Applications of Infrared and Raman Spectroscopies to Probiotic Investigation
Abstract
:1. Introduction
2. Brief Overview of the Fundamentals of Infrared and Raman Spectroscopies
Wavenumber (cm−1) | Assignment |
---|---|
~3500 | νO-H |
~3200 | Amide A of proteins |
2959 | ν(C-H3)as |
2934 | ν(C-H2)as |
2921 | ν(C-H2)as (fatty acids) |
2898 | νC-H (triple bond) |
2872 | ν(C-H3)s |
1741–1715 | ν(C-H2)s (fatty acids) |
~1695 | νC=O (carbonic and nucleic acids) |
~1685, ~1675 | Amide I from antiparallel β-sheets and β-turns of proteins |
~1655 | Amide I of α-helices of proteins |
~1637 | Amide I of β-sheets of proteins |
1548 | Amide II of proteins |
1515 | “Tyrosine” band |
1468 | δ(C-H2) |
~1400 | ν(C-O)s of COO− |
1310–1240 | Amide III of proteins |
1250–1220 | ν(P=O)as of PO2− |
1200–900 | C-O-C, C-O dominated by ring vibrations of carbohydrates C-O-P, P-O-P |
1085 | ν(P=O)s of PO2− |
720 | C-H rocking of >CH2 |
900–600 | “Fingerprint region” |
3. Analysis of the Spectral Information
4. Applications
4.1. Use of Vibrational Spectroscopic Methods in Taxonomy of Lactic Acid Bacteria and Probiotics
4.2. Use of Vibrational Spectroscopic Methods in the Preservation and Storage of Lactic Acid Bacteria and Probiotics
4.3. Use of Vibrational Spectroscopic Methods in Monitoring Lactic Acid Bacteria and Probiotics
4.4. Use of Vibrational Spectroscopic Imaging Techniques in the Study of Lactic Acid Bacteria and Probiotics
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- WHO. Guidelines for the Evaluation of Probiotics in Food; WHO: London, UK, 2002; Available online: http://ftp.fao.org/es/esn/food/wgreport2.pdf (accessed on 14 July 2015).
- Wallace, T.C.; Guarner, F.; Madsen, K.; Cabana, M.D.; Gibson, G.; Hentges, E.; Sanders, M.E. Human gut microbiota and its relationship to health and disease. Nutr. Rev. 2011, 69, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Vinderola, C.G.; Binetti, A.; Burns, P.; Reinheimer, J. Cell viability and functionality of probiotic bacteria in dairy products. Front. Microbiol. 2011, 2, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.E. Probiotics: Definition, sources, selection, and uses. Clin. Infect. Dis. 2008, 46, S58–S61. [Google Scholar] [CrossRef] [PubMed]
- Transparency Market Research. Optical Instruments and Lenses Market—Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2012–2018. Available online: http://www.transparencymarketresearch.com/probiotics-market.html (accessed on 16 June 2015).
- Starling, S. Global Probiotics Market to Grow 6.8% Annually until 2018. Available online: http://www.nutraingredients.com/Markets-and-Trends/Global-probiotics-market-to-grow-6.8-annually-until-2018?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright (accessed on 16 June 2015).
- He, H.J.; Sun, D.W.; Wu, D. Rapid and real-time prediction of lactic acid bacteria (LAB) in farmed salmon flesh using near-infrared (NIR) hyperspectral imaging combined with chemometric analysis. Food Res. Int. 2014, 62, 476–483. [Google Scholar] [CrossRef]
- Karoui, R.; Downey, G.; Blecker, C. Mid-infrared spectroscopy coupled with chemometrics: A tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships. A review. Chem. Rev. 2010, 110, 6144–6168. [Google Scholar] [CrossRef] [PubMed]
- Roychoudhury, P.; Harvey, L.M.; McNeil, B. The potential of mid infrared spectroscopy (MIRS) for real time bioprocess monitoring. Anal. Chim. Acta 2006, 571, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.I.; Gerbino, E.; Araujo-Andrade, C.; Tymczyszyn, E.E.; Gómez-Zavaglia, A. Stability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus in the presence of galacto-oligosaccharides and lactulose as determined by near infrared spectroscopy. Food Res. Int. 2014, 59, 53–60. [Google Scholar] [CrossRef]
- El Masry, G.; Sun, D.-W. Principles of hyperspectral imaging technology. In Hyperspectral Imaging for Food Quality Analysis and Control; Sun, D.-W., Ed.; Academic Press: San Diego, CA, USA, 2010; pp. 3–43. [Google Scholar]
