The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methodology
2.2.1. Extrusion
2.2.2. Moisture
2.2.3. Protein Determination
2.2.4. Fat
2.2.5. In Vitro Protein Digestibility
2.2.6. Statistical Analysis
3. Result and Discussion
3.1. Proximate Analysis of Extrudates
3.2. In Vitro Protein Digestibility
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nor, N.; Carr, A.; Hardacre, A.; Brennan, C. The Development of Expanded Snack Product Made from Pumpkin Flour-Corn Grits: Effect of Extrusion Conditions and Formulations on Physical Characteristics and Microstructure. Foods 2013, 2, 160–169. [Google Scholar] [CrossRef]
- Nørgaard, M.K.; Sørensen, B.T.; Brunsø, K. A concept test of novel healthy snacks among adolescents: Antecedents of preferences and buying intentions. Food Qual. Prefer. 2014, 33, 17–26. [Google Scholar] [CrossRef]
- Brennan, M.A.; Derbyshire, E.; Tiwari, B.K.; Brennan, C.S. Ready-to-eat snack products: The role of extrusion technology in developing consumer acceptable and nutritious snacks. Int. J. Food Sci. Technol. 2013, 48, 893–902. [Google Scholar] [CrossRef]
- Struck, S.; Jaros, D.; Brennan, C.S.; Rohm, H. Sugar replacement in sweetened bakery goods. Int. J. Food Sci. Technol. 2014, 49, 1963–1976. [Google Scholar] [CrossRef]
- Flight, I.; Clifton, P. Cereal grains and legumes in the prevention of coronary heart disease and stroke: A review of the literature. Eur. J. Clin. Nutr. 2006, 60, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Woolnough, J.W.; Monro, J.A.; Brennan, C.S.; Bird, A.R. Simulating human carbohydrate digestion in vitro: A review of methods and the need for standardisation. Int. J. Food Sci. Technol. 2008, 43, 2245–2256. [Google Scholar] [CrossRef]
- Oliveira, L.C.; Rosell, C.M.; Steel, C.J. Effect of the addition of whole-grain wheat flour and of extrusion process parameters on dietary fibre content, starch transformation and mechanical properties of a ready-to-eat breakfast cereal. Int. J. Food Sci. Technol. 2015, 50, 1504–1514. [Google Scholar] [CrossRef]
- Osen, R.; Toelstede, S.; Eisner, P.; Schweiggert-Weisz, U. Effect of high moisture extrusion cooking on protein–protein interactions of pea (Pisum sativum L.) protein isolates. Int. J. Food Sci. Technol. 2015, 50, 1390–1396. [Google Scholar] [CrossRef]
- Yadav, D.N.; Anand, T.; Navnidhi; Singh, A.K. Co-extrusion of pearl millet-whey protein concentrate for expanded snacks. Int. J. Food Sci. Technol. 2014, 49, 840–846. [Google Scholar] [CrossRef]
- Tharanathan, R.N.; Mahadevamma, S. Grain legumes—A boon to human nutrition. Trends Food Sci. Technol. 2003, 14, 507–518. [Google Scholar] [CrossRef]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Tosh, S.M.; Yada, S. Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Res. Int. 2010, 43, 450–460. [Google Scholar] [CrossRef]
- Freitas, R.L.; Ferreira, B.R.; Teixeira, A.R. Use of a single method in the extraction of the seed storage globulins from several legume species. Application to analyse structural comparisons within the major classes of globulins. Int. J. Food Sci. Nutr. 2000, 51, 341–352. [Google Scholar] [PubMed]
- De Almeida Costa, G.E.; da Silva Queiroz-Monici, K.; Reis, M.; de Oliveira, S.M. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Simpson, H.C.R.; Lousley, S.; Geekie, M.; Simpson, R.W.; Carter, R.D.; Hockaday, T.D.R.; Mann, J.I.; Simpson, H.C.R. A high carbohydrate leguminous fibre diet improves all aspects of diabetic control. Lancet 1981, 317, 1–5. [Google Scholar] [CrossRef]
- Boye, J.I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S.; Boye, H. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Brennan, C.S.; Jaganmohan, R.; Surabi, A.; Alagusundaram, K. Utilisation of pigeon pea (Cajanus cajan L) byproducts in biscuit manufacture. LWT-Food Sci. Technol. 2011, 44, 1533–1537. [Google Scholar] [CrossRef]
