High Ethanol Contents of Spirit Drinks in Kibera Slums, Kenya: Implications for Public Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals
2.3. Alcoholic Strength
2.4. Determination of pH
2.5. Volatile Composition and Quantification
3. Results and Discussion
3.1. Sample Distribution
3.2. Method Validation
3.3. Alcoholic Strength
3.4. Analysis of pH
3.5. Volatiles Quantified
3.6. Volatiles Detected
3.7. Public Health Implications
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Global Information System on Alcohol and Health (GISAH); World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Lachenmeier, D.W.; Sarsh, B.; Rehm, J. The composition of alcohol products from markets in Lithuania and Hungary, and potential health consequences: A pilot study. Alcohol Alcohol. 2009, 44, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Rehm, J.; Kanteres, F.; Lachenmeier, D.W. Unrecorded consumption, quality of alcohol and health consequences. Drug Alcohol Rev. 2010, 29, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Kenya Bureau of Standards. Traditional Spirit (Chang’aa)—Specification; KS 2326:2011; Kenya Bureau of Standards: Nairobi, Kenya, 2011. [Google Scholar]
- World Health Organisation. Global Status Report on Alcohol and Health; World Health Organisation: Geneva, Switzerland, 2014. [Google Scholar]
- Guilbert, J.J. The world health report 2002—Reducing risks, promoting healthy life. Educ. Health (Abingdon) 2003, 16, 230. [Google Scholar]
- Rehm, J.; Mathers, C.; Popova, S.; Thavorncharoensap, M.; Teerawattananon, Y.; Patra, J. Alcohol and Global Health 1 Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 2009, 373, 2223–2233. [Google Scholar] [CrossRef]
- Carey, K.; Kinney, J.; Eckman, M.; Nassar, A.; Mehta, K. Chang’aa Culture and Process: Detecting Contamination in a Killer Brew. Procedia Eng. 2015, 107, 395–402. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Rehm, J. What is the main source of human exposure to higher alcohols and is there a link to immunotoxicity? Immunopharmacol. Immunotoxicol. 2013, 35, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Ganss, S.; Rychlak, B.; Rehm, J.; Sulkowska, U.; Skiba, M.; Zatonski, W. Association between quality of cheap and unrecorded alcohol products and public health consequences in Poland. Alcohol. Clin. Exp. Res. 2009, 33, 1757–1769. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Burri, P.A.; Fauser, T.; Frank, W.; Walch, S.G. Rapid determination of alcoholic strength of egg liqueur using steam distillation and oscillation-type densimetry with peristaltic pumping. Anal. Chim. Acta 2005, 537, 377–384. [Google Scholar] [CrossRef]
- Lachenmeier, D.W. Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectra. Food Chem. 2007, 101, 825–832. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Kuballa, T.; Lachenmeier, D.W. Nontargeted NMR analysis to rapidly detect hazardous substances in alcoholic beverages. Appl. Magn. Reson. 2012, 42, 343–352. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, Official Method 920.56, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Rangel, A.O.; Tóth, I.V. Enzymatic determination of ethanol and glycerol by flow injection parallel multi-site detection. Anal. Chim. Acta 2000, 416, 205–210. [Google Scholar] [CrossRef]