- He, H.-J.; Wu, D.; Sun, D.-W. Non-destructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products. Crit. Rev. Food Sci. Nutr. 2015, 55, 864–886. [Google Scholar] [CrossRef] [PubMed]
- Barbin, D.F.; ElMasry, G.; Sun, D.-W.; Allen, P. Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chem. 2013, 138, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- Gowen, A.A.; Feng, Y.; Gaston, E.; Valdramidis, V. Recent applications of hyperspectral imaging in microbiology. Talanta 2015, 137, 43–54. [Google Scholar] [CrossRef] [PubMed]
- ElMasry, G.; Sun, D.-W.; Allen, P. Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging. J. Food Eng. 2013, 117, 235–246. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.-W.; Allen, P. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci. Emerg. Technol. 2012, 16, 218–226. [Google Scholar] [CrossRef]
- Bauriegel, E.; Giebel, A.; Geyer, M.; Schmidt, U.; Herppich, W. Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput. Electron. Agric. 2011, 75, 304–312. [Google Scholar] [CrossRef]
- Liu, L.; Ngadi, M. Detecting fertility and early embryo development of chicken eggs using near-infrared hyperspectral imaging. Food Bioprocess Technol. 2012, 6, 2503–2513. [Google Scholar] [CrossRef]
- Lorente, D.; Aleixos, N.; Gómez-Sanchis, J.; Cubero, S.; García-Navarrete, O.; Blasco, J. Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol. 2012, 5, 1121–1142. [Google Scholar] [CrossRef]
- Menesatti, P.; Zanella, A.; D’Andrea, S.; Costa, C.; Paglia, G.; Pallottino, F. Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples. Food Bioprocess Technol. 2009, 2, 308–314. [Google Scholar] [CrossRef]
- Alvarez-Ordóñez, A.; Mouwen, D.J.M.; Lopez, M.; Prieto, M. Fourier transform infrared spectroscopy as a tool to characterize molecularcomposition and stress response in foodborne pathogenic bacteria. J. Microbiol. Methods 2011, 84, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.W.; Pollard, A. Near-Infrared spectrophotometry: A new dimension in clinical chemistry. Clin. Chem. 1992, 38, 1623–1631. [Google Scholar] [PubMed]
- Esbensen, K.H. Multivariate Data Analysis-in Practice. An Introduction to Multivariate Data Analysis and Experimental Design, 5th ed.; CAMO Process AS: Esbjerg, Denmark, 2005. [Google Scholar]
- Tofallis, C. Model building with multiple dependent variables and constraints. J. R. Stat. Soc. D 1999, 48, 1–8. [Google Scholar] [CrossRef]
- Naumann, D. Infrared spectroscopy in Microbiology. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, PA, USA, 2000; pp. 102–131. [Google Scholar]
- Brimmer, P.J.; Hall, J.W. Determination of nutrient levels in a bioprocess using near-infrared spectroscopy. Appl. Spectrosc. 1993, 38, 155–162. [Google Scholar]
- Marttens, H. Reliable and relevant modelling of real world data: A personal account of the development of PLS regression. Chemom. Intell. Lab. 2001, 58, 85–95. [Google Scholar] [CrossRef]
- Arnold, S.A.; Harvey, L.M.; McNeil, B.; Hall, J.W. Employing near-infrared spectroscopic methods of analysis for fermentation monitoring and control part 1, Method Development. BioPharm Int. 2002, 16, 26–34. [Google Scholar]
- Randall, H.M.; Smith, D.W.; Colm, A.C.; Nungester, W.J. Correlation of biologic properties of strains of Mycobacterium with infrared spectrum. Am. Rev. Tuberc. 1951, 63, 372–380. [Google Scholar] [PubMed]
- Naumann, D.; Helm, D.; Labischinski, H. Microbiological characterizations by FT-IR spectroscopy. Nature 1991, 351, 81–82. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, P.; Pot, B.; Gillis, M.; de Vos, P.; Kersters, K.; Swings, J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 1996, 60, 407–438. [Google Scholar] [PubMed]
- Wenning, M.; Scherer, S. Identification of microorganisms by FTIR spectroscopy: Perspectives and limitations of the method. Appl. Microbiol. Biotechnol. 2013, 97, 7111–7120. [Google Scholar] [CrossRef] [PubMed]
