract
3.5. Purification and Identification of MAAs and Glyceroglycolipids from Macroalgae
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geraldes, V.; Pinto, E. Mycosporine-like amino acids (MAAs): Biology, Chemistry and Identification Features. Pharmaceuticals 2021, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Rosic, N.N. Recent Advances in The Discovery of Novel Marine Natural Products and Mycosporine-Like Amino Acid UV-Absorbing Compounds. Appl. Microbiol. Biot. 2021, 105, 7053–7067. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Zhang, N.S.; Zhou, J.; Dong, S.S.; Zhang, X.; Guo, L.; Guo, G.L. Distribution, Contents, and Types of Mycosporine-Like Amino Acids (MAAs) in Marine Macroalgae and a Database for MAAs Based on These Characteristics. Mar. Drugs 2020, 18, 43. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Guo, F.; Liu, S.; Fang, H.; Xu, Z.; Wang, T. Recent Advances and Future Prospects of Mycosporine-Like Amino Acids. Molecules 2023, 28, 5588. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.; Kuniyil, A.M.; Sreenikethanam, A.; Gugulothu, P.; Jeyakumar, R.B.; Bajhaiya, A.K. Microalgae as a Source of Mycosporine-Like Amino Acids (MAAs); Advances and Future Prospects. Int. J. Environ. Res. Public Health 2021, 18, 12402. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Kumagai, Y.; Michiba, S.; Yasui, H.; Kishimura, H. Efficient Extraction and Antioxidant Capacity of Mycosporine-Like Amino Acids from Red Alga Dulse Palmaria palmata in Japan. Mar. Drugs 2020, 18, 502. [Google Scholar] [CrossRef]
- Figueroa, F.L. Mycosporine-Like Amino Acids from Marine Resource. Mar. Drugs 2021, 19, 18. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, H.; Waditee-Sirisattha, R. Antioxidative, Anti-Inflammatory, and Anti-Aging Properties of Mycosporine-Like Amino Acids: Molecular and Cellular Mechanisms in the Protection of Skin-Aging. Mar. Drugs 2019, 17, 222. [Google Scholar] [CrossRef] [PubMed]
- Orfanoudaki, M.; Hartmann, A.; Alilou, M.; Gelbrich, T.; Planchenault, P.; Derbré, S.; Schinkovitz, A.; Richomme, P.; Hensel, A.; Ganzera, M. Absolute Configuration of Mycosporine-Like Amino Acids, Their Wound Healing Properties and in Vitro Anti-Aging Effects. Mar. Drugs 2019, 18, 35. [Google Scholar] [CrossRef]
- Osawa, T.; Fujikawa, K.; Shimamoto, K. Structures, Functions, and Syntheses of Glycero-glycophospholipids. Front. Chem. 2024, 12, 1353688. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Y.; Dong, S.S.; Zhang, N.S.; Zhou, J.; Long, Z.K. Screening and Isolation of Glyceroglycolipids with Antialgal Activity from Several Marine Macroalgae. J. Appl. Phycol. 2021, 33, 2609–2616. [Google Scholar] [CrossRef]
- Sanina, N.M.; Kostetsky, E.Y.; Shnyrov, V.L.; Tsybulsky, A.V.; Novikova, O.D.; Portniagina, O.Y.; Vorobieva, N.S.; Mazeika, A.N.; Bogdanov, M.V. The Influence of Monogalactosyldiacylglycerols from Different Marine Macrophytes on Immunogenicity and Conformation of Protein Antigen of Tubular Immunostimulating Complex. Biochimie 2012, 94, 1048–1056. [Google Scholar] [CrossRef]
- Lopes, D.; Rey, F.; Leal, M.C.; Lillebø, A.I.; Calado, R.; Domingues, M.R. Bioactivities of Lipid Extracts and Complex Lipids from Seaweeds: Current Knowledge and Future Prospects. Mar. Drugs 2021, 19, 686. [Google Scholar] [CrossRef] [PubMed]
- Khotimchenko, S.V. Lipids from the Marine Alga Gracilaria verrucosa. Chem. Nat. Compd. 2005, 41, 285–288. [Google Scholar] [CrossRef]
