Effects of Apple Juice Concentrate, Blackcurrant Concentrate and Pectin Levels on Selected Qualities of Apple-Blackcurrant Fruit Leather
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Apple-Blackcurrant Puree Mixture
2.3. Hot Air Drying Experiments
2.4. Moisture Content Determination
2.5. Water Activity Measurement
2.6. Color Properties Determination
2.7. Texture Measurements
2.8. Ascorbic Acid Measurements
2.9. Experimental Design
Coded Factors | Uncoded Factors | ||||
---|---|---|---|---|---|
AJC Level | BCC Level | Pectin Level | AJC Level (%) | BCC Level (%) | Pectin Level (%) |
−1 | −1 | 0 | 20 | 3 | 2 |
1 | −1 | 0 | 40 | 3 | 2 |
−1 | 1 | 0 | 20 | 9 | 2 |
1 | 1 | 0 | 40 | 9 | 2 |
−1 | 0 | −1 | 20 | 6 | 0 |
1 | 0 | −1 | 40 | 6 | 0 |
−1 | 0 | 1 | 20 | 6 | 4 |
1 | 0 | 1 | 40 | 6 | 4 |
0 | −1 | −1 | 30 | 3 | 0 |
0 | 1 | −1 | 30 | 9 | 0 |
0 | −1 | 1 | 30 | 3 | 4 |
0 | 1 | 1 | 30 | 9 | 4 |
0 | 0 | 0 | 30 | 6 | 2 |
0 | 0 | 0 | 30 | 6 | 2 |
0 | 0 | 0 | 30 | 6 | 2 |
0 | 0 | 0 | 30 | 6 | 2 |
2.10. Data and Statistical Analyses
3. Results and Discussion
3.1. Qualities of Apple-Blackcurrant Fruit Leather at Different Conditions
AJC Level | BCC Level | Pectin Level | Moisture Content | Water Activity | Chroma | Puncturing Force | AA Content |
---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (% dry basis) | (no units) | (no units) | (N) | (mg/100 g dry matter) |
20 | 3 | 2 | 25.89 | 0.423 | 10.72 | 25.91 | 21.52 |
40 | 3 | 2 | 26.11 | 0.424 | 7.92 | 9.28 | 22.04 |
20 | 9 | 2 | 26.02 | 0.408 | 11.39 | 29.36 | 38.98 |
40 | 9 | 2 | 29.18 | 0.431 | 5.26 | 9.78 | 27.97 |
20 | 6 | 0 | 20.79 | 0.269 | 16.14 | 27.62 | 27.14 |
40 | 6 | 0 | 21.69 | 0.358 | 19.86 | 13.75 | 33.08 |
20 | 6 | 4 | 25.46 | 0.448 | 4.16 | 27.13 | 30.73 |
40 | 6 | 4 | 29.23 | 0.402 | 7.52 | 18.29 | 31.62 |
30 | 3 | 0 | 21.14 | 0.313 | 16.61 | 22.60 | 23.74 |
30 | 9 | 0 | 21.67 | 0.350 | 11.18 | 25.78 | 24.57 |
30 | 3 | 4 | 25.06 | 0.451 | 3.93 | 18.23 | 24.32 |
30 | 9 | 4 | 28.36 | 0.477 | 4.59 | 19.32 | 23.72 |
30 | 6 | 2 | 26.16 | 0.441 | 6.02 | 12.59 | 27.44 |
30 | 6 | 2 | 27.42 | 0.433 | 6.77 | 13.15 | 28.17 |
30 | 6 | 2 | 27.23 | 0.433 | 5.48 | 11.89 | 27.31 |
30 | 6 | 2 | 26.61 | 0.432 | 5.47 | 12.88 | 27.07 |
3.2. Effect of AJC, BCC and Pectin Levels on Moisture Content
Coefficients | Moisture Content | Water Activity | Chroma | Puncturing Force | Ascorbic Acid Content |
---|---|---|---|---|---|
(% dry basis) | (no units) | (no units) | (N) | (mg/100 g dry matter) | |
a0 | 26.85500 *** | 0.43475 *** | 5.93500 * | 12.62750 ** | 17.49750 |
a1 | 1.00625 ** | 0.00838 | −0.23125 | −7.36500 *** | −0.45750 |
a2 | 0.87750 ** | 0.00688 | −0.84500 | 1.02750 | 2.95250 * |
a3 | 2.85250 *** | 0.06100 *** | −5.44875 *** | −0.84750 | 0.23250 |
a4 | 0.73500 * | 0.00550 | −0.83250 | −0.73750 | −2.88250 |
a5 | 0.71750 * | −0.03375 ** | −0.09000 | 1.25750 | −1.26250 |
a6 | 0.69250 * | −0.00275 | 1.52250 | −0.52250 | −0.35750 |
a7 | 0.09000 | −0.02088 * | 2.86500 * | 3.08500 | 3.34250 |
a8 | −0.14500 | 0.00763 | 0.02250 | 2.87000 | −3.21250 |
a9 | −2.65250 *** | −0.04463 *** | 3.12000 * | 5.98500 ** | −0.19750 |
3.3. Effect of AJC and Pectin Levels on Water Activity