- Adt, I.; Kohler, A.; Gognies, S.; Budin, J.; Sandt, C.; Belarbi, A.; Manfait, M.; Sockalingum, G.D. FTIR spectroscopic discrimination of Saccharomyces cerevisiae and Saccharomyces bayanus strains. Can. J. Microbiol. 2010, 56, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.; Golowczyc, M.A.; Abraham, A.G.; Garrote, G.L.; de Antoni, G.L.; Yantorno, O. Rapid discrimination of lactobacilli isolated from kefir grains by FT-IR spectroscopy. Int. J. Food Microbiol. 2006, 111, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Kocaoglu-Vurma, N.A.; Harper, W.J.; Rodriguez-Saona, L.E. Application of infrared microspectroscopy and multivariate analysis for monitoring the effect of adjunct cultures during Swiss cheese ripening. J. Dairy Sci. 2009, 92, 3575–3584. [Google Scholar] [CrossRef] [PubMed]
- Paramithiotis, S.; Muller, M.R.A.; Ehrmann, M.A.; Tsakalidou, E.; Seiler, H.; Vogel, R.; Kalantzopoulos, G. Polyphasic identification of wild yeast strains isolated from Greek sourdoughs. Syst. Appl. Microbiol. 2000, 23, 156–164. [Google Scholar] [CrossRef]
- Timmins, E.M.; Quain, D.E.; Goodacre, R. Differentiation of brewing yeast strains by pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Yeast 1998, 14, 885–893. [Google Scholar] [CrossRef]
- Wenning, M.; Theilmann, V.; Scherer, S. Rapid analysis of two food-borne microbial communities at the species level by Fourier transform infrared microspectroscopy. Environ. Microbiol. 2006, 8, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Büchl, N.R.; Hutzler, M.; Mietke-Hofmann, H.; Wenning, M.; Scherer, S. Differentiation of probiotic and environmental Saccharomyces cerevisiae strains in animal feed. J. Appl. Microbiol. 2010, 109, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Wenning, M.; Büchl, N.R.; Scherer, S. Species and strain identification of lactic acid bacteria using FTIR spectroscopy and artificial neural networks. J. Biophotonics 2010, 3, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Dziuba, B.; Babuchowski, A.; Niklewicz, M.; Brzozowski, B. FTIR spectral characteristics of lactic acid bacteria: A spectral library. Milchwissenschaft 2006, 61, 146–149. [Google Scholar]
- Dziuba, B.; Babuchowski, A.; Nalecz, D.; Niklewicz, M. Identification of lactic acid bacteria using FTIR spectroscopy and cluster analysis. Int. Dairy J. 2007, 17, 183–189. [Google Scholar] [CrossRef]
- Dziuba, B. Identification of Lactobacillus strains at the species level using FTIR spectroscopy and artificial neural networks. Pol. J. Food Nutr. Sci. 2007, 57, 301–306. [Google Scholar]
- Dziuba, B. Identification of selected Leuconostoc species with the use of FTIR spectroscopy and artificial neural networks. Acta Sci. Pol. Technol. Aliment. 2011, 10, 275–285. [Google Scholar]
- Dziuba, B.; Nalepa, B. Identification of lactic acid bacteria and propionic acid bacteria using FTIR spectroscopy and artificial neural networks. Food Technol. Biotechnol. 2012, 50, 399–405. [Google Scholar]
- Dziuba, B. Identyfikacja wybranych gatunków i podgatunków bakterii z rodzaju Lactococcus z zastosowaniem spektroskopii FTIR i sztucznych sieci neuronowych. Technol. Jakość 2012, 6, 103–117. [Google Scholar]
- Dziuba, B. Identification of propionibacteria to the species level using Fourier transform infrared spectroscopy and artificial neural networks. Pol. J. Vet. Sci. 2013, 16, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Alruwaili, M.A. Attenuated total reflectance-Fourier transform infrared microspectroscopy a rapid Method for microbial strain characterization. Am. J. Agric. Biol. Sci. 2013, 8, 135–141. [Google Scholar] [CrossRef]
- Mayer, A.; Seiler, H.; Scherer, S. Isolation of bifidobacteria from food and human faeces and rapid identification by Fourier transform infrared spectroscopy. Ann. Microbiol. 2003, 53, 299–313. [Google Scholar]
- Curk, M.C.; Peladan, F.; Hubert, J.C. Fourier Transform infrared (FTIR) spectroscopy for identifying Lactobacillus species. FEMS Microbiol. Lett. 1994, 123, 241–248. [Google Scholar] [CrossRef]
- Amiel, C.; Mariey, L.; Curk-Daubié, M.C.; Pichon, P.; Travert, J. Potentiality of Fourier transform infrared spectroscopy (FTIR) for discrimination and identification of dairy lactic acid bacteria. Lait 2000, 80, 445–459. [Google Scholar] [CrossRef]
