Non-Destructive Assessment of Aroma Volatiles from a Climacteric Near-Isogenic Line of Melon Obtained by Headspace Stir-Bar Sorptive Extraction
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
Profile id. | Compound (IUPAC name) | Time effect significant at p < 0.001 | Aroma at harvest—or mean—(% area counts) | Aroma after 9 days or ± SE (% area counts) | RT (min) average | CAS number | LRI calculated average | LRI literature | Odor threshold in water (ppb) | Reference OT |
---|---|---|---|---|---|---|---|---|---|---|
Acetate esters | ||||||||||
1 | Ethyl acetate | NS | 0.99± | 0.2 | 1.911 | 000141-78-6 | 610 | 628 | 5–5000 | [14] |
2 | Propyl acetate | * | 1.71 | 1.22 | 2.357 | 000109-60-4 | 712 | 712 | 40 | [15] |
3 | Butan-2-yl acetate | NS | 0.39± | 0.1 | 2.710 | 000105-46-4 | 750 | 766 | 3000 | [15] |
4 | Butyl acetate | * | 0.00 | 8.15 | 3.267 | 000123-86-4 | 810 | 806 | 66 | [14] |
5 | 3-Methylbutyl acetate | NS | 1.72± | 0.5 | 4.231 | 000123-92-2 | 873 | 875 | 3 | [14,15] |
6 | 2-Methylbutyl acetate | * | 18.46 | 29.08 | 4.279 | 000624-41-9 | 876 | 880 | 2 | [14] |
7 | 2-Methylpropyl acetate | * | 10.36 | 6.04 | 2.824 | 000110-19-0 | 764 | 768 | 66 | [14] |
8 | Pentyl acetate | NS | 1.03± | 0.2 | 4.960 | 000628-63-7 | 912 | 909 | 7.5 | [15] |
9 | Hexyl acetate | * | 5.80 | 12.47 | 7.364 | 000142-92-7 | 1014 | 1010 | 2 | [14] |
10 | Pent-4-Enyl acetate | NS | 0.27± | 0.0 | 4.396 | 001576-85-8 | 883 | 890 | N/A | - |
11 | 3-Methylbut-2-enyl acetate | NS | 0.39± | 0.1 | 5.180 | 001191-16-8 | 921 | 923 | N/A | - |
12 | 1-Acetyloxypropan-2-yl acetate | NS | 0.07± | 0.02 | 8.167 | 000623-84-7 | 1030 | 1036 | N/A | - |
13 | 3-Acetyloxybutan-2-yl acetate | NS | 0.19± | 0.02 | 9.307 | 001114-92-7 | 1063 | 1070 | N/A | - |
14 | Heptyl acetate | NS | 0.18± | 0.03 | 11.163 | 000112-06-1 | 1115 | 1115 | 190 | [16] |
15 | Benzyl acetate | * | 19.34 | 6.21 | 13.276 | 000140-11-4 | 1167 | 1170 | 364 | [17] |
16 | Octyl acetate | NS | 0.36± | 0.1 | 14.936 | 000112-14-1 | 1215 | 1212 | 12 | [14] |
17 | 2-Phenylethyl acetate | NS | 1.82± | 0.1 | 17.183 | 000103-45-7 | 1260 | 1264 | 480 | [17] |
18 | [(1R,4S,6R)-1,7,7-Trimethyl-6-bicyclo[2.2.1]heptanyl] acetate | * | 0.00 | 0.03 | 18.473 | 000125-12-2 | 1290 | 1290 | N/A | - |
Non-acetate esters | ||||||||||
19 | Ethyl butanoate | * | 0.00 | 1.15 | 3.095 | 000105-54-4 | 797 | 800 | 1 | [14] |
20 | Propyl propanoate | NS | 0.56± | 0.2 | 3.211 | 000106-36-5 | 806 | 807 | 57 | [14] |
21 | 2-Methylpropyl propanoate | * | 1.49 | 0.85 | 4.068 | 000540-42-1 | 862 | 865 | 20 | [18] |
22 | Propyl butanoate | NS | 0.64± | 0.1 | 4.632 | 000105-66-8 | 899 | 900 | 18 | [14,18] |
23 | Butyl propanoate | NS | 0.70± | 0.1 | 4.839 | 000590-01-2 | 908 | 910 | 25 | [14] |
