Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium
Abstract
:1. Introduction
2. Protein Demand
3. Existing Protein Sources
3.1. Plant Based Protein (Cereals)
3.2. Meat
3.3. Dairy
- (1)
- total milk protein: milk protein concentrate (MPC); isolate (MPI); hydrolysate (MPH);
- (2)
- casein-based: caseinates from acid or rennet source (as sodium or calcium salts) and micellar casein; and
- (3)
- whey-based: whey powder; demineralized whey powder (DWP); whey protein concentrate (WPC); whey protein isolate (WPI); whey protein hydrolysate (WPH).
4. New and Emerging Sources of Protein
4.1. Plant-Derived Protein (Pulses)
4.2. Insect
4.3. Algae
5. Muscle protein sources
5.1. Fish
5.2. In Vitro Meat
6. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations. 2015 Revision of World Population Prospects, United Nations. Available online: https://esa.un.org/unpd/wpp/publications/files/keyfindingswpp2015.pdf (accessed on 25 April 2016).
- Westhoek and Colleagues. Available online: http://www.fao.org/fileadmin/user_upload/animalwelfare/Protein_Puzzle_web_1.pdf (accessed on 17 July 2017).
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Van Zanten, H.H.E.; Mollenhorst, H.; Klootwijk, C.W.; van Middelaar, C.E.; de Boer, I.J.M. Global food supply: Land use efficiency of livestock systems. Int. J. Life Cycle Assess. 2016, 21, 747–758. [Google Scholar] [CrossRef]
- Delgado, C.L. Rising consumption of meat and milk in developing countries has created a new food revolution. J. Nutr. 2003, 133, 3907S–3910S. [Google Scholar] [PubMed]
- Popkin, B.M.; Adair, L.S.; Nq, S.W. Global Nutrition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Kearney, J. Food consumption trends and driver. Philos. Trans. R. Soc. 2014, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- FAO. Mapping Supply and Demand for Animal-Source Foods to 2030, Animal Production and Health Working Paper; FAO: Rome, Italy, 2011. [Google Scholar]
- Veldhorst, M.; Smeets, A.; Soenen, S.; Hochstenbach-Waelen, A.; Hursel, R.; Diepvens, K.; Lejeune, M.; Luscombe-Marsh, N.; Westerterp-Plantenga, M. Protein-induced satiety: Effects and mechanisms of different proteins. Physiol. Behav. 2008, 94, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Klunder, H.C.; Wolkers-Rooijackers, J.C.M.; Korpela, J.M.; Nout, M.J.R. Microbiological aspects of processing and storage of edible insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Bühler. Background Report. Available online: https://www.buhlergroup.com/global/en/downloads/Background_Report_Proteins.pdf (accessed on 2 March 2017).
- FAO. The State of Food Insecurity in the World, Addressing Food Insecurity in Protracted Crises; FAO: Rome, Italy, 2010. [Google Scholar]
- Van der Spiegel, M.; Noordam, M.Y.; van der Fels-Klerx, H.J. Safety of novel protein sources (insects, microalgae, seaweed, duckweed and rapeseed) and legislative aspects for application in food and feed production. Compr. Rev. Food Sci. Food Saf. 2013, 12, 662–678. [Google Scholar] [CrossRef]
- Shewry, P.R.; Halford, N.G. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 2002, 53, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Cunsolo, V.; Muccilli, V.; Saletti, R.; Foti, S. Mass spectrometry in the proteome analysis of mature cereal kernels. Mass Spectrom. Rev. 2012, 31, 448–465. [Google Scholar] [CrossRef] [PubMed]
- Jansen, G.R.; DiMaio, L.R.; Hause, N.L. Cereal proteins: Amino acid composition and lysine supplementation of TEFF. J. Agric. Food Chem. 1962, 10, 62–64. [Google Scholar] [CrossRef]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bánziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307. [Google Scholar] [CrossRef]
- Cavazos, A.; Gonzalez de Mejia, E. Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Compr. Rev. Food Sci. Food Saf. 2013, 12, 364–380. [Google Scholar] [CrossRef]
- Klose, C.; Schehl, B.D.; Arendt, E.K. Fundamental study on protein changes taking place during malting of oats. J. Cereal Sci. 2009, 49, 83–91. [Google Scholar] [CrossRef]
- Shih, F.; Daigle, K. Preparation and characterization of rice protein isolates. J. Am. Oil Chem. Soc. 2000, 77, 885–889. [Google Scholar] [CrossRef]
- Sylvester-Bradley, R.; Folkes, B.F. Cereal grains: Their protein components and nutritional quality. Sci. Prog. Oxf. 1976, 63, 241–263. [Google Scholar]