- Amiel, C.; Mariey, L.; Denis, C.; Pichon, P.; Travert, J. FTIR spectroscopy and taxonomic purpose: Contribution to the classification of lactic acid bacteria. Lait 2001, 81, 249–255. [Google Scholar] [CrossRef]
- Novel, G. Les bactéries lactiques. In Microbiologie Industrielle, les Micro-Organismes D’intérêt Industriels; Leveau, J.-Y., Bouix, M., Eds.; APRIA: Paris, France, 1993; pp. 170–374. [Google Scholar]
- Georges, S.; Mounier, J.; Rea, M.C.; Gelsomino, R.; Heise, V.; Beduhn, R.; Cogan, T.M.; Vancanneyt, M.; Scherer, S. Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South German red smear cheese. Appl. Environ. Microbiol. 2008, 74, 2210–2217. [Google Scholar] [CrossRef] [PubMed]
- Samelis, J.; Bleicher, A.; Delbès-Paus, C.; Kakouri, A.; Neuhaus, K.; Montel, M.C. FTIR-based polyphasic identification of lactic acid bacteria isolated from traditional Greek Graviera cheese. Food Microbiol. 2011, 28, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Lefier, D.; Lamprell, H.; Mazerolles, G. Evolution of Lactococcus strains during ripening in Brie cheese by Fourier transform infrared spectroscopy. Lait 2000, 80, 247–254. [Google Scholar] [CrossRef]
- Savic, D.; Jokovic, N.; Topisirovic, L. Multivariate statistical methods for discrimination of lactobacilli based on their FTIR spectra. Dairy Sci. Technol. 2008, 88, 273–290. [Google Scholar] [CrossRef]
- Gaus, K.; Rösch, P.; Petry, R.; Peschke, K.D.; Ronneberger, O.; Bukhardt, H.; Baumann, K.; Popp, J. Classification of lactic acid bacteria with UV-resonance Raman spectroscopy. Biopolymers 2006, 82, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Gulitz, A.; Stadie, J.; Wenning, M.; Ehrmann, M.A.; Vogel, R.F. The microbial diversity of water kefir. Int. J. Food Microbiol. 2011, 151, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Oust, A.; Mbretrb, T.; Kirschner, C.; Narvhus, J.A.; Kohler, A. FT-IR spectroscopy for identification of closely related lactobacilli. J. Microbiol. Meth. 2004, 59, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, V.; Kocaoglu-Vurma, N.; Harper, J.; Rodriguez-Saona, L. Classification of Swiss cheese starter and adjunct cultures using Fourier transform infrared microspectroscopy. J. Dairy Sci. 2011, 94, 4374–4382. [Google Scholar] [CrossRef] [PubMed]
- Mouwen, D.J.M.; Hörman, A.; Korkeala, H.; Alvarez-Ordóñez, A.; Prieto, M. Applying Fourier-transform infrared spectroscopy and chemometrics to the characterization and identification of lactic acid bacteria. Vib. Spectrosc. 2011, 56, 193–201. [Google Scholar] [CrossRef]
- Mobili, P.; Araujo-Andrade, C.; Londero, A.; Frausto-Reyes, C.; Tzonchev, R.I.; de Antoni, G.L.; Gómez-Zavaglia, A. Development of a method based on chemometric analysis of Raman spectra for the discrimination of heterofermentative lactobacilli. J. Dairy Res. 2011, 78, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Hammons, S.; Oh, P.L.; Martínez, I.; Clark, K.; Schlegel, V.L.; Sitorius, E.; Scheideler, S.E.; Walter, J. A small variation in diet influences the Lactobacillus strain composition in the crop of broiler chickens. Syst. Appl. Microbiol. 2010, 33, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Vodnar, D.C.; Paucean, A.; Dulf, F.V.; Socaciu, C. HPLC characterization of lactic acid formation and FTIR fingerprint of probiotic bacteria during fermentation processes. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 109–113. [Google Scholar]
- Lodemann, U.; Lorenz, B.M.; Weyrauch, K.D.; Martens, H. Effects of Bacillus cereus var toyoi as probiotic feed supplement on intestinal transport and barrier function in piglets. Arch. Anim. Nutr. 2008, 62, 87–1006. [Google Scholar] [PubMed]
- Mietke, H.; Beer, W.; Schleif, J.; Schabert, G.; Reissbrodt, R. Differentiation between probiotic and wild-type Bacillus cereus isolates by antibiotic susceptibility test and Fourier transform infrared spectroscopy (FT-IR). Int. J. Food Microbiol. 2010, 140, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Crowe, J.H.; Carpenter, J.F.; Crowe, L.M. The role of vitrification in anhysrobiosis. Annu. Rev. Physiol. 1998, 60, 73–103. [Google Scholar] [CrossRef] [PubMed]
