Dairy-Based Emulsions: Viscosity Affects Fat Difference Thresholds and Sweetness Perception
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Emulsion Preparation
Oil | LBG 1 | Sucrose | Flavor | β-Carotene 2 | Skim milk 3 | Water | Sugar concentration index (−) | |
---|---|---|---|---|---|---|---|---|
In entire system 4 | In aqueous phase 5 | |||||||
1.0 | 16.5 | 4.00 | 0.19 | 2.44 | 48.83 | 27.04 | 0.047 | 0.050 |
5.0 | 16.5 | 3.82 | 0.18 | 2.40 | 47.79 | 24.31 | 0.045 | 0.050 |
10.0 | 16.5 | 3.60 | 0.17 | 2.34 | 46.40 | 20.99 | 0.042 | 0.050 |
15.0 | 16.5 | 3.38 | 0.16 | 2.28 | 44.90 | 17.78 | 0.040 | 0.050 |
20.0 | 16.5 | 3.16 | 0.15 | 2.21 | 43.28 | 14.70 | 0.038 | 0.050 |
25.0 | 16.5 | 2.94 | 0.14 | 2.13 | 31.53 | 11.77 | 0.035 | 0.050 |
29.0 | 16.5 | 2.67 | 0.13 | 2.00 | 40.00 | 9.70 | 0.033 | 0.050 |
2.3. Rheological Measurements
2.4. Sensory Evaluation
2.4.1. General Conditions
2.4.2. Product Ranking
2.4.3. Difference Testing and JND Calculation
2.4.4. Estimation of Viscosity JNDs
3. Results and Discussion
3.1. Viscosity Adjustment of Emulsions Using Locust Bean Gum
Oil | LBG 1 | Sucrose | Flavor | β-Carotene 2 | Skim milk 3 | Water | Sugar concentration index (−) | |
---|---|---|---|---|---|---|---|---|
In entire system 4 | In aqueous phase 5 | |||||||
1.0 | 16.5 | 4.11 | 0.19 | 2.0 | 40.0 | 36.2 | 0.047 | 0.050 |
1.0 | 19.1 | 4.11 | 0.19 | 2.0 | 40.0 | 33.7 | 0.047 | 0.050 |
1.0 | 21.5 | 4.11 | 0.19 | 2.0 | 40.0 | 31.2 | 0.047 | 0.050 |
1.0 | 24.0 | 4.11 | 0.19 | 2.0 | 40.0 | 28.7 | 0.047 | 0.050 |
1.0 | 27.3 | 4.11 | 0.19 | 2.0 | 40.0 | 25.5 | 0.047 | 0.050 |
1.0 | 30.5 | 4.11 | 0.19 | 2.0 | 40.0 | 22.2 | 0.047 | 0.050 |
1.0 | 33.1 | 4.11 | 0.19 | 2.0 | 40.0 | 19.6 | 0.047 | 0.050 |
3.2. Preliminary Sensory Tests
Sensory statement 1 | Sample pair 2 | ||
---|---|---|---|
F-5 vs. LBG-0.57 | F-15 vs. LBG-0.72 | F-25 vs. LBG-0.91 | |
A has a higher fat content than B | 50.0 3 | 63.3 (p = 0.20) | 63.3 (p = 0.20) |
A is more creamy than B | 43.3 (p = 0.58) | 63.3 (p = 0.20) | 43.3 (p = 0.58) |
A is sweeter than B | 43.3 (p = 0.58) | 50.0 | 33.3 (p = 0.10) |
3.3. Sensory Evaluation of Emulsion Texture
Reference (g/100 g) | Regression function 1 | R2 (−) | JNDF, JNDLBG (g/100 g) | KF or KLBG (−) 2 | JNDη (Pa.s) 3 | Kη (−) 3 |
---|---|---|---|---|---|---|
Emulsions with different fat content (Table 1) | ||||||
XF = 5 | Y = 0.228XF − 0.89 | 0.96 | 2.96 | 0.59 | 0.04 | 0.16 |
XF = 15 | Y = 0.213XF − 3.10 | 0.91 | 3.16 | 0.21 | 0.08 | 0.17 |
Emulsions with different locust bean gum content (Section 3.1.) | ||||||
XLBG = 0.57 | Y = 10.16XLBG − 5.75 | 0.89 | 0.07 | 0.12 | 0.07 | 0.22 |
XLBG = 0.72 | Y = 10.10XLBG − 7.25 | 0.97 | 0.07 | 0.09 | 0.11 | 0.22 |
3.4. Sweetness Difference Thresholds as Affected by Emulsion Viscosity