24 | Propyl 2-methylbutanoate | NS | 0.33± | 0.1 | 5.713 | 037064-20-3 | 943 | 944 | N/A | - |
25 | 2-Methylpropyl butanoate | NS | 2.53± | 0.3 | 5.937 | 000539-90-2 | 952 | 934 | 1.6 | [18] |
26 | 3-Methylbutyl propanoate | NS | 0.30± | 0.1 | 6.322 | 000105-68-0 | 967 | 969 | 19 | [16] |
27 | 1-Butanol, 2-methyl-, propanoate | NS | 2.14± | 0.2 | 6.375 | 002438-20-2 | 969 | 975.6 | 19 | [19] |
28 | 2-Methylpropyl 2-methylbutanoate | NS | 1.14± | 0.1 | 7.284 | 002445-67-2 | 1004 | 1009 | 60 | [16] |
29 | 2-Methylbutyl 2-methylpropanoate | NS | 0.56± | 0.1 | 7.702 | 002445-69-4 | 1017 | 1015 | N/A | - |
30 | Butyl 2-methylbutanoate | NS | 0.24± | 0.03 | 8.403 | 015706-73-7 | 1041 | 1048 | 61 | [16] |
31 | 3-Methylbutyl 2-methylpropanoate | * | 0.58 | 0.03 | 9.038 | 002050-01-3 | 1056 | 1021 | 190 | [16] |
32 | 3-Methylbutyl butanoate | * | 3.10 | 3.56 | 9.127 | 000106-27-4 | 1058 | 1043 | N/A | - |
33 | 2-Methylpropyl hexanoate | * | 0.99 | 0.21 | 12.688 | 000105-79-3 | 1153 | 1149 | N/A | - |
34 | 3-Methylbutyl hexanoate | NS | 0.19± | 0.02 | 16.999 | 002198-61-0 | 1256 | 1254 | N/A | - |
Sulfur-derived compounds | ||||||||||
35 | 1-Methylsulfanylethanone | * | 1.37 | 0.66 | 2.270 | 001534-08-3 | 693 | 701 | N/A | - |
36 | 2-Methyl-2-(methylsulfanyl)butane | * | 0.81 | 0.94 | 3.777 | 013286-92-5 | 843 | 842 | N/A | - |
37 | 1-Methylsulfanylbutan-1-one | * | 0.48 | 0.84 | 4.385 | 002432-51-1 | 887 | 870 | N/A | - |
38 | 3-Methyl-1-methylsulfanyl-butan-1-one | * | 2.28 | 9.25 | 5.565 | 023747-45-7 | 937 | 938 | N/A | - |
39 | 3-Methylsulfanylprop-1-ene | NS | 0.54± | 0.03 | 11.626 | 010152-76-8 | 1126 | 1133 | 0.14 | [18] |
Organic acids | ||||||||||
40 | Acetic acid | NS | 0.94± | 0.3 | 2.161 | 000064-19-7 | 667 | 622 | 22,000 | [20] |
41 | Propanoic acid | * | 0.36 | 0.09 | 2.490 | 000079-09-4 | 723 | 721 | 20,000 | [14] |
42 | Hexanoic acid | NS | 0.37± | 0.1 | 6.901 | 000142-62-1 | 983 | 983 | 3000 | [14] |
43 | Heptanoic acid | * | 0.21 | 0.07 | 9.549 | 000111-14-8 | 1080 | 1078 | 3000 | [14] |
44 | Octanoic Acid | * | 0.57 | 0.16 | 13.773 | 000124-07-2 | 1179 | 1179 | 3000 | [14] |
45 | Nonanoic acid | * | 0.57 | 0.09 | 17.898 | 000112-05-0 | 1276 | 1278 | 3000 | [14] |
46 | Hexadecanoic acid | * | 4.31 | 0.05 | 44.889 | 000057-10-3 | 1967 | 1975 | 10,000 | [14] |
Aldehydes | ||||||||||
47 | Acetaldehyde | * | 1.15 | 0.33 | 1.566 | 000075-07-0 | - | 500 | 15 | [14] |
48 | Furan-2-carbaldehyde | * | 0.82 | 0.21 | 3.620 | 000098-01-1 | 833 | 852 | 3000 | [14] |
49 | Heptanal | * | 0.28 | 0.05 | 4.709 | 000111-71-7 | 902 | 906 | 3 | [14] |
50 | Benzaldehyde | * | 1.58 | 0.29 | 6.144 | 000100-52-7 | 960 | 953 | 350 | [14] |
51 | Decanal | NS | 0.36± | 0.1 | 14.955 | 000112-31-2 | 1208 | 1209 | 0.1 | [14] |