- De la Hera, E.; Ruiz-Paris, E.; Oliete, E.; Gomez, B. Studies of the quality of cakes made with wheat-lentil composite flours. LWT-Food Sci. Technol. 2012, 49, 48–54. [Google Scholar] [CrossRef]
- Madhumitha, S.; Prabhasankar, P. Influence of Additives on Functional and Nutritional Quality Characteristics of Black Gram Flour Incorporated Pasta. J. Texture Stud. 2011, 42, 441–450. [Google Scholar] [CrossRef]
- Alonso, R.A.; Aguirre, A.; Marzo, F. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Robin, F.; Théoduloz, C.; Srichuwong, S. Properties of extruded whole grain cereals and pseudocereals flours. Int. J. Food Sci. Technol. 2015, 50, 2152–2159. [Google Scholar] [CrossRef]
- Hagenimana, A.X.; Ding, X.L.; Fang, T. Evaluation of rice flour modified by extrusion cooking. J. Cereal Sci. 2006, 43, 38–46. [Google Scholar] [CrossRef]
- De Pilli, T.; Legrand, J.; Derossi, A.; Severini, C. Effect of proteins on the formation of starch–lipid complexes during extrusion cooking of wheat flour with the addition of oleic acid. Int. J. Food Sci. Technol. 2015, 50, 515–521. [Google Scholar] [CrossRef]
- Rashid, S.; Rakha, A.; Anjum, F.M.; Ahmed, W.; Sohail, M. Effects of extrusion cooking on the dietary fibre content and Water Solubility Index of wheat bran extrudates. Int. J. Food Sci. Technol. 2015, 50, 1533–1537. [Google Scholar] [CrossRef]
- Yin, F.-W.; Liu, X.-Y.; Fan, X.-R.; Zhou, D.-Y.; Xu, W.-S.; Zhu, B.-W.; Murata, Y.-Y. Extrusion of Antarctic krill (Euphausia superba) meal and its effect on oil extraction. Int. J. Food Sci. Technol. 2015, 50, 633–639. [Google Scholar] [CrossRef]
- Soison, B.; Jangchud, K.; Jangchud, A.; Harnsilawat, T.; Piyachomkwan, K.; Charunuch, C.; Prinyawiwatkul, W. Physico-functional and antioxidant properties of purple-flesh sweet potato flours as affected by extrusion and drum-drying treatments. Int. J. Food Sci. Technol. 2014, 49, 2067–2075. [Google Scholar] [CrossRef]
- Caltinoglu, C.; Tonyalı, B.; Sensoy, I. Effects of tomato pulp addition on the extrudate quality parameters and effects of extrusion on the functional parameters of the extrudates. Int. J. Food Sci. Technol. 2014, 49, 587–594. [Google Scholar] [CrossRef]
- Thachil, M.T.; Chouksey, M.K.; Gudipati, V. Amylose-lipid complex formation during extrusion cooking: Effect of added lipid type and amylose level on corn-based puffed snacks. Int. J. Food Sci. Technol. 2014, 49, 309–316. [Google Scholar] [CrossRef]
- Kruger, N.J. The Bradford Method for Protein Quantitation. Basic Protein Pept. Protoc. 1994, 32, 9–15. [Google Scholar]
- Luque-Garcı́a, J.L.; Luque de Castro, M.D. Ultrasound-assisted Soxhlet extraction: An expeditive approach for solid sample treatment: Application to the extraction of total fat from oleaginous seeds. J. Chromatogr. A 2004, 1034, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhao, Q.; Sun, W.; Zhao, M. Effects of malondialdehyde modification on the in vitro digestibility of soy protein isolate. J. Agric. Food Chem. 2013, 61, 12139–12145. [Google Scholar] [CrossRef] [PubMed]
- Gularte, M.A.; Gómez, M.; Rosell, C.M. Impact of Legume Flours on Quality and in vitro Digestibility of Starch and Protein from Gluten-Free Cakes. Food Bioprocess Technol. 2011, 5, 3142–3150. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Cavada, E.; Drago, S.R.; Gonzalez, R.J.; Juan, R.; Pastor, J.E.; Alaiz, M.; Vioque, J. Effects of the addition of wild legumes (Lathyrus annuus and Lathyrus clymenum) on the physical and nutritional properties of extruded products based on whole corn and brown rice. Food Chem. 2011, 128, 961–967. [Google Scholar] [CrossRef]