- Linders, L.J.M.; Wolkers, W.F.; Hoekstra, F.A.; van’t Riet, K. Effect of added carbohydrates on membrane phase behavior and survival of dried Lactobacillus plantarum. Cryobiology 1997, 35, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Naumann, D.; Schultz, C.P.; Helm, D. What can Infrared spectroscopy tell us about structure and composition of intact bacterial cells? In Infrared Spectroscopy of Biomolecules; Mantsch, H.H., Chapman, D., Eds.; Wiley-Liss, Inc.: Wilmington, DE, USA, 1996. [Google Scholar]
- Sakurai, M.; Furuki, T.; Akao, K.; Tanaka, D.; Nakahara, Y.; Kikawada, T.; Watanabe, M.; Okuda, T. Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc. Natl. Acad. Sci. USA 2008, 105, 5093–5098. [Google Scholar] [CrossRef] [PubMed]
- Santivarangkna, C.; Naumann, D.; Kulozik, U.; Foerst, P. Protective effects of sorbitol during the vacuum drying of Lactobacillus helveticus: An FTIR study. Ann. Microbiol. 2010, 60, 235–242. [Google Scholar] [CrossRef]
- Hoekstra, F.A.; Wolkers, W.F.; Buitink, J.; Golovina, E.A.; Crowe, J.H.; Crowe, L.M. Membrane stabilization in the dry state. Comp. Biochem. Phys. A 1997, 117, 335–341. [Google Scholar] [CrossRef]
- Oldenhof, H.; Wolkers, W.F.; Fonseca, F.; Passot, S.; Marin, M. Effect of sucrose and maltodextrin on the physical properties and survival of air-dried Lactobacillus bulgaricus: An in situ Fourier transform infrared spectroscopy study. Biotechnol. Prog. 2005, 21, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkova, N.M.; Phillips, B.L.; Crowe, L.M.; Crowe, J.H.; Risbud, S.H. Effect of sugars on head group mobility in freeze-dried dipalmitoylphosphatidylcholine bilayers: Solid-state 31P NMR and FTIR studies. Biophys. J. 1998, 75, 2947–2955. [Google Scholar] [CrossRef]
- Kilimann, K.V.; Doster, W.; Vogel, R.F.; Hartmann, C.; Gänzle, M.G. Protection by sucrose against heat-induced lethal and sublethal injury of Lactococcus lactis: An FT-IR study. Biochim. Biophys. Acta 2006, 1764, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- Leslie, S.B.; Israeli, E.; Lighthart, B.; Crowe, J.H.; Crowe, L.M. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 1995, 61, 3592–3597. [Google Scholar] [PubMed]
- Gautier, J.; Passot, S.; Pénicaud, C.; Guillemin, H.; Cenard, S.; Lieben, P.; Fonseca, F. A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1. J. Dairy Sci. 2013, 96, 5591–5602. [Google Scholar] [CrossRef] [PubMed]
- Krimm, S.; Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 1986, 38, 181–364. [Google Scholar] [PubMed]
- Lodato, P.; Segovia de Huergo, M.; Buera, M.P. Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices. Appl. Microbiol. Biotechnol. 1999, 52, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Tymczyszyn, E.E.; Gerbino, E.; Illanes, A.; Gómez-Zavaglia, A. Galacto-oligosaccharides as protective molecules in the preservation of Lactobacillus delbrueckii subsp. bulgaricus. Cryobiology 2011, 62, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Tymczyszyn, E.E.; Sosa, N.; Gerbino, E.; Hugo, A.A.; Gómez-Zavaglia, A.; Schebor, C. Effect of physical properties on the stability of Lactobacillus bulgaricus in a freeze-dried galacto-oligosaccharides matrix. Int. J. Food Microbiol. 2012, 155, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Golowczyc, M.A.; Vera, C.; Santos, M.I.; Guerrero, C.; Carasi, P.; Illanes, A.; Gómez-Zavaglia, A.; Tymczyszyn, E.E. Use of whey permeate containing in situ synthesized galacto-oligosaccharides for the growth and preservation of Lactobacillus plantarum. J. Dairy Res. 2013, 80, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Higl, B.; Kurtmann, L.; Carlsen, C.U.; Ratjen, J.; Forst, P.; Skibsted, L.H.; Kulozik, U.; Risbo, J. Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix. Biotechnol. Prog. 2007, 23, 794–800. [Google Scholar]