- Sangtani, R.; Ghosh, A.; Jha, H.C.; Parmar, H.S.; Bala, K. Potential of Algal Metabolites for the Development of Broad-spectrum Antiviral Therapeutics: Possible Implications in COVID-19 Therapy. Phytother. Res. 2021, 35, 2296–2316. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, Y.; Abe, M.; Murase, N. Determination of the Antiallergic Activity of Lipophilic Components Isolated from the Red Alga Pyropia tenuipedalis. JARQ-Jpn. Agric. Res. Q. 2024, 58, 49–55. [Google Scholar] [CrossRef]
- Deal, M.S.; Hay, M.E.; Wilson, D.; Fenical, W. Galactolipids Rather Than Phlorotannins as Herbivore Deterrents in the Brown Seaweed Fucus vesiculosus. Oecologia 2003, 136, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, N.M.; Anastiuk, S.D.; Gerasimenko, N.I.; Dmitrenok, P.S.; Zviagintseva, T.N. Polysaccharide and Lipid Composition of the Brown Seaweed Laminaria gurjanovae. Russ. J. Bioorg. Chem. 2007, 33, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Rahman, A.A.; Elsayed, K.N.; Abd El-Mageed, H.R.; Mohamed, H.S.; Ahmed, S.A. Cytotoxic activity, molecular docking, pharmacokinetic properties and Quantum Mechanics Calculations of the Brown Macroalga Cystoseira trinodis Compounds. J. Biomol. Struct. Dyn. 2021, 39, 3855–3873. [Google Scholar] [CrossRef]
- Foseid, L.; Devle, H.; Naess-Andresen, C.F.; Ekeberg, D. Laminaria hyperborea as a Source of Valuable Glyceroglycolipids—A Characterization of Galactosyldiacilglycerols in Stipe and Blade by HPLC-MS/MS. Appl. Chem. 2022, 2, 185–198. [Google Scholar] [CrossRef]
- Nunes, N.; Rosa, G.P.; Ferraz, S.; Barreto, M.C.; Carvalho, M. Fatty Acid Composition, TLC Screening, ATR-FTIR Analysis, Anti-Cholinesterase Activity, and in Vitro Cytotoxicity to A549 Tumor Cell Line of Extracts of 3 Macroalgae Collected in Madeira. J. Appl. Phycol. 2020, 32, 759–771. [Google Scholar] [CrossRef]
- Sanina, N.M.; Kostetsky, E.Y.; Goncharova, S.N. Thermotropic Behaviour of Membrane Lipids from Brown Marine Alga Laminaria japonica. Biochem. Soc. Trans. 2000, 28, 894. [Google Scholar] [CrossRef]
- Rey, F.; Cartaxana, P.; Melo, T.; Calado, R.; Pereira, R.; Abreu, H.; Domingues, P.; Cruz, S.; Domingues, M.R. Domesticated Populations of Codium tomentosum Display Lipid Extracts with Lower Seasonal Shifts than Conspecifics from the Wild—Relevance for Biotechnological Applications of this Green Seaweed. Mar. Drugs 2020, 18, 188. [Google Scholar] [CrossRef] [PubMed]
- Lopes, D.; Moreira, A.S.P.; Rey, F.; Da Costa, E.; Melo, T.; Maciel, E.; Rego, A.; Abreu, M.H.; Domingues, P.; Calado, R.; et al. Lipidomic Signature of the Green Macroalgae Ulva rigida Farmed in a Sustainable Integrated Multi-Trophic Aquaculture. J. Appl. Phycol. 2019, 31, 1369–1381. [Google Scholar] [CrossRef]
- Fang, X.Y.; Zhou, S.; Liu, Y.; Gao, H.; Wang, W. Chemical Constituents from Green Alga Ulva pertusa. Chin. Tradit. Herb. Drugs 2017, 48, 4626–4631. [Google Scholar]
- Jiang, R.W.; Hay, M.E.; Fairchild, C.R.; Prudhomme, J.; Roch, K.L.; Aalbersberg, W.; Kubanek, J. Antineoplastic Unsaturated Fatty Acids from Fijian Macroalgae. Phytochemistry 2008, 69, 2495–2500. [Google Scholar] [CrossRef]
- Chadova, K. Algal Adaptation to Environmental Stresses: Lipidomics Research. Int. J. Plant Biol. 2024, 15, 719–732. [Google Scholar] [CrossRef]
- Yamashita, S.; Miyazawa, T.; Higuchi, O.; Takekoshi, H.; Miyazawa, T.; Kinoshita, M. Characterization of Glycolipids in the Strain Chlorella pyrenoidosa. J. Nutr. Sci. Vitaminol. 2022, 68, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Y.; Dong, S.S.; Guo, G.L.; Guo, L.; Pu, Y.F. Antialgal Activity of Glycoglycerolipids Derived from a Green Macroalgae Ulva prolifera on Six Species of Red Tide Microalgae. Mater. Sci. Eng. 2019, 484, 12057. [Google Scholar] [CrossRef]