Ketones | ||||||||||
52 | Acetone | * | 1.37 | 0.94 | 1.669 | 000067-64-1 | 610 | 503 | 500,000 | [14] |
53 | 4-Hydroxy-4-methylpentan-2-one | * | 1.41 | 0.81 | 3.909 | 000123-42-2 | 852 | 846 | 270 | [15] |
54 | 6-Methylhept-5-en-2-one | NS | 0.27± | 0.1 | 6.856 | 000110-93-0 | 991 | 991 | 50 | [14] |
55 | 1-Phenylethanone | * | 0.28 | 0.09 | 9.474 | 000098-86-2 | 1068 | 1065 | 65 | [14] |
Terpenes | ||||||||||
56 | 4,7,7-Trimethylbicyclo[3.1.1]hept-3-ene | NS | 0.29± | 0.1 | 5.420 | 000080-56-8 | 931 | 933 | 6 | [14] |
57 | 1-Methyl-4-prop-1-en-2-yl-cyclohexene | * | 0.17 | 0.08 | 8.087 | 005989-27-5 | 1028 | 1030 | 10 | [14] |
58 | 1,8,8-Trimethyl-7-oxabicyclo[2-2-2]octane | * | 0.34 | 0.12 | 8.243 | 000470-82-6 | 1032 | 1030 | 12 | [14] |
59 | α-(1R,2S,6S,7S,8S)-8-Isopropyl-1,3-dimethyltricyclo[4.4.0.0]dec-3-ene | * | 0.14 | 0.12 | 22.243 | 003856-25-5 | 1377 | 1391 | N/A | - |
60 | (3E,6E)-3,7,11-Trimethyldodeca-1,3,6,10-tetraene | NS | 0.14± | 0.03 | 27.878 | 000502-61-4 | 1505 | 1504 | 87 | [21] |
Other compounds | ||||||||||
61 | NID1 | NS | 0.52± | 0.1 | 2.058 | - | 643 | - | - | - |
62 | NID2 | * | 1.70 | 0.43 | 2.427 | 716 | - | - | - | |
63 | Methylbenzene | * | 1.56 | 0.30 | 2.773 | 000108-88-3 | 758 | 773 | 330 | [18] |
64 | NID3 | NS | 0.22± | 0.1 | 10.723 | - | 1104 | - | - | - |
65 | NID4 | NS | 0.27± | 0.1 | 12.261 | - | 1104 | - | - | - |
66 | Naphthalene | * | 0.45 | 0.04 | 13.925 | 000091-20-3 | 1183 | 1179 | 9.5 | [15] |
67 | NID5 | NS | 0.32± | 0.10 | 26.687 | - | 1483 | - | - | - |
68 | NID6 | NS | 0.46± | 0.10 | 26.807 | - | 1485 | - | - | - |
69 | NID7 | NS | 0.11± | 0.03 | 26.861 | - | 1488 | - | - | - |
70 | (Z)-Heptadec-8-ene | NS | 0.76± | 0.2 | 34.491 | 054290-12-9 | 1681 | 1679 | N/A | - |
4. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgments
Conflicts of Interest
References
- Rodríguez, A.; Alquézar, B.; Peña, N. Fruit aromas in mature fleshy fruit as signals of readiness for predation and seed dispersal. New Phytol. 2012, 197, 36–48. [Google Scholar]
- Ezura, H.; Owino, W.O. Melon, an alternative model plant for elucidating fruit ripening. Plant Sci. 2008, 175, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Obando-Ulloa, J.; Moreno, E.; Garcia-Mas, J.; Nicolai, B.; Lammertyn, J.; Monforte, A.J.; Fernández-Trujillo, J.P. Climacteric or non-climacteric behavior in melon fruit. 1. Aroma volatiles. Postharvest Biol. Technol. 2008, 49, 27–37. [Google Scholar] [CrossRef]
- Obando-Ulloa, J.M.; Nicolai, B.; Lammertyn, J.; Bueso, M.C.; Monforte, A.J.; Fernández-Trujillo, J.P. Aroma volatiles associated with the senescence of climacteric or non-climacteric melon fruit. Postharvest Biol. Technol. 2009, 52, 146–155. [Google Scholar] [CrossRef]