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Flett, K.; Duizer, L.M.; Goff, H.D. Perceived creaminess and viscosity of aggregated particles of casein micelles and κ-carrageenan. J. Food Sci. 2010, 75, 5255–5262. [Google Scholar]
- Kilcast, D.; Clegg, S. Sensory perception of creaminess and its relationship with food structure. Food Qual. Prefer. 2002, 13, 609–623. [Google Scholar] [CrossRef]
- Cook, D.J.; Hollowood, T.A.; Linforth, R.S.T.; Taylor, A.J. Oral shear stress predicts flavour perception in viscous solutions. Chem. Senses 2003, 28, 11–23. [Google Scholar] [CrossRef]
- Tournier, C.; Sulmont-Rossé, C.; Sémon, E.; Vignin, A.; Issanchou, S.; Guichard, E. A study on texture-taste-aroma interactions: Physico-chemical and cognitive mechanisms. Int. Dairy J. 2009, 19, 450–458. [Google Scholar] [CrossRef]
- Hollowood, T.A.; Linforth, R.S.T.; Taylor, A.J. The effect of viscosity on the perception of flavour. Chem. Senses 2002, 27, 583–591. [Google Scholar] [CrossRef]
- Vingerhoeds, M.H.; de Wijk, R.A.; Zoet, F.D.; Nixdorf, R.R.; van Aken, G.A. How emulsion composition and structure affect sensory perception of low viscosity model emulsions. Food Hydrocoll. 2008, 22, 631–646. [Google Scholar] [CrossRef]
- De Wijk, R.A.; Prinz, J.F. Fatty versus creamy sensations for custard desserts, white sauces, and mayonnaises. Food Qual. Prefer. 2007, 18, 641–650. [Google Scholar] [CrossRef]
- Akhtar, M.; Murray, E.; Dickinson, E. Perception of creaminess of model oil-in-water dairy emulsions: Influence of the shear-thinning nature of a viscosity-controlling hydrocolloid. Food Hydrocoll. 2006, 20, 839–847. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food. Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010; pp. 125–148. [Google Scholar]
- Marks, L.E. Sensory Processes. The New Psychophysics; Academic Press: New York, NY, USA, 1974; pp. 32–58. [Google Scholar]
- Hoppert, K.; Zahn, S.; Puschmann, A.; Ullmann, I.; Rohm, H. Quantification of sensory difference thresholds for fat in sweetness in dairy-based emulsions. Food Qual. Prefer. 2012, 26, 52–57. [Google Scholar] [CrossRef]
- Wendin, K.; Hall, G. Influence of fat, thickener and emulsifier contents on salad dressing: Static and dynamic sensory and rheological analysis. LWT Food Sci. Technol. 2001, 34, 222–233. [Google Scholar] [CrossRef]
- Parrish, F.W.; Talley, F.B.; Phillips, J.G. Sweetness of α-lactose, β-lactose, and equilibrium lactose relative to sucrose. J. Food Sci. 1981, 46, 933–935. [Google Scholar] [CrossRef]
- ISO 8586-1:2008. Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors—Part 1: Selected Assessors; International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 8587:2006. Sensory Analysis—Methodology—Ranking; International Organization for Standardization: Geneva, Switzerland, 2006.