3.4. Effect of AJC and Pectin Levels on Chroma
3.5. Effect of AJC and Pectin Levels on Puncturing Force
3.6. Effect of Blackcurrant Level on Ascorbic Acid Content
3.7. Implication of the Results on Apple-Blackcurrant Fruit Leather Processing
4. Conclusions
Acknowledgment
Conflicts of Interest
References
- Feliciano, R.P.; Antunes, C.; Ramos, A.; Serra, A.T.; Figueira, M.E.; Duarte, M.M.; de Carvalho, A; Bronze, M.R. Characterization of traditional and exotic apple varieties from Portugal. Part 1—Nutritional, phytochemical and sensory evaluation. J. Funct. Foods 2010, 2, 35–45. [Google Scholar] [CrossRef]
- Just the Berries Ltd. Superior Blackcurrants Extracts. Available online: http://www.blackcurrants.co.nz/ (accessed on 19 June 2013).
- Lister, C.E.; Wilson, P.E.; Sutton, K.H.; Morrison, S.C. Understanding the health benefits of blackcurrants. Acta Hortic. 2002, 585, 443–447. [Google Scholar]
- Okilya, S.; Mukisa, I.M.; Kaaya, A.N. Effect of solar drying on the quality and acceptability of jackfruit leather. Electron. J. Environ. Agric. Food Chem. 2010, 9, 101–111. [Google Scholar]
- Vijayanand, P.; Yadav, A.R.; Balasubramanyam, N.; Narasimham, P. Storage stability of guava fruit bar prepared using a new process. LWT Food Sci. Technol. 2000, 33, 132–137. [Google Scholar] [CrossRef]
- Gujral, H.S.; Khanna, G. Effect of skim milk powder, soy protein concentrate and sucrose on the dehydration behaviour, texture, color and acceptability of mango leather. J. Food Eng. 2002, 55, 343–348. [Google Scholar] [CrossRef]
- Huang, X.; Hsieh, F.H. Physical properties, sensory attributes and consumer preference of pear fruit leather. J. Food Sci. 2005, 70, E177–E186. [Google Scholar] [CrossRef]
- Lee, G.; Hsieh, F. Thin-layer drying kinetics of strawberry fruit leather. Trans. ASABE 2008, 51, 1699–1705. [Google Scholar]
- Vatthanakul, S.; Jangchud, A.; Jangchud, K.; Therdthai, N.; Wilkinson, B. Gold kiwifruit leather product development using Quality function deployment approach. Food Qual. Prefer. 2010, 21, 339–345. [Google Scholar] [CrossRef]
- Phimpharian, C.; Jangchud, A.; Jangchud, K.; Therdthai, N.; Prinyawiwatkul, W.; No, H.K. Physicochemical characteristics and sensory optimisation of pineapple leather snack as affected by glucose syrup and pectin concentrations. Int. J. Food Sci. Technol. 2011, 46, 972–981. [Google Scholar] [CrossRef]
- Gujral, H.S.; Brar, S.S. Effect of hydrocolloids on the dehydration kinetics, color, and texture of mango leather. Int. J. Food Prop. 2003, 6, 269–279. [Google Scholar] [CrossRef]
- Fontana, A.J., Jr. Measurement of Water Activity, Moisture Sorption Isotherms, and Moisture Content of Foods. In Water Activity in Foods: Fundamentals and Applications; Barbosa-Canovas, G.V., Fontana, A.J., Jr., Schmidt, S.J., Labuza, T.P., Eds.; Blackwell Publishing Professional: Ames, IA, USA, 2008; pp. 155–172. [Google Scholar]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (aw) on Microbial Stability: As Hurdle in Food Preservation. In Water Activity in Foods: Fundamentals and Applications; Barbosa-Canovas, G.V., Fontana, A.J., Jr., Schmidt, S.J., Labuza, T.P., Eds.; Blackwell Publishing Professional: Ames, IA, USA, 2008; pp. 237–272. [Google Scholar]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- King, V.A.E.; Zall, R.R. A response surface methodology approach to the optimization of controlled low-temperature vacuum dehydration. Food Res. Int. 1992, 25, 1–8. [Google Scholar] [CrossRef]