- Paul, V.; Pandey, R.; Srivastava, G.C. The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene: An overview. J. Food Sci. Technol. 2012, 49, 1–21. [Google Scholar] [CrossRef]
- Pech, J.C.; Bouzayen, M.; Latché, A. Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 2008, 175, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Obando-Ulloa, J.M.; Jowkar, M.M.; Moreno, E.; Souri, M.K.; Martínez, J.A.; Bueso, M.C.; Monforte, A.J.; Fernández-Trujillo, J.P. Discrimination of climacteric and non-climacteric fruit at harvest and at senescence stage by quality traits. J. Sci. Food Agric. 2009, 89, 1743–1753. [Google Scholar] [CrossRef]
- Fernández-Trujillo, J.P.; Obando-Ulloa, J.M.; Martínez, J.A.; Moreno, E.; García-Mas, J.; Monforte, A.J. Climacteric or non-climacteric behavior in melon fruit 2. Linking climacteric pattern and main postharvest disorders and decay in a set of near-isogenic lines. Postharvest Biol. Technol. 2008, 50, 125–134. [Google Scholar] [CrossRef]
- Moreno, E.; Obando, J.; Dos-Santos, N.; Fernández-Trujillo, J.P.; Monforte, A.J.; Garcia-Mas, J. Candidate genes and QTLs for fruit ripening and softening in melon. Theor. Appl. Genet. 2008, 116, 589–602. [Google Scholar] [CrossRef]
- Dos-Santos, N.; Jiménez, A.; Rodríguez-Arcos, R.; Fernández-Trujillo, J.P. Cell wall polysaccharides of near-isogenic lines of melon and their inbred parentals which show differential flesh firmness and physiological behaviour. J. Agric. Food Chem. 2011, 59, 7773–7784. [Google Scholar] [CrossRef] [Green Version]
- Gomes, H.; Fundo, J.; Obando-Ulloa, J.M.; Almeida, D.P.F.; Fernández-Trujillo, J.P. The genetic background of quality and cell wall changes in fresh-cut melons. Acta Hortic. 2009, 877, 1011–1018. [Google Scholar]
- Vegas, J.; Garcia-Mas, J.; Monforte, A.J. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor. Appl. Genet. 2013, 126, 1531–1544. [Google Scholar] [CrossRef]
- Fernández-Trujillo, J.P.; Fernández-Talavera, M.; Ruiz-León, M.T.; Roca, M.J.; Dos-Santos, N. Aroma volatiles during whole melon ripening in a climacteric near-isogenic line and its inbred non-climacteric parents. Acta Hortic. 2012, 934, 951–958. [Google Scholar]
- Leffingwell, D.; Leffingwell, J.C. Odour and Flavour Threshold Values in Air, Water and Other Media. Available online: http://www.thresholdcompilation.com/ (accessed on 25 July 2013).
- Haz-Map. Available online: http://hazmap.nlm.nih.gov/hazardous-agents (accessed on 25 July 2013).
- Howgate, P. Tainting Potential of Esters of Alkanols and Monobasic Alkanoic Acids. Available online: http://www.cschi.cz/odour/files/world/48_Taining_potential_of_esters_of_alkanols_and_monobasic_alkanoic_acids.pdf (accessed on 25 July 2013).