- Zucco, F.; Borsuk, Y.; Arntfield, S.D. Physical and nutritional evaluation of wheat cookies supplemented with pulse flours of different particle sizes. LWT-Food Sci. Technol. 2011, 44, 2070–2076. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, T.W.; Baik, B.K. Relationship between proportion and composition of albumins, and in vitro protein digestibility of raw and cooked pea seeds (Pisum sativum L.). J. Sci. Food Agric. 2010, 90, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- Duodu, K.G.; Taylor, J.R.N.; Belton, P.S.; Hamaker, B.R. Factors affecting sorghum protein digestibility. J. Cereal Sci. 2003, 38, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Linsberger-Martin, G.; Weiglhofer, G.; Phuong, K.T.; Berghofer, T.P. High hydrostatic pressure influences antinutritional factors and in vitro protein digestibility of split peas and whole white beans. LWT-Food Sci. Technol. 2013, 51, 331–336. [Google Scholar] [CrossRef]
- Abd El-Hady, E.A.; Habiba, R.A. Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT-Food Sci. Technol. 2003, 36, 285–293. [Google Scholar] [CrossRef]
Sample | Torque | Shaft Speed (RPM) |
---|---|---|
Wheat | 64 | 210 |
Wheat 5% Yellow pea | 57 | 200 |
Wheat 5% Green pea | 72 | 210 |
Wheat 5% Lentil | 48 | 210 |
Wheat 5% Chickpea | 46 | 210 |
Wheat 10% Yellow pea | 53 | 200 |
Wheat 10% Green pea | 70 | 210 |
Wheat 10% Lentil | 48 | 210 |
Wheat 10% Chickpea | 48 | 210 |
Wheat 15% Yellow pea | 62 | 200 |
Wheat 15% Green pea | 61 | 210 |
Wheat 15% Lentil | 46 | 210 |
Wheat 15% Chickpea | 44 | 210 |
Sample | Protein (g/100 g Dry Matter Basis) |
---|---|
Wheat | 14.47 ± 0.11 |
Lentil | 25.33 ± 0.17 |
Chickpea | 22.96 ± 0.24 |
Yellow pea | 21.73 ± 0.13 |
Green pea | 20.47 ± 0.28 |
Sample | Protein | Fat | Moisture |
---|---|---|---|
Wheat | 13.54 ± 0.04 e | 0.58 ± 0.09 c,d,e | 9.29 ± 1.89 a |
Wheat 5% Yellow pea | 14.30 ± 0.11 b,c | 0.51 ± 0.06 e | 8.11 ± 0.21 a |
Wheat 5% Green pea | 14.10 ± 0.04 c,d | 0.54 ± 0.01 e | 8.41 ± 0.64 a |
Wheat 5% Lentil | 14.53 ± 0.21 b,c | 0.55 ± 0.01 e | 8.51 ± 0.26 a |
Wheat 5% Chickpea | 14.25 ± 0.08 b,c | 0.62 ± 0.04 d | 8.13 ± 0.40 a |
Wheat 10% Yellow pea | 14.96 ± 0.04 a | 0.72 ± 0.02 b,c,d | 9.36 ± 0.76 a |
Wheat 10% Green pea | 14.57 ± 0.05 b,c | 1.03 ± 0.11 a | 9.05 ± 0.90 a |
Wheat 10% Lentil | 14.59 ± 0.23 b,c | 0.83 ± 0.09 b | 8.62 ± 0.41 a |
Wheat 10% Chickpea | 14.28 ± 0.06 c | 0.90 ± 0.10 a,b | 7.64 ± 0.35 a |
Wheat 15% Yellow pea | 15.16 ± 0.17 a | 0.75 ± 0.04 b,c | 7.75 ± 0.13 a |
Wheat 15% Green pea | 14.79 ± 0.02 b | 0.75 ± 0.08 b,c | 8.42 ± 0.76 a |
Wheat 15% Lentil | 15.05 ± 0.03 a | 0.72 ± 0.05 b,c,d | 7.56 ± 0.14 a |
Wheat 15% Chickpea | 14.47 ± 0.11 b,c | 0.29 ± 0.01 f | 7.75 ± 1.53 a |
Sample | Raw Mix | Extrudates |
---|---|---|
Wheat | 31.60 ± 2.66 b,c | 59.26 ± 1.08 d |
Wheat 5% Yellow pea | 32.70 ± 2.04 b,c | 63.39 ± 0.73 a,b,c |
Wheat 5% Green pea | 38.23 ± 2.11 a | 62.95 ± 0.72 b,c |
Wheat 5% Lentil | 29.33 ± 0.48 c | 63.27 ± 0.20 b,c |
Wheat 5% Chickpea | 29.97 ± 1.11 b,c | 61.44 ± 0.43 b,c |
Wheat 10% Yellow pea | 29.27 ± 2.86 b,c | 65.50 ± 1.49 a,b |
Wheat 10% Green pea | 28.92 ± 1.17 b,c | 64.03 ± 1.09 a,b |
Wheat 10% Lentil | 32.00 ± 1.49 b,c | 62.46 ± 1.13 b,c |
Wheat 10% Chickpea | 31.30 ± 0.64 b,c | 60.69 ± 1.29 c,d |
Wheat 15% Yellow pea | 31.59 ± 3.38 b,c | 65.61 ± 1.45 a |
Wheat 15% Green pea | 33.02 ± 2.18 b,c | 65.69 ± 0.32 a |
Wheat 15% Lentil | 31.85 ± 1.55 b,c | 62.26 ± 0.74 b,c |
Wheat 15% Chickpea | 35.21 ± 0.92 b,c | 62.46 ± 0.97 b,c |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, S.S.; Brennan, M.A.; Mason, S.L.; Brennan, C.S. The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack. Foods 2016, 5, 26. https://doi.org/10.3390/foods5020026
Patil SS, Brennan MA, Mason SL, Brennan CS. The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack. Foods. 2016; 5(2):26. https://doi.org/10.3390/foods5020026
Chicago/Turabian StylePatil, Swapnil S., Margaret A. Brennan, Susan L. Mason, and Charles S. Brennan. 2016. "The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack" Foods 5, no. 2: 26. https://doi.org/10.3390/foods5020026
APA StylePatil, S. S., Brennan, M. A., Mason, S. L., & Brennan, C. S. (2016). The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack. Foods, 5(2), 26. https://doi.org/10.3390/foods5020026