- Miao, S.; Mills, S.; Stanton, C.; Fitzgerald, G.F.; Roos, Y.H.; Ross, R.P. Effect of disaccharides on survival during storage of freeze dried probiotics. Dairy Sci. Technol. 2008, 88, 19–30. [Google Scholar] [CrossRef]
- Buitink, J.; van den Dries, I.J.; Hoekstra, F.A.; Alberda, M.; Hemminga, M.A. High critical temperature above Tg may contribute to the stability of biological systems. Biophys. J. 2000, 79, 1119–1128. [Google Scholar] [CrossRef]
- Wolkers, W.F.; Oliver, A.E.; Tablin, F.; Crowe, J.H. A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydr. Res. 2004, 339, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.I.; Araujo-Andrade, C.; Tymczyszyn, E.E.; Gomez-Zavaglia, A. Determination of amorphous/rubbery states in freeze-dried prebiotic sugars using a combined approach of near-infrared spectroscopy and multivariate analysis. Food Res. Int. 2014, 59, 53–60. [Google Scholar] [CrossRef]
- Shakirova, L.; Auzina, L.; Zikmanis, P.; Gavare, M.; Grube, M. Influence of growth conditions on hydrophobicity of Lactobacillus acidophilus and Bifidobacterium lactis cells and characteristics by FT-IR spectra. Spectroscopy 2010, 24, 251–255. [Google Scholar] [CrossRef]
- Shakirova, L.; Grube, M.; Gavare, M.; Auzina, L.; Zikmanis, P. Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 cell surface hydrophobicity and survival of the cells under adverse environmental conditions. J. Ind. Microbiol. Biotechnol. 2013, 40, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Santivarangkna, C.; Wenning, M.; Foerst, P.; Kulozik, U. Damage of cell envelope of Lactobacillus helveticus during vacuum drying. J. Appl. Microbiol. 2007, 102, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Tamburini, E.; Vaccari, G.; Tosi, S.; Trilli, A. Near-infrared spectroscopy: A tool for monitoring submerged fermentation processes using an immersion optical-fiber probe. Appl. Spectrosc. 2003, 57, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Tosi, S.; Rossi, M.; Tamburini, E.; Vaccari, G.; Amaretti, A.; Matteuzzi, D. Assessment of in-line Near-Infrared spectroscopy for continuous monitoring of fermentation processes. Biotechnol. Prog. 2003, 19, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Vaccari, G.; Dosi, E.; Campi, A.L.; Gonzalez-Vara, Y.R.A.; Matteuzzi, D.; Mantovani, G. A Near-Infrared spectroscopy technique for the control of fermentation processes: An application to lactic acid fermentation. Biotechnol. Bioeng. 1994, 43, 913–917. [Google Scholar] [CrossRef] [PubMed]
- González-Vara, Y.R.A.; Vaccari, G.; Dosi, E.; Trilli, A.; Rossi, M.; Matteuzzi, D. Enhanced production of L(+) lactic acid in chemostat by Lactobacillus casei DSM 20011 using ion exchange resins and cross flow filtration in a fully automated pilot plant controlled via NIR. Biotechnol. Bioeng. 2000, 67, 147–156. [Google Scholar] [CrossRef]
- Vodnar, D.C.; Pop, O.L.; Socaciu, C. Monitoring lactic acid fermentation in media containing dandelion (Taraxacum officinale) by FTIR spectroscopy. Not. Bot. Horti Agrobot. 2012, 40, 65–68. [Google Scholar]
- Picque, D.; Lefier, D.; Grappin, R.; Corrieu, G. Monitoring of fermentation by infrared spectrometry alcoholic and lactic fermentations. Anal. Chim. Acta 1993, 279, 67–72. [Google Scholar] [CrossRef]
- Fayolle, P.; Picque, D.; Corrieu, G. Monitoring of fermentation processes producing lactic acid bacteria by mid-infrared spectroscopy. Vib. Spectrosc. 1997, 14, 247–252. [Google Scholar] [CrossRef]
- Fayolle, P.; Picque, D.; Corrieu, G. On-line monitoring of fermentation processes by a new remote dispersive middle-infrared spectrometer. Food Control 2000, 11, 291–296. [Google Scholar] [CrossRef]
- Sivakesava, S.; Irudayaraj, J.; Ali, D. Simultaneous determination of multiple components in lactic acid fermentation using FT-MIR, NIR, and FT-Raman spectroscopic techniques. Proc. Biochem. 2001, 37, 371–378. [Google Scholar] [CrossRef]
- Macedo, M.G.; Laporte, M.F.; Lacroix, C. Quantification of exopolysaccharide, lactic acid, and lactose concentrations in culture broth by near-infrared spectroscopy. J. Agric. Food Chem. 2008, 56, 7271–7278. [Google Scholar] [CrossRef]