- Hernández-Ledesma, B.; Del Mar Contreras, M.; Recio, I. Antihypertensive peptides: Production, bioavailability and incorporation into foods. Adv. Colloid Interface Sci. 2011, 165, 23–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobbetti, M.; Minervini, F.; Rizzello, C.G. Angiotensin I-converting enzyme-inhibitory and antimicrobial bioactive peptides. Int. J. Dairy Technol. 2004, 57, 173–188. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Aluko, R.E. Food protein-derived bioactive peptides: Production, processing, and potential health benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef] [PubMed]
- Iwaniak, A.; Dziuba, J. Animal and plant proteins as precursors of peptides with ACE Inhibitory Activity—An in silico strategy of protein evaluation. Food Technol. Biotechnol. 2009, 47, 441–449. [Google Scholar]
- Malaguti, M.; Dinelli, G.; Leoncini, E.; Bregola, V.; Bosi, S.; Cicero, A.F.G.; Hrelia, S. Bioactive peptides in cereals and legumes: Agronomical, biochemical and clinical aspects. Int. J. Mol. Sci. 2014, 15, 21120–21135. [Google Scholar] [CrossRef] [PubMed]
- Pihlanto, A.; Mäkinen, S. Antihypertensive properties of plant protein derived peptides. In Bioactive Food Peptides in Health and Disease; Intech: Rijeka, Croatia, 2013. [Google Scholar]
- Gangopadhyay, N.; Wynne, K.; O’Connor, P.; Gallagher, E.; Brunton, N.P.; Rai, D.K.; Hayes, M. In silico and in vitro analysis of the angiotensin-I-converting enzyme inhibitory activity of hydrolysates generated from crude barley (Hordeum. vulgare) protein concentrates. Food Chem. 2016, 203, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Forum for the Future. The Future of Protein: The Protein Challenge 2040. Shaping the Future of Food. Available online: https://www.forumforthefuture.org/sites/default/files/TheProteinChallenge2040SummaryReport.pdf (accessed on 3 May 2017).
- Henchion, M.; McCarthy, M.; Resconi, V.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosegrant, M.W.; Paisner, M.S.; Meijer, S.; Witcover, J. Global Food Projections to 2020: Emerging Trends and Alternative Futures; IFPRI: Washington, DC, USA, 2001; Volume xvi, p. 206. [Google Scholar]
- OECD/FAO 2013. OECD-FAO Agricultural Outlook 2013–2022. Available online: http://www.oecd.org/berlin/OECD-FAO%20Highlights_FINAL_with_Covers%20(3).pdf (accessed on 17 July 2017).
- Henchion, M.; De Backer, C.; Hudders, L. Ethical and sustainable aspects of meat production; Consumer perceptions and system credibility. In Meat Quality Aspects: From Genes to Ethics; Purslow, P., Ed.; Elsevier: Cambridge, MA, USA, 2017. [Google Scholar]
- Kanerva, M. Meat Consumption in Europe: Issues, Trends and Debates; Artec-Paper 187; Universität Bremen: Bremen, Germany, 2013; p. 58. ISSN 1613-4907. [Google Scholar]
- WRAP. Food Futures: From Business as Usual to Business Unusual. Available online: http://www.wrap.org.uk/content/food-futures (accessed on 12 March 2017).
- Uauy, R.; Waage, J. Feeding the world healthily: The challenge of measuring the effects of agriculture on health. Philos. Trans. R. Soc. B 2010, 365, 3083–3097. [Google Scholar]
- Gerber, P.J.; Mottet, A.; Opio, C.I.; Falcucci, A.; Teillard, F. Environmental impacts of beef production: Review of challenges and perspectives for durability. Meat Sci. 2015, 109, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Bax, M.-L.; Buffière, C.; Hafnaoui, N.; Gaudichon, C.; Savary-Auzeloux, I.; Dardevet, D.; Santé-Lhoutellier, V.; Rémond, D. Effects of meat cooking, and of ingested amount, on protein digestion speed and entry of residual proteins into the colon: A study in minipigs. PLoS ONE 2013, 8, e61252. [Google Scholar] [CrossRef] [PubMed]
- Berner, L.K.; Miller, D.D.; VanCampen, D. Availability to rats of iron in ferric hydroxide polymers. J. Nutr. 1985, 115, 1042. [Google Scholar] [PubMed]
- Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2006, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Consumption of Red Meat and Processed Meat; IARC Working Group: Lyon, France, 2015. [Google Scholar]
- De Smet, S.; Voosen, E. Meat: The balance between nutrition and health. A review. Meat Sci. 2016, 120, 145–156. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, L.E.; Kim, J.E.; Campbell, W.W. Total red meat intake >0.5 servings/d does not negatively influence cardiovascular disease risk factors: A systemically searched meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2016, 105, 57–69. [Google Scholar] [CrossRef]