- Mercali, G.D.; Marczak, L.D.F.; Tessaro, I.C.; Norena, C.P.Z. Evaluation of water, sucrose and NaCl effective diffusivities during osmotic dehydration of banana (Musa sapientum, shum.). LWT Food Sci. Technol. 2011, 44, 82–91. [Google Scholar] [CrossRef]
- Suresh, K.P.; Devi, P. Optimization of some process variables in mass transfer kinetics of osmotic dehydration of pineapple slices. Food Res. Int. 2011, 18, 221–238. [Google Scholar]
- Diamante, L.M.; Savage, G.P.; Vanhanen, L.; Ihns, R. Vacuum-frying of apricot slices: Effects of frying temperature, time and maltodextrin levels on the moisture, color and texture properties. J. Food Proc. Preserv. 2012, 36, 320–328. [Google Scholar] [CrossRef]
- Diamante, L.M.; Yamaguchi, Y. Response surface methodology for optimization of hot air drying of blackcurrant concentrate infused apple cubes. Int. Food Res. J. 2012, 19, 353–362. [Google Scholar]
- Diamante, L.M.; Durand, M.; Savage, G.; Vanhanen, L. Effect of temperature on the drying characteristics, colour and ascorbic acid content of green and gold kiwifruits. Food Res. Int. 2010, 17, 441–451. [Google Scholar]
- AOAC (Association of Official Analytical Chemists), Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2002.
- Erickson, L.E. Recent developments in intermediate moisture foods. J. Food Prot. 1982, 45, 484–491. [Google Scholar]
- Gould, G.W. Methods for preservation and extension of shelf life. Food Res. Int. 1996, 33, 51–64. [Google Scholar]
- Taoukis, P.S.; Richardson, M. Principles of Intermediate-Moisture Foods and Related Technology. In Water Activity in Foods: Fundamentals and Applications; Barbosa-Canovas, G.V., Fontana, A.J., Jr., Schmidt, S.J., Labuza, T.P., Eds.; Blackwell Publishing Professional: Ames, IA, USA, 2007; pp. 273–312. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Diamante, L.M.; Li, S.; Xu, Q.; Busch, J. Effects of Apple Juice Concentrate, Blackcurrant Concentrate and Pectin Levels on Selected Qualities of Apple-Blackcurrant Fruit Leather. Foods 2013, 2, 430-443. https://doi.org/10.3390/foods2030430
Diamante LM, Li S, Xu Q, Busch J. Effects of Apple Juice Concentrate, Blackcurrant Concentrate and Pectin Levels on Selected Qualities of Apple-Blackcurrant Fruit Leather. Foods. 2013; 2(3):430-443. https://doi.org/10.3390/foods2030430
Chicago/Turabian StyleDiamante, Lemuel M., Siwei Li, Qianqian Xu, and Janette Busch. 2013. "Effects of Apple Juice Concentrate, Blackcurrant Concentrate and Pectin Levels on Selected Qualities of Apple-Blackcurrant Fruit Leather" Foods 2, no. 3: 430-443. https://doi.org/10.3390/foods2030430
APA StyleDiamante, L. M., Li, S., Xu, Q., & Busch, J. (2013). Effects of Apple Juice Concentrate, Blackcurrant Concentrate and Pectin Levels on Selected Qualities of Apple-Blackcurrant Fruit Leather. Foods, 2(3), 430-443. https://doi.org/10.3390/foods2030430