- Grassi, S.; Alamprese, C.; Bono, V.; Picozzi, C.; Foschino, R.; Casiraghi, E. Monitoring of lactic acid fermentation process using Fourier transform near infrared spectroscopy. J. Near Infrared Spectrosc. 2013, 21, 417–425. [Google Scholar] [CrossRef]
- Grassi, S.; Altamprese, C.; Bono, V.; Casiraghi, E.; Amigo, J.M. Modelling milk lactic acid fermentation using multivariate curve resolution alternating least squares (MCRALS). Food Bioprocess Technol. 2014, 7, 1819–1829. [Google Scholar] [CrossRef]
- Oberreuter, H.; Mertens, F.; Seiler, H.; Scherer, S. Quantification of micro-organisms in binary mixed populations by Fourier transform infrared (FT-IR) spectroscopy. Lett. Appl. Microbiol. 2000, 30, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, N.; Xu, Y.; Goodacre, R. Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk. Anal. Chem. 2011, 83, 5681–5687. [Google Scholar] [CrossRef] [PubMed]
- Cimander, C.; Carlsson, M.; Mandenius, C.F. Sensor fusion for on-line monitoring of yoghurt fermentation. J. Biotechnol. 2002, 99, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Navraätil, M.; Cimander, C.; Mandenius, C.F. On-line multisensor monitoring of yogurt and filmjolk fermentations on production scale. J. Agric. Food Chem. 2004, 52, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, A.G.; Walter, E.H.M.; Cadena, R.S.; Faria, J.A.F.; Bolini, H.M.A.; Frattini Fileti, A.M. Monitoring the authenticity of low-fat yogurts by an artificial neural network. J. Dairy Sci. 2009, 92, 4797–4804. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.; Vargas, S.; Estevez, M.; Quintanilla, F.; Trejo-Lopez, A.; Hernández-Martínez, A.R. Use of Raman spectroscopy to determine the kinetics of chemical transformation in yogurt production. Vib. Spectrosc. 2013, 68, 133–140. [Google Scholar] [CrossRef]
- Santos, M.I.; Araujo-Andrade, C.; Esparza-Ibarra, E.; Tymczyszyn, E.; Gómez-Zavaglia, A. Galacto-oligosaccharides and lactulose as protectants against desiccation of Lactobacillus delbrueckii subsp. bulcaricus. Biotechnol. Prog. 2014, 30, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Correia, I.; Nunes, A.; Duarte, I.F.; Barros, A.; Delgadillo, I. Sorghum fermentation followed by spectroscopic techniques. Food Chem. 2005, 90, 853–859. [Google Scholar] [CrossRef]
- Correia, I.; Nunes, A.; Guedes, S.; Barros, A.S.; Delgadillo, I. Screening of lactic acid bacteria potentially useful for sorghum fermentation. J. Cereal Sci. 2010, 52, 9–15. [Google Scholar] [CrossRef]
- Johnson, H.E.; Broadhurst, D.; Kell, D.B.; Theodorou, M.K.; Merry, R.J.; Griffith, G.W. High-throughput metabolic fingerprinting of legume silage fermentations via Fourier Transform Infrared spectroscopy and chemometrics. Appl. Environ. Microbiol. 2004, 70, 1583–1592. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarian, B.; Casale, M.; Paini, M.; Casazza, A.A.; Lanteri, S.; Perego, P. Production of a novel fermented milk fortified with natural antioxidants and its analysis by NIR spectroscopy. LWT-Food Sci. Technol. 2015, 62, 376–383. [Google Scholar] [CrossRef]
- Rodriguez, S.B.; Thornton, R.J. Use of flow cytometry with fluorescent antibodies in real-time monitoring of simultaneously inoculated alcoholic-malolactic fermentation of Chardonnay. Lett. Appl. Microbiol. 2008, 46, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Curtin, C. The use of attenuated total reflectance as tool to monitor the time course of fermentation in wild ferments. Food Control 2012, 26, 241–246. [Google Scholar] [CrossRef]
- Said, H.N.; Harijono; Kusnadi, J. Influence of natural fermentation on the morphology and physicochemical properties of Indonesian rice flour and their effect on rice paper. Int. J. ChemTech. Res. 2014 2014–2015, 7, 1951–1959. [Google Scholar]