- Pino, J.; Mesa, J. Contribution of volatile compounds to mango (Mangifera indica L.) aroma. Flavour Fragance J. 2006, 21, 207–213. [Google Scholar] [CrossRef]
- Nagata, Y. Measurement of Odor Threshold by Triangle Odor Bag Method. Odor Measurement Review. Available online: http://www.env.go.jp/en/air/odor/measure/02_3_2.pdf (accessed on 25 July 2013).
- Schnabel, K.O.; Belitz, H.D.; von Ranson, C. Investigations on the structure-activity relationships of odorous substances. Part 1. Detection thresholds and odour qualities of aliphatic and alicyclic compounds containing oxygen functions. Z. Lebensm. Unters. Forsch. 1988, 187, 215–223. [Google Scholar] [CrossRef]
- Rychlik, M.; Schieberle, P.; Grosch, W.; Deutsche Forschungsanstalt für Lebensmittelchemie; Universität München; Institut für Lebensmittelchemie der Technischen. Compilation of Odor Thresholds, Odor Qualities and Retention Indices of Key Food Odorants; Deutsche Forschungsanstat für Lebensmittelchemie and Instit für Lebensmittelchemie der Technischen Universität München: Garching, Germany, 1999. [Google Scholar]
- Tamura, H.; Padrayuttawat, A.; Tokunaga, T. Seasonal change of volatile compounds of Citrus sudachi during maturation. Food Sci. Technol. Res. 1999, 5, 156–160. [Google Scholar] [CrossRef]
- El-Sayed, A.M. The Pherobase: Database of Pheromones and Semiochemicals. Available online: http://www.pherobase.com/ (accessed on 25 July 2013).
- The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com/ (accessed on 25 July 2013).
- Acree, T.; Arn, H. Flavornet and Human Odor Space. Available online: http://www.flavornet.org/ (accessed on 25 July 2013).
- Wyllie, S.G.; Leach, D.N.; Wang, Y.M.; Shewfelt, R.L. Sulfur Volatiles in Cucumis-Melo Cv Makdimon (Muskmelon) Aroma—Sensory Evaluation by Gas-Chromatography Olfactometry. In Sulfur Compounds in Foods; Mussinan, C.J., Keelan, M.E., Eds.; American Chemical Society: Washington, DC, USA, 1994; pp. 36–48. [Google Scholar]
- Selli, S.; Prost, C.; Serot, T. Odour-active and off-odour components in rainbow trout (Oncorhynchus mykiss) extracts obtained by microwave assisted distillation-solvent extraction. Food Chem. 2009, 114, 317–322. [Google Scholar] [CrossRef]
- Valet, V.; Serot, T.; Cardinal, M.; Knockaert, C.; Prost, C. Olfactometric determination of the most potent odor-active compounds in salmon muscle (Salmo salar) smoked by using four smoke generation techniques. J. Agric. Food Chem. 2007, 55, 4518–4525. [Google Scholar] [CrossRef]
- Barletta, J.Y.; de Lima, P.C.F.; Gomes, A.; dos Santos-Neto, A.; Lanças, F. Development of a new stir bar sorptive extraction coating and its application for the determination of six pesticides in sugarcane juice. J. Sep. Sci. 2011, 34, 1317–1325. [Google Scholar] [CrossRef]
- Pérez, S.; Farré, M.; Gonçalves, C.; Aceña, J.; Alpendurada, M.F.; Barceló, D. Green Analytical Chemistry in the Determination of Organic Pollutants in the Environment. In Challenges in Green Analytical Chemistry; de la Guardia, M., Garrigues, S., Eds.; RSC Publishing: Cambridge, UK, 2011; pp. 224–285. [Google Scholar]
- Pang, X.L.; Guo, X.F.; Qin, Z.H.; Yao, Y.B.; Hu, X.S.; Wu, J.H. Identification of aroma-active compounds in Jiashi muskmelon juice by GC-O-MS and OAV calculation. J. Agric. Food Chem. 2012, 60, 4179–4185. [Google Scholar] [CrossRef]