- Wu, G.Y.; Fanzo, J.; Miller, D.D.; Pingali, P.; Post, M.J.; Steiner, J.L.; Thalacker-Mercer, A.E. Production and supply of high-quality food protein for human consumption: Sustainability, challenges, and innovations. Ann. N. Y. Acad. Sci. 2014, 1321, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Beausire, R.L.W.; Patel, S.; Patel, H. Innovative uses of milk protein concentrates in product development. J. Food Sci. 2015, 80, A23–A29. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.E.; Alexander, D.D.; Perez, V. Effects of whey protein and resistance exercise on body composition: A meta-analysis of randomized controlled trials. J. Am. Coll. Nutr. 2014, 33, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Coker, R.H.; Miller, S.; Schutzler, S.; Deutz, N.; Wolfe, R.R. Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals. J. Nutr. 2012, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Markus, C.R.; Olivier, B.; Panhuysen, G.E.; Van der Gugten, J.; Alles, M.S.; Tuiten, A.; Westenberg, H.E.; Fekkes, D.; Koppeschaar, H.F.; de Haan, E.E. The bovine protein a-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress. Am. J. Clin. Nutr. 2000, 71, 1536–1544. [Google Scholar] [PubMed]
- Rutherfurd, S.M.; Moughan, P.J. Digestible reactive lysine in selected milk-based products. J. Dairy Sci. 2005, 88, 40–48. [Google Scholar]
- Van Kernebeek, M.R.J.; Oosting, S.J.; Van Ittersum, M.K.; Bikker, P.; De Boer, I.J.M. Saving land to feed a growing population: Consequences for consumption of crop and livestock products. Int. J. Life Cycle Assess. 2016, 21, 677–687. [Google Scholar] [CrossRef]
- Capper, J.L.; Cady, R.A.; Bauman, D.E. The environmental impact of dairy production: 1944 compared to 2007. J. Anim. Sci. 2009, 87, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization: Rome, Italy, 2013. [Google Scholar]
- Teagasc. Teagasc Technology Foresight 2035: Technology Transforming Irish Agri-Food and Bioeconomy. Available online: https://www.teagasc.ie/media/website/publications/2016/Teagasc-Technology-Foresight-Report-2035.pdf (accessed on 17 July 2017).
- Flysjö, A.; Thrane, M.; Hermansen, J.E. Method to assess the carbon footprint at product level in the dairy industry. Int. Dairy J. 2014, 34, 86–92. [Google Scholar] [CrossRef]
- Vergé, X.P.C.; Maxime, D.; Dyer, J.A.; Desjardins, R.L.; Arcand, Y.; Vanderzaag, A. Carbon footprint of Canadian dairy products: Calculations and issues. J. Dairy Sci. 2013, 96, 6091–6104. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’Donovan, M.; Dillon, P.; Ross, R.P.; Stanton, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 2016, 99, 9440. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, T.F.; Faulkner, H.; McAuliffe, S.; O’Sullivan, M.G.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; Stanton, C.; Ross, R.P. Quality characteristics, chemical composition, and sensory properties of butter from cows on pasture versus indoor feeding systems. J. Dairy Sci. 2016, 99, 9441–9460. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, Y.; Wu, N.; Lan, C.Q. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 2008, 79, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Elorinne, A.-L.; Alfthan, G.; Erlund, I.; Kivimäki, H.; Paju, A.; Salminen, I.; Turpeinen, U.; Voutilainen, S.; Laakso, J. Food and nutrient intake and nutritional status of Finnish vegans and non-vegetarians. PLoS ONE 2016, 11, e0148235. [Google Scholar] [CrossRef] [PubMed]
- Campos-Vega, R.; Loarca-Piña, G.; Oomah, B.D. Minor components of pulses and their potential impact on human health. Food Res. Int. 2010, 43, 461–482. [Google Scholar] [CrossRef]
- Thompson, L.U. Potential health benefits and problems associated with antinutrients in foods. Food Res. Int. 1993, 26, 131–149. [Google Scholar] [CrossRef]
- USDA National Nutrient Dabase For Standard Reference for What We Eat in America, NHANES (Survey-SR). Available online: https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/usda-national-nutrient-database-for-standard-reference-dataset-for-what-we-eat-in-america-nhanes-survey-sr/ (accessed on 27 March 2017).