- Argyri, A.A.; Panagou, E.Z.; Tarantilis, P.A.; Polysiouc, M.; Nychas, G.-J.E. Rapid qualitative and quantitative detection of beef fillets spoilage based on Fourier transform infrared spectroscopy data and artificial neural networks. Sens. Actuators B-Chem. 2010, 145, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Argyri, A.A.; Jarvis, R.M.; Wedge, D.; Xu, Y.; Panagou, E.Z.; Goodacre, R.; Nychas, G.J.E. A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. Food Control 2013, 29, 461–470. [Google Scholar] [CrossRef]
- Kodogiannis, V.S.; Kontogianni, E.; Lygouras, J.N. Neural network based identification of meat spoilage using Fourier-transform infrared spectra. J. Food Eng. 2014, 142, 118–131. [Google Scholar] [CrossRef]
- Papadopoulou, O.; Panagou, E.Z.; Tassou, C.C.; Nychas, G.J.E. Contribution of Fourier transform infrared (FTIR) spectroscopy data on the quantitative determination of minced pork meat spoilage. Food Res. Int. 2011, 44, 3264–3271. [Google Scholar] [CrossRef]
- Prado, N.; Fernández-Ibáñez, V.; González, P.; Soldado, A. On site NIR Spectroscopy to control the shelf life of pork meat. Food Anal. Meth. 2011, 4, 582–589. [Google Scholar] [CrossRef]
- Vasconcelos, H.; Saraiva, C.; de Almeida, J.M.M.M. Evaluation of the spoilage of raw chicken breast fillets using Fourier Transform Infrared Spectroscopy in tandem with chemometrics. Food Bioprocess Technol. 2014, 7, 2330–2341. [Google Scholar] [CrossRef]
- Cámara-Martos, F.; Zurera-Cosano, G.; Moreno-Rojas, R.; García-Gimeno, R.M.; Pérez-Rodríguez, F. Identification and quantification of lactic acid bacteria in a water-based matrix with near-infrared spectroscopy and multivariate regression modeling. Food Anal. Methods 2012, 5, 19–28. [Google Scholar] [CrossRef]
- Neal-McKinney, J.M.; Lu, X.; Duong, T.; Larson, C.L.; Call, D.R.; Shah, D.H.; Konkel, M.E. Production of organic acids by probiotic lactobacilli can be used to reduce pathogen load in poultry. PLoS ONE 2012, 7, e43928. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Frausto-Reyes, C.; Araujo-Andrade, C.; Gomez-Zavaglia, A. Use of Raman spectroscopy and chemometrics for the quantification of metal ions attached to Lactobacillus kefir. J. Appl. Microbiol. 2011, 112, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Giorgini, E.; Conti, C.; Ferraris, P.; Sabbatini, S.; Tosi, G.; Rubini, C.; Vaccari, L.; Gioacchini, G.; Carnevali, O. Effects of Lactobacillus rhamnosus on zebrafish oocyte maturation: An FTIR imaging and biochemical analysis. Anal. Bioanal. Chem. 2010, 398, 3063–3072. [Google Scholar] [CrossRef] [PubMed]
- Dissing, B.S.; Papadopoulou, O.S.; Tassou, C.; Ersbøll, B.K.; Carstensen, J.M.; Panagou, E.Z.; Nychas, G.J. Using multispectral imaging for spoilage detection of pork meat. Food Bioprocess Technol. 2013, 6, 2268–2279. [Google Scholar] [CrossRef]
- Daniel, H.; Gholami, A.M.; Berry, D.; Desmarchelier, C.; Hahne, H.; Loh, G.; Mondot, S.; Lepage, P.; Rothballer, M.; Walker, A.; et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014, 8, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.E.; Stoecker, K.; Griffiths, R.; Newbold, L.; Daims, H.; Whiteley, A.S.; Wagner, M. Raman-FISH: Combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 2007, 9, 1878–1889. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.I.; Gerbino, E.; Tymczyszyn, E.; Gomez-Zavaglia, A. Applications of Infrared and Raman Spectroscopies to Probiotic Investigation. Foods 2015, 4, 283-305. https://doi.org/10.3390/foods4030283
Santos MI, Gerbino E, Tymczyszyn E, Gomez-Zavaglia A. Applications of Infrared and Raman Spectroscopies to Probiotic Investigation. Foods. 2015; 4(3):283-305. https://doi.org/10.3390/foods4030283
Chicago/Turabian StyleSantos, Mauricio I., Esteban Gerbino, Elizabeth Tymczyszyn, and Andrea Gomez-Zavaglia. 2015. "Applications of Infrared and Raman Spectroscopies to Probiotic Investigation" Foods 4, no. 3: 283-305. https://doi.org/10.3390/foods4030283
APA StyleSantos, M. I., Gerbino, E., Tymczyszyn, E., & Gomez-Zavaglia, A. (2015). Applications of Infrared and Raman Spectroscopies to Probiotic Investigation. Foods, 4(3), 283-305. https://doi.org/10.3390/foods4030283