- Xu, X.; Miao, X. Glyceroglycolipid Metabolism Regulations under Phosphate Starvation Revealed by Transcriptome Analysis in Synechococcus elongatus PCC 7942. Mar. Drugs 2020, 18, 360. [Google Scholar] [CrossRef] [PubMed]
- Akbari, V.; Abedi, M.; Yegdaneh, A. Bioassay-Guided Isolation of Glycolipids from the Seaweed Gracilaria corticata. Res. Pharm. Sci. 2020, 15, 473–480. [Google Scholar]
- Marques, F.; Lopes, D.; Conde, T.; Melo, T.; Silva, J.; Abreu, M.H.; Domingues, P.; Domingues, M.R. Lipidomic Characterization and Antioxidant Activity of Macro- and Microalgae Blend. Life 2023, 13, 231. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Asai, S.; Umezawa, K.; Kakizoe, H.; Miyachi, H.; Morita, M.; Kawahara, T. Virucidal Effect of Monogalactosyl Diacylglyceride from a Green Microalga, Coccomyxa sp. KJ, against Clinical Isolates of SARS-CoV-2 as Assessed by a Plaque Assay. J. Clin. Lab. Anal. 2022, 36, e24146. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.S.; Wang, Z.G. Glyceroglycolipids in Marine Algae: A Review of Their Pharmacological Activity. Front. Pharmacol. 2022, 13, 1008797. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Deng, J.L.; Guan, S.N.; Ding, J.Q.; Zhang, X.Y. One New Elemane Sesquiterpenoid Glycoside and Five Glycoglycerolipids from Pittosporum truncatum with Anti-Bacterial Activity. Phytochem. Lett. 2023, 56, 44–49. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, F.; Zhang, J.; Wang, W.; Li, L.; Yan, J. Modulatory Effects of Polysaccharides from Plants, Marine Algae and Edible Mushrooms on Gut Microbiota and Related Health Benefits: A Review. Int. J. Biol. Macromol. 2022, 204, 169–192. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Y.; Han, X.; Hu, Z.J.; Cheng, T.J.; Tang, Q.; Wang, H.; Deng, X.Q.; Han, X. Extraction, Isolation and Characterization of Mycosporine-like Amino Acids from Four Species of Red Macroalgae. Mar. Drugs 2021, 19, 615. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Y.; Mu, Y.; Li, T.H.; Wang, S.Y.; Li, Y.X.; Liu, J.; Xing, P.P. Extraction, Isolation and Biological Activity of Two Glycolipids from Bangia fusco-purpurea. Mar. Drugs 2024, 22, 144. [Google Scholar] [CrossRef] [PubMed]
- Punchakara, A.; Prajapat, G.; Bairwa, H.K.; Jain, S.; Agrawal, A. Applications of Mycosporine-Like Amino Acids beyond Photoprotection. Appl. Environ. Microb. 2023, 89, e0074023. [Google Scholar] [CrossRef] [PubMed]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef] [PubMed]
- Gacesa, R.; Lawrence, K.P.; Georgakopoulos, N.D.; Yabe, K.; Dunlap, W.C.; Barlow, D.J.; Wells, G.; Young, A.R.; Long, P.F. The Mycosporine-Like Amino Acids Porphyra-334 and Shinorine are Antioxidants and Direct Antagonists of Keap1-Nrf2 Binding. Biochimie 2018, 154, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qin, L.; Lin, H.; Yao, M.; Cao, J.; Zhang, Q.; Liu, M. Pharmacological Effects of Antioxidant Mycosporine-Glycine in Alleviating Ultraviolet B-Induced Skin Photodamage: Insights from Metabolomic and Transcriptomic Analyses. Antioxidants 2024, 14, 30. [Google Scholar] [CrossRef]
- Arbeloa, E.M.; Uez, M.J.; Bertolotti, S.G.; Churio, M.S. Antioxidant Activity of Gadusol and Occurrence in Fish Roes from Argentine Sea. Food Chem. 2010, 119, 586–591. [Google Scholar] [CrossRef]
- Suh, H.J.; Lee, H.W.; Jin, J. Singlet Oxygen Quenching by Deoxygadusol and Related Mycosporine-Like Amino Acids from Phytoplankton Prorocentrum micans. J. Photosci. 2004, 11, 77–81. [Google Scholar]