- Wang, M.; Choong, Y.; Su, N.; Lee, M. A rapid method for determination of ethanol in alcoholic beverages using capillary gas chromatography. J. Food Drug Anal. 2003, 11, 133–140. [Google Scholar]
- Yarita, T.; Nakajima, R.; Otsuka, S.; Ihara, T.; Takatsu, A.; Shibukawa, M. Determination of ethanol in alcoholic beverages by high-performance liquid chromatography-flame ionization detection using pure water as mobile phase. J. Chromatogr. A 2002, 976, 387–391. [Google Scholar] [CrossRef]
- Mendes, L.S.; Oliveira, F.C.C.; Suarez, P.A.Z.; Rubim, J.C. Determination of ethanol in fuel ethanol and beverages by Fourier transform (FT)-near infrared and FT-Raman spectrometries. Anal. Chim. Acta 2003, 493, 219–231. [Google Scholar] [CrossRef]
- Boyaci, I.H.; Genis, H.E.; Guven, B.; Tamer, U.; Alper, N. A novel method for quantification of ethanol and methanol in distilled alcoholic beverages using Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 1171–1176. [Google Scholar] [CrossRef]
- Frausto-Reyes, C.; Medina-Gutiérrez, C.; Sato-Berrú, R.; Sahagún, L.R. Qualitative study of ethanol content in tequilas by Raman spectroscopy and principal component analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 2657–2662. [Google Scholar] [CrossRef] [PubMed]
- Salgado, A.M.; Folly, R.O.M.; Valdman, B.; Cos, O.; Valero, F. Colorimetric method for the determination of ethanol by flow injection analysis. Biotechnol. Lett. 2000, 22, 327–330. [Google Scholar] [CrossRef]
- González-Rodríguez, J.; Pérez-Juan, P.; Luque De Castro, M.D. Determination of ethanol in beverages by flow injection, pervaporation and density measurements. Talanta 2003, 59, 691–696. [Google Scholar] [CrossRef] [Green Version]
- Rostrup, M.; Edwards, J.K.; Abukalish, M.; Ezzabi, M.; Some, D.; Ritter, H.; Menge, T.; Abdelrahman, A.; Rootwelt, R.; Janssens, B.; et al. The methanol poisoning outbreaks in Libya 2013 and Kenya 2014. PLoS ONE 2016, 11, e0152676. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, M.; Lachenmeier, D.W.; Hausler, T.; Rehm, J. Surrogate alcohol containing methanol, social deprivation and public health in Novosibirsk, Russia. Int. J. Drug Policy 2016, 37, 107–110. [Google Scholar] [CrossRef] [PubMed]
- International Conference on Harmonization (ICH). ICH Harmonized Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2 (R1), November 2005. Available online: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf (accessed on 16 October 2017).
- Nikićević, N.; Tešević, V. Possibilities for methanol content reduction in plum brandy. J. Agric. Sci. Belgrade 2005, 50, 49–60. [Google Scholar] [CrossRef]
- Pereira, E.V.S.; Oliveira, S.P.A.; Nóbrega, I.C.C.; Lachenmeier, D.W.; Araújo, A.C.P.; Telles, D.L.; Silva, M. Brazilian vodkas have undetectable levels of ethyl carbamate. Quim. Nova 2013, 36, 822–825. [Google Scholar] [CrossRef]