- Gonda, I.; Bar, E.; Portnoy, V.; Lev, S.; Burger, J.; Schaffer, A.A.; Tadmor, Y.; Gepstein, S.; Giovannoni, J.J.; Katzir, N.; Lewinsohn, E. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. J. Exp. Bot. 2010, 61, 1111–1123. [Google Scholar] [CrossRef]
- Kourkoutas, D.; Elmore, J.S.; Mottram, D.S. Comparison of the volatile compositions and flavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chem. 2006, 97, 95–102. [Google Scholar] [CrossRef]
- Fallik, E.; Alkali-Tuvia, S.; Horev, B.; Copel, A.; Rodov, V.; Aharoni, Y.; Ulrich, D.; Schulz, H. Characterisation of ‘Galia’ melon aroma by GC and mass spectrometric sensor measurements after prolonged storage. Postharvest Biol. Technol. 2001, 22, 85–91. [Google Scholar] [CrossRef]
- Galaz, S.; Morales-Quintana, L.; Moya-León, M.A.; Herrera, R. Structural analysis of the alcohol acyltransferase protein family from Cucumis melo shows that enzyme activity depends on an essential solvent channel. FEBS Lett. 2013, 280, 1344–1357. [Google Scholar]
- Lucchetta, L.; Manríquez, D.; El Sharkawy, I.; Flores, F.B.; Sánchez-Bel, P.; Zouine, M.; Ginies, C.; Bouzayen, M.; Rombaldi, C.; Pech, J.C.; Latché, A. Biochemical and catalytic properties of three recombinant alcohol acyltransferases of melon. Sulfur-containing ester formation, regulatory role of Coa-SH in activity, and sequence elements conferring substrate preference. J. Agric. Food Chem. 2007, 55, 5213–5220. [Google Scholar] [CrossRef]
- Shan, W.Y.; Zhao, C.; Fan, J.G.; Cong, H.Z.; Liang, S.C.; Yu, X.Y. Antisense suppression of alcohol acetyltransferase gene in ripening melon fruit alters volatile composition. Sci. Hortic. 2012, 139, 96–101. [Google Scholar] [CrossRef]
- Bauchot, A.D.; Mottram, D.S.; Dodson, A.T.; John, P. Effect of aminocyclopropane-1-carboxylic acid oxidase antisense gene on the formation of volatile esters in Cantaloupe Charentais melon (cv. Védrantais). J. Agric. Food Chem. 1998, 46, 4787–4792. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fernández-Trujillo, J.P.; Dos-Santos, N.; Martínez-Alcaraz, R.; Le Bleis, I. Non-Destructive Assessment of Aroma Volatiles from a Climacteric Near-Isogenic Line of Melon Obtained by Headspace Stir-Bar Sorptive Extraction. Foods 2013, 2, 401-414. https://doi.org/10.3390/foods2030401
Fernández-Trujillo JP, Dos-Santos N, Martínez-Alcaraz R, Le Bleis I. Non-Destructive Assessment of Aroma Volatiles from a Climacteric Near-Isogenic Line of Melon Obtained by Headspace Stir-Bar Sorptive Extraction. Foods. 2013; 2(3):401-414. https://doi.org/10.3390/foods2030401
Chicago/Turabian StyleFernández-Trujillo, Juan Pablo, Noelia Dos-Santos, Rocío Martínez-Alcaraz, and Inés Le Bleis. 2013. "Non-Destructive Assessment of Aroma Volatiles from a Climacteric Near-Isogenic Line of Melon Obtained by Headspace Stir-Bar Sorptive Extraction" Foods 2, no. 3: 401-414. https://doi.org/10.3390/foods2030401
APA StyleFernández-Trujillo, J. P., Dos-Santos, N., Martínez-Alcaraz, R., & Le Bleis, I. (2013). Non-Destructive Assessment of Aroma Volatiles from a Climacteric Near-Isogenic Line of Melon Obtained by Headspace Stir-Bar Sorptive Extraction. Foods, 2(3), 401-414. https://doi.org/10.3390/foods2030401