- Coba, F.D.L.; Aguilera, J.; Figueroa, F.L.; de Gálvez, M.V.; Herrera, E. Antioxidant Activity of Mycosporine-Like Amino Acids Isolated from Three Red Macroalgae and One Marine Lichen. J. Appl. Phycol. 2009, 21, 161–169. [Google Scholar] [CrossRef]
- Yoshiki, M.; Tsuge, K.; Tsuruta, Y.; Yoshimura, T.; Koganemaru, K.; Sumi, T.; Matsumoto, K. Production of New Antioxidant Compound from Mycosporine-Like Amino Acid, Porphyra-334 By Heat Treatment. Food Chem. 2009, 113, 1127–1132. [Google Scholar] [CrossRef]
- Varnali, T.; Bozoflu, M.; Şengönül, H.; Kurt, S.İ. Potential metal chelating ability of Mycosporine-Like Amino Acids: A Computational Research. Chem. Pap. 2022, 76, 2279–2291. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; Wen, S.; Sun, Y.; Chen, J.; Gao, Y.; Yu, X. Analytical Methods for Determining the Peroxide Value of Edible Oils: A Mini-Review. Food Chem. 2021, 358, 129834. [Google Scholar] [CrossRef] [PubMed]
- Adam Omer Ishag, O.; A Khalid, A.; Abdi, A.; Yaagoub Erwa, I.; Babiker Omer, A.; H Nour, A. Proximate Composition, Physicochemical Properties and Antioxidant Activity of Flaxseed. Annu. Res. Rev. Biol. 2020, 34, 1–10. [Google Scholar] [CrossRef]
- Yakovleva, I.; Bhagooli, R.; Takemura, A.; Hidaka, M. Differential Susceptibility to Oxidative Stress of Two Scleractinian Corals: Antioxidant Functioning of Mycosporine-Glycine. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 139, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Messyasz, B.; Michalak, I.; Łęska, B.; Schroeder, G.; Górka, B.; Korzeniowska, K.; Lipok, J.; Wieczorek, P.; Rój, E.; Wilk, R.; et al. Valuable Natural Products from Marine and Freshwater Macroalgae Obtained from Supercritical Fluid Extracts. J. Appl. Phycol. 2018, 30, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Couteau, C.; Coiffard, L. Phycocosmetics and Other Marine Cosmetics, Specific Cosmetics Formulated Using Marine Resources. Mar. Drugs 2020, 18, 322. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.D.; Ni, H.F.; Cao, J.; Li, K.L.; Yue, Q.L.; Zhao, L. A New PGA-Seaweed Water-retaining Agent and Its Use in Saline-alkali Soils Repairing. Preface: International Symposium on the Frontiers of Biotechnology and Bioengineering. In International Symposium on the Frontiers of Biotechnology and Bioengineering; AIP Publishing: Melville, NY, USA, 2019. [Google Scholar]
- Pradeep, M.; Binoy, R.F.; Yaswanth, S.; Pullan, T.T.; Joseph, M. Investigations on Chitin and Coconut Fiber Reinforcements on Mechanical and Moisture Absorption Properties of Corn Starch Bioplastics. Mater. Today 2022, 58, 65–70. [Google Scholar] [CrossRef]
- Chaiwong, N.; Leelapornpisid, P.; Jantanasakulwong, K.; Rachtanapun, P.; Seesuriyachan, P.; Sakdatorn, V.; Phimolsiripol, Y. Antioxidant and Moisturizing Properties of Carboxymethyl Chitosan with Different Molecular Weights. Polymers 2020, 12, 1445. [Google Scholar] [CrossRef] [PubMed]
- Jesumani, V.; Du, H.; Pei, P.; Aslam, M.; Huang, N. Comparative Study on Skin Protection Activity of Polyphenol-Rich Extract and Polysaccharide-Rich Extract from Sargassum vachellianum. PLoS ONE 2020, 15, e0227308. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, Q.; Xin, Y.; Liu, Y. Comprehensive Review in Moisture Retention Mechanism of Polysaccharides from Algae, Plants, Bacteria and Fungus. Arab. J. Chem. 2022, 15, 104163. [Google Scholar] [CrossRef]
- Carina, D.; Sharma, S.; Jaiswal, A.K.; Jaiswal, S. Seaweeds Polysaccharides in Active Food Packaging: A Review of Recent Progress. Trends Food Sci. Tech. 2021, 110, 559–572. [Google Scholar] [CrossRef]