- Cole, V.C.; Noble, A.C. Flavour Chemistry. In Fermented Beverage Production; Lea, A.G.H., Piggott, J.R., Eds.; Springer: Boston, MA, USA, 2003; pp. 393–412. [Google Scholar]
- Lachenmeier, D.W.; Schoeberl, K.; Kanteres, F.; Kuballa, T.; Sohnius, E.-M.; Rehm, J.; Alcohol Measures for Public Health Research Alliance (AMPHORA). Is contaminated unrecorded alcohol a health problem in the European Union? A review of existing and methodological outline for future studies. Addiction 2011, 106, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. Principles and Practices of Winemaking; Springer: Boston, MA, USA, 1999. [Google Scholar]
- Falqué, E.; Fernández, E.; Dubourdieu, D. Differentiation of white wines by their aromatic index. Talanta 2001, 54, 271–281. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Monakhova, Y.B.; Rehm, J. Influence of unrecorded alcohol consumption on liver cirrhosis mortality. World J. Gastroenterol. 2014, 20, 7217–7222. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Haupt, S.; Schulz, K. Defining maximum levels of higher alcohols in alcoholic beverages and surrogate alcohol products. Regul. Toxicol. Pharmacol. 2008, 50, 313–321. [Google Scholar] [CrossRef] [PubMed]
- MacNamara, K.; Hoffmann, A. Gas chromatographic technology in analysis of distilled spirits. Dev. Food Sci. 1998, 39, 303–346. [Google Scholar]
- Pérez-Palacios, T.; Petisca, C.; Henriques, R.; Ferreira, I.M. Impact of cooking and handling conditions on furanic compounds in breaded fish products. Food Chem. Toxicol. 2013, 55, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulou, A.A.; Flouros, A.I.; Demertzis, P.G.; Akrida-Demertzi, K. Differences in concentration of principal volatile constituents in traditional Greek distillates. Food Control 2005, 16, 157–164. [Google Scholar] [CrossRef]
- Papas, R.K.; Sidle, J.E.; Wamalwa, E.S.; Okumu, T.O.; Bryant, K.L.; Goulet, J.L.; Maisto, S.A.; Braithwaite, R.S.; Justice, A.C. Estimating alcohol content of traditional brew in western Kenya using culturally relevant methods: The case for cost over volume. AIDS Behav. 2010, 14, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Leitz, J.; Schoeberl, K.; Kuballa, T.; Straub, I.; Rehm, J. Quality of illegally and informally produced alcohol in Europe: Results from the AMPHORA project. Adicciones 2011, 23, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Rehm, J.; Kailasapillai, S.; Larsen, E.; Rehm, M.X.; Samokhvalov, A.V.; Shield, K.D.; Roerecke, M.; Lachenmeier, D.W. A systematic review of the epidemiology of unrecorded alcohol consumption and the chemical composition of unrecorded alcohol. Addiction 2014, 109, 880–893. [Google Scholar] [CrossRef] [PubMed]
Parameter | Component | |||||||
---|---|---|---|---|---|---|---|---|
EtOH | Acetaldehyde | Acetic Acid | MeOH | Ethyl Acetate | 1-Propanol | Isobutanol | Isopentanol | |
LOD a | 0.02 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.03 |
LOQ a | 0.07 | 0.08 | 0.05 | 0.04 | 0.07 | 0.09 | 0.06 | 0.08 |