- Rohm, H.; Raaber, S. Difference thresholds in texture evaluation of edible fats: Firmness and spreadability. J. Food Sci. 1992, 57, 647–650. [Google Scholar] [CrossRef]
- Shama, F.; Sherman, P. Identification of stimuli controlling the sensory evaluation of viscosity. J. Texture Stud. 1973, 4, 111–118. [Google Scholar] [CrossRef]
- Launay, B.; Cuvelier, G.; Martinez-Reyes, S. Viscosity of locust been gum, guar and xanthan gum solutions in the Newtonian domain: A critical examination of the log (ηsp)0–log C[η]0 master curves. Carbohydr. Polym. 1997, 34, 385–395. [Google Scholar] [CrossRef]
- Richardson, P.H.; Wilmer, J.; Foster, T.J. Dilute solution properties of guar and locust bean gum in sucrose solutions. Food Hydrocoll. 1998, 12, 339–348. [Google Scholar] [CrossRef]
- Tadros, T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions. In Adv. Colloid Interface Sci.; 2004; Volume 108–109, pp. 227–258. [Google Scholar]
- Rössler, E.B.; Pangborn, R.M.; Sidel, J.L.; Stone, H. Expanded statistical tables for estimating significance in paired-comparison, paired-difference, duo-trio and triangle tests. J. Food Sci. 1973, 43, 940–943. [Google Scholar]
- Kutter, A.; Hanesch, C.; Rauh, C.; Delgado, A. Impact of propriception and tactile sensations in the mouth on the perceived thickness of semi-solid foods. Food Qual. Prefer. 2011, 22, 193–197. [Google Scholar] [CrossRef]
- Jones, L.; Hunter, I.; Lafontaine, S. Viscosity discrimination: A comparison of an adaptive two-alternate forced-choice and an adjustment procedure. Perception 1997, 26, 1571–1578. [Google Scholar]
- Kokini, J.L.; Cussler, E.L. Predicting the texture of liquid and melting semi-solid foods. J. Food Sci. 1983, 48, 1221–1225. [Google Scholar] [CrossRef]
- De Wijk, R.A.; Dijksterhuis, G.; Vereijken, P.; Prinz, J.F.; Weenen, H. PROP sensitivity reflects sensory discrimination between custard desserts. Food Qual. Prefer. 2007, 18, 597–604. [Google Scholar] [CrossRef]
- Ares, G.; Budelli, E.; Brozzone, F.; Gimenez, A.; Lema, P. Consumers’ texture perception of milk desserts. I—Relationship with rheological measurements. J. Texture Stud. 2012, 43, 203–213. [Google Scholar] [CrossRef]
- Saint-Eve, A.; Paci-Kora, E.; Martin, N. Impact of the olfactory quality and chemical complexity of the flavouring agent on the texture of low fat stirred yoghurt assessed by three different sensory methodologies. Food Qual. Prefer. 2004, 15, 655–668. [Google Scholar] [CrossRef]
- Pangborn, R.M.; Gibbs, Z.M.; Tassan, C. Effects of hydrocolloids on apparent viscosity and sensory propeties of selected beverages. J. Texture Stud. 1978, 9, 415–436. [Google Scholar] [CrossRef]
- Guinard, J.-X.; Zourmas-Morse, C.; Walchak, C. Relation between parotid saliva flow and composition and the perception of gustatory and trigeminal stimuli in foods. Physiol. Behav. 1998, 63, 109–118. [Google Scholar]
- Hollowood, T.; Bayarri, S.; Marciani, L.; Busch, J.; Francis, S.; Spiller, R.; Taylor, A.; Hort, J. Modelling sweetness and texture perception in model emulsion systems. Eur. Food Res. Technol. 2008, 227, 537–545. [Google Scholar] [CrossRef]
- Knoop, J.-E.; Sala, G.; Smit, G.; Stieger, M. Combinatory effects of texture and aroma modification on taste perception of model gels. Chemosens. Percep. 2013, 6, 60–69. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zahn, S.; Hoppert, K.; Ullrich, F.; Rohm, H. Dairy-Based Emulsions: Viscosity Affects Fat Difference Thresholds and Sweetness Perception. Foods 2013, 2, 521-533. https://doi.org/10.3390/foods2040521
Zahn S, Hoppert K, Ullrich F, Rohm H. Dairy-Based Emulsions: Viscosity Affects Fat Difference Thresholds and Sweetness Perception. Foods. 2013; 2(4):521-533. https://doi.org/10.3390/foods2040521
Chicago/Turabian StyleZahn, Susann, Karin Hoppert, Franziska Ullrich, and Harald Rohm. 2013. "Dairy-Based Emulsions: Viscosity Affects Fat Difference Thresholds and Sweetness Perception" Foods 2, no. 4: 521-533. https://doi.org/10.3390/foods2040521
APA StyleZahn, S., Hoppert, K., Ullrich, F., & Rohm, H. (2013). Dairy-Based Emulsions: Viscosity Affects Fat Difference Thresholds and Sweetness Perception. Foods, 2(4), 521-533. https://doi.org/10.3390/foods2040521