- Zwerger, M.; Schwaiger, S.; Ganzera, M. Efficient Isolation of Mycosporine-Like Amino Acids from Marine Red Algae by Fast Centrifugal Partition Chromatography. Mar. Drugs 2022, 20, 106. [Google Scholar] [CrossRef] [PubMed]
- Orfanoudaki, M.; Hartmann, A.; Karsten, U.; Ganzera, M. Chemical Profiling of Mycosporine-Like Amino Acids in Twenty-Three Red Algal Species. J. Phycol. 2019, 55, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Tabarzad, M.; Baktash, S.; Atabaki, V.; Hosseinabadi, T. Primary Assessment of Mycosporine-Like Amino Acids Production by Two Species of Fischerella sp. Iran. J. Pharm. Res. 2021, 20, 405–414. [Google Scholar] [PubMed]
- Jung, S.; Lim, J.M.; Min, S.R.; Kim, G.H.; Jeong, W.J. Increased Shinorine Production through the Introduction of Mycosporine-Like Amino Acids Biosynthetic Genes from Pyropia yezoensis and Nostoc punctiforme into Nannochloropsis gaditana. Plant Biotechnol. Rep. 2024, 18, 871–880. [Google Scholar] [CrossRef]
- Choi, S.; Lee, J.H.; Oh, S.W.; Yu, E.; Kwon, K.; Jang, S.J.; Lee, J. Anti-Pollutant Activity of Porphyra yezoensis Water Extract and its Active Compound, Porphyra 334, against Urban Particulate Matter-Induced Keratinocyte Cell Damage. Mar. Drugs 2023, 21, 121. [Google Scholar] [CrossRef] [PubMed]
Free Radicals | Extracts | Regression Equation | IC50 |
---|---|---|---|
DPPH | MAA extract from E. kurome | y = 0.0390x + 0.2104, R2 = 0.9903 | 7.43 mg/mL |
MAA extract from U. lactuca | y = 0.0609x + 0.2811, R2 = 0.9900 | 3.59 mg/mL | |
Glyceroglycolipid extract from E. kurome | y = 0.0404x + 0.1006, R2 = 0.9903 | 9.89 mg/mL | |
Glyceroglycolipid extract from U. lactuca | y = 0.0324x + 0.0264, R2 = 0.9937 | 14.62 mg/mL | |
ABTS+ | MAA extract from E. kurome | y = 0.0412x + 0.1041, R2 = 0.9907 | 9.61 mmol/g |
MAA extract from U. lactuca | y = 0.0236x + 0.0232, R2 = 0.9906 | 20.20 mmol/g | |
Glyceroglycolipid extract from E. kurome | y = 0.0496x + 0.1445, R2 = 0.9909 | 7.17 mmol/g | |
Glyceroglycolipid extract from U. lactuca | y = 0.0130x − 0.0016, R2 = 0.9900 | 38.58 mmol/g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Hu, X.; Li, T.; Li, Y.; Yu, Y.; Jiang, X.; Wang, H.; Yang, J.; Jiao, X.; Zhou, X.; et al. Comprehensive Extraction and Biological Activities of Mycosporine-like Amino Acids and Glyceroglycolipids Extracts from Two Macroalgae Ecklonia kurome and Ulva lactuca. Foods 2025, 14, 440. https://doi.org/10.3390/foods14030440
Wei X, Hu X, Li T, Li Y, Yu Y, Jiang X, Wang H, Yang J, Jiao X, Zhou X, et al. Comprehensive Extraction and Biological Activities of Mycosporine-like Amino Acids and Glyceroglycolipids Extracts from Two Macroalgae Ecklonia kurome and Ulva lactuca. Foods. 2025; 14(3):440. https://doi.org/10.3390/foods14030440
Chicago/Turabian StyleWei, Xin, Xiaoqi Hu, Tianhuan Li, Yuxiang Li, You Yu, Xiujing Jiang, Haonan Wang, Jie Yang, Xue Jiao, Xinghu Zhou, and et al. 2025. "Comprehensive Extraction and Biological Activities of Mycosporine-like Amino Acids and Glyceroglycolipids Extracts from Two Macroalgae Ecklonia kurome and Ulva lactuca" Foods 14, no. 3: 440. https://doi.org/10.3390/foods14030440
APA StyleWei, X., Hu, X., Li, T., Li, Y., Yu, Y., Jiang, X., Wang, H., Yang, J., Jiao, X., Zhou, X., & Sun, Y. (2025). Comprehensive Extraction and Biological Activities of Mycosporine-like Amino Acids and Glyceroglycolipids Extracts from Two Macroalgae Ecklonia kurome and Ulva lactuca. Foods, 14(3), 440. https://doi.org/10.3390/foods14030440