Precision b | 1.8 | 3.2 | 2.6 | 1.1 | 3.4 | 3.1 | 3.7 | 2.1 |
Recovery c | 100.2 | 100.5 | 100.4 | 102 | 98 | 101.3 | 99.5 | 98.7 |
Sample | Alcoholic Strength (% vol at 20 °C) | pH | mg/100 mL Pure Alcohol (p.a.) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Acetaldehyde | Acetic Acid | Methanol | Ethyl Acetate | 1-Propanol | Isobutanol | Isopentanol | Higher Alcohols | |||
K01 | 66.1 ± 0.22 | 3.3 | 58.6 | 29.6 | 1.7 | 0.8 | 12.9 | 7.4 | 93.2 | 114 |
K02 | 85.8 ± 0.32 | 3.8 | 44.5 | 32.2 | 1.8 | 0.3 | 4.3 | 2.4 | 25.5 | 32 |
K03 | 76.0 ± 0.17 | 3.9 | 32.6 | 13.3 | 2.5 | 0.3 | 12.8 | 4.6 | 124.8 | 142 |
K04 | 58.7 ± 0.25 | 3.7 | 100.6 | 43.6 | 5.1 | 2.5 | 23.2 | 11.4 | 160.6 | 195 |
K05 | 63.6 ± 0.36 | 3.7 | 101.0 | 46.2 | 3.2 | 3.1 | 27.8 | 14.1 | 191.9 | 234 |
K06 | 60.5 ± 0.59 | 3.8 | 46.6 | 20.5 | 4.4 | 3.9 | 22.6 | 13.3 | 229.2 | 265 |
K07 | 72.7 ± 0.33 | 3.9 | 36.0 | 3.6 | 4.2 | 1.5 | 37.7 | 5.7 | 279.8 | 323 |
K08 | 48.8 ± 0.38 | 3.8 | 34.8 | 12.2 | 4.2 | 2.3 | 13.3 | 14.5 | 306.5 | 334 |
K09 | 68.8 ± 0.10 | 4.2 | 24.8 | 21.0 | 1.9 | 1.1 | 2.0 | 13.4 | 71.9 | 87 |
K10 | 49.7 ± 027 | 3.7 | 1.1 | 2.7 | ND | 0.3 | 2.2 | 1.0 | 17.8 | 21 |
K11 | 62.5 ± 0.20 | 3.8 | 0.3 | 0.1 | ND | 0.2 | 2.6 | 1.1 | 25.8 | 29 |
K12 | 45.5 ± 0.23 | 3.7 | 0.8 | 1.0 | 0.1 | 0.2 | 2.0 | 1.0 | 15.5 | 18 |
K13 | 59.7 ± 0.11 | 3.9 | 0.5 | 1.2 | 0.3 | 0.2 | 1.9 | 2.7 | 63.9 | 69 |
K14 | 70.7 ± 0.62 | 3.8 | 1.5 | 1.1 | ND | ND | 1.6 | 0.9 | 8.2 | 11 |
K15 | 58.0 ± 0.69 | 3.6 | 3.2 | 2.7 | 0.2 | 0.2 | 1.3 | 0.9 | 15.8 | 18 |
K16 | 53.3 ± 0.48 | 3.6 | 3.6 | 2.4 | 0.4 | 0.2 | 1.7 | 0.7 | 13.2 | 16 |
K17 | 76.9 ± 0.92 | 4.1 | 2.1 | 0.3 | 0.4 | 0.2 | 2.0 | 0.9 | 14.1 | 17 |
K18 | 59.1 ± 0.63 | 3.9 | 1.7 | 0.9 | 0.1 | 0.2 | 1.2 | 1.2 | 26.9 | 29 |
K19 | 42.8 ± 0.56 | 3.6 | 2.0 | 0.7 | 0.1 | ND | 1.0 | 0.7 | 15.8 | 18 |
K20 | 59.0 ± 0.34 | 3.9 | 1.7 | 2.2 | 0.5 | 0.2 | 2.3 | 0.9 | 14.9 | 18 |
K21 | 68.1 ± 0.11 | 4.2 | 0.6 | 0.3 | 0.8 | ND | 5.1 | 0.9 | 16.9 | 23 |
K22 | 76.2 ± 0.63 | 4.2 | 0.6 | 0.1 | 0.9 | ND | 6.5 | 1.1 | 23.9 | 31 |
K23 | 63.6 ± 0.51 | 3.9 | 0.9 | 0.7 | 0.5 | 0.1 | 2.2 | 2.2 | 59.9 | 64 |
K24 | 49.7 ± 0.55 | 3.9 | 0.8 | 0.2 | 0.5 | ND | 3.6 | 0.5 | 10.5 | 15 |
K25 | 54.6 ± 0.85 | 4.1 | 0.5 | 0.4 | 0.3 | ND | 2.0 | 0.5 | 7.6 | 10 |
K26 | 74.4 ± 0.11 | 3.9 | 0.7 | 0.4 | 0.5 | 0.9 | 2.0 | 0.8 | 15.3 | 18 |
K27 | 66.6 ± 0.40 | 3.8 | 0.4 | 0.6 | 0.5 | 0.2 | 2.1 | 0.9 | 26.1 | 29 |
K28 | 51.6 ± 0.39 | 3.3 | 2.4 | 2.8 | 0.1 | 0.3 | 1.2 | 0.5 | 9.2 | 11 |
Range | 42.8–85.8 | 3.3–4.2 | 0.3–101 | 0.1–46 | ND–5.1 | ND–3.9 | 1.0–37.7 | 0.5–14.5 | 7.6–307 | 10–334 |
Median | 61.5 | 3.8 | 1.9 | 1.7 | 0.5 | 0.3 | 2.2 | 1.0 | 24.7 | 29.3 |
Mean | 62.3 ± 10.64 | 3.8 | 18.0 | 8.7 | 1.4 | 0.9 | 7.2 | 3.8 | 67.3 | 78.3 |
P95 | 81.8 | 4.2 | 85.9 | 39.6 | 4. 3 | 3.1 | 26.2 | 13.8 | 262.1 | 302.9 |
Kenyan limit | 35–57 | - | 126.4 | - | 5 | 580 * | - | - | - | - |
Sample | Type | Alcoholic Strength (% vol at 20 °C) | pH | mg/100 mL Pure Alcohol | |
---|---|---|---|---|---|
Methanol | Isopentanol | ||||
C02 | Gin | 41.7 ± 0.32 | 7.6 | 1.0 | ND |
C03 | Vodka | 28.3 ± 0.19 | 7.8 | 0.4 | ND |
C07 | Brandy | 45.8 ± 0.33 | 4.8 | ND | ND |
C08 | Brandy | 49.1 ± 0.38 | 4.8 | 0.1 | ND |
C13 | Vodka | 56.7 ± 0.15 | 7.7 | ND | ND |
C14 | Vodka | 49.7 ± 0.49 | 8.5 | ND | ND |
C16 | Brandy | 56.1 ± 0.42 | 4.4 | 0.1 | 1.7 |
C17 | Vodka | 50.4 ± 0.90 | 8.1 | 0.04 | ND |
C23 | Vodka | 57.2 ± 0.52 | 8.8 | 0.6 | ND |
C24 | Gin | 51.3 ± 0.47 | 8.4 | 0.4 | ND |
C25 | Vodka | 48.7 ± 0.34 | 7.7 | ND | ND |
Sample | Sample Composition | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ACA | ACO | ACT | 2,3-Bu | ACON | ECPL | ECPN | FA | Suc | EL | EPT | |
RT (min) | 5.3 | 5.8 | 6.2 | 7.0 | 11.7 | 13.7 | 16.9 | 17.2 | 17.4 | 20.3 | 28.8 |
K01 | - | - | - | - | - | - | - | - | - | - | - |
K02 | + | - | - | - | - | - | - | - | - | - | - |
K03 | - | - | - | - | - | - | - | - | - | - | - |
K04 | - | - | - | - | - | + | + | - | + | - | - |
K05 | - | - | - | - | - | - | + | - | - | - | - |
K06 | - | - | - | - | - | - | + | - | - | - | - |
K07 | + | - | - | - | + | - | + | + | - | + | + |
K08 | + | - | - | - | - | - | - | - | + | - | - |
K09 | - | - | - | - | - | - | - | + | - | - | - |
K10 | - | - | - | - | - | - | + | + | - | - | - |
K11 | + | - | - | - | - | - | + | - | - | + | - |
K12 | + | - | - | - | + | - | - | - | - | - | - |
K13 | + | - | - | - | - | - | - | - | - | - | - |
K14 | - | - | - | - | - | - | + | + | + | + | - |
K15 | - | - | - | - | - | - | + | - | + | - | - |
K16 | - | - | - | - | - | - | + | - | + | - | - |
K17 | + | - | - | - | - | - | + | - | - | + | - |
K18 | + | - | - | - | - | - | + | - | + | + | - |
K19 | + | - | - | - | - | - | - | + | - | - | - |
K20 | - | - | - | - | - | - | + | + | - | + | - |
K21 | + | + | + | + | - | - | + | + | - | + | + |
K22 | + | + | + | + | + | + | + | - | - | + | + |
K23 | + | + | + | + | + | - | + | + | - | - | - |
K24 | + | + | + | + | + | - | + | + | - | - | - |
K25 | + | + | + | + | + | - | + | + | - | + | - |
K26 | + | - | - | + | - | - | + | - | - | - | - |
K27 | + | - | - | + | - | - | + | - | - | - | - |
K28 | + | - | - | + | - | + | - | + | - | - | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okaru, A.O.; Abuga, K.O.; Kibwage, I.O.; Lachenmeier, D.W. High Ethanol Contents of Spirit Drinks in Kibera Slums, Kenya: Implications for Public Health. Foods 2017, 6, 89. https://doi.org/10.3390/foods6100089
Okaru AO, Abuga KO, Kibwage IO, Lachenmeier DW. High Ethanol Contents of Spirit Drinks in Kibera Slums, Kenya: Implications for Public Health. Foods. 2017; 6(10):89. https://doi.org/10.3390/foods6100089
Chicago/Turabian StyleOkaru, Alex O., Kennedy O. Abuga, Isaac O. Kibwage, and Dirk W. Lachenmeier. 2017. "High Ethanol Contents of Spirit Drinks in Kibera Slums, Kenya: Implications for Public Health" Foods 6, no. 10: 89. https://doi.org/10.3390/foods6100089
APA StyleOkaru, A. O., Abuga, K. O., Kibwage, I. O., & Lachenmeier, D. W. (2017). High Ethanol Contents of Spirit Drinks in Kibera Slums, Kenya: Implications for Public Health. Foods, 6(10), 89. https://doi.org/10.3390/foods6100089