- Alonso, R.; Aguirre, A.; Marzo, F. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Singh, U.; Singh, B. Tropical grain legumes as important human foods. Econ. Bot. 1992, 46, 310–321. [Google Scholar] [CrossRef]
- Rossi-Fanelli, A.; Antonini, E.; Brunori, M.; Bruzzesi, M.; Caputo, A.; Satrani, K. Isolation of a monodisperse fraction from cottonseeds. Biochem. Biophys. Res. Commun. 1964, 15, 110. [Google Scholar] [CrossRef]
- Iqbal, A.M.; Wani, S.A.; Lone, A.A.; Nar, Z.A. Breeding for Quality Traits in Grain Legumes. 2006, pp. 1–20. Available online: https://www.researchgate.net/profile/Ajaz_Lone/publication/257645622_Breeding_for_Quality_Traits_in_Grain_Legumes/links/562b225408ae22b17031f063.pdf (accessed on 18 July 2017).
- Mubarak, A.E. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem. 2005, 89, 489–495. [Google Scholar] [CrossRef]
- Bhat, R.; Karim, A.A. Exploring the nutritional potential of wild and underutilised legumes. Compr. Rev. Food Sci. Food Saf. 2009, 8, 305–331. [Google Scholar] [CrossRef]
- Tresina, P.S.; Mohan, V.R. Assessment of nutritional and antinutritional potential of underutilised legumes of the genus MUCANA. Trop. Subtrop. Agroecosyst. 2013, 16, 155–169. [Google Scholar]
- Sreerama, Y.; Seshikala, V.; Pratape, V.; Singh, V. Nutrients and antinutrients in cowpea and horse gram flour in comparison to chickpea flour. Evaluation of their flour functionality. Food Chem. 2012, 131, 462–468. [Google Scholar] [CrossRef]
- Jongema, Y. World List of Edible Insects 2015. Wageningen Laboratory of Entomology, Wageningen University. Available online: https://www.wur.nl/upload_mm/7/4/1/ca8baa25-b035–4bd2–9fdc-a7df1405519aWORLD%20LIST%20EDIBLE%20INSECTS%202015.pdf (accessed on 2 March 2017).
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Food; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Borello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumer perspective on circular economy strategy for reducing waste. Sustainability 2017, 9, 141. [Google Scholar] [CrossRef]
- Oonicx, D.G.A.B.; de Boer, I.J.M. Environmental impact of the production of mealworms as a protein source for humans—A life cycle assessment. PLoS ONE 2012, 7, e51145. [Google Scholar]
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of insect use for feed and food: Life Cycle Assessment perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Illgner, P.; Nel, E. The Geography of Edible Insects in Sub-Saharan Africa: A study of the Mopane Caterpillar. Geogr. J. 2000, 166, 336–351. [Google Scholar] [CrossRef]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- Nonaka, K. Feasting on insects, invited review. Entomol. Res. 2009, 39, 304–312. [Google Scholar] [CrossRef]
- Rozin, P.; Fallon, A.E. A perspective on disgust. Psychol. Rev. 1987, 94, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Carrington, D. Insects Could be the Key to Meeting Food Needs of Growing Global Population. Available online: https://www.theguardian.com/environment/2010/aug/01/insects-food-emissions (accessed on 14 July 2017).
- Becker, E.W. Microalgae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Fleurence, J. Seaweed proteins; biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Sampels, S. Towards a more sustainable production of fish as an important source for human nutrition. J. Fish. Livest. Prod. 2014, 2, 119. [Google Scholar] [CrossRef]
- García-Vaquero, M.; Hayes, M. Red and green macroalgae for fish, animal feed and human functional food development. Food Rev. Int. 2016, 32. [Google Scholar] [CrossRef]
- Target, V.M.; Arnold, T.M. Mini review—Predicting the effect of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J. Phycol. 1998, 34, 195–205. [Google Scholar] [CrossRef]
- Vigani, M.; Parisi, C.; Rodriguez-Cerezo, E.; Barbosa, M.J.; Sijtsma, L.; Ploeg, M.; Enzing, C. Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends Food Sci. Technol. 2015, 42, 81–92. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of World Fisheries and Aquaculture Contributing to Food Security and Nutrition for All; FAO: Rome, Italy, 2016. [Google Scholar]
- Hanson, T. Economic analysis project rising returns for intensive biofloc shrimp system. Glob. Aquac. Advocate 2013, 16, 24–26. [Google Scholar]
- Hayes, M.; Mora, L.; Hussey, K.; Aluko, R.E. Boarfish protein recovery using the pH shift process and generation of protein hydrolysates with ACE-I and antihypertensive bioactivities in Spontaneously Hypertensive Rats (SHRs). Innov. Food Sci. Emerg. Technol. 2016, 37, 253–260. [Google Scholar] [CrossRef]
- Adeoti, I.A.; Hawboldt, K. A review of lipid extraction from fish processing by-product for use as biofuel. Biomass Bioenerg. 2014, 63, 330–340. [Google Scholar] [CrossRef]
- Abbey, L.; Glover-Amengor, M.; Atikpo, M.O.; Atter, A.; Toppe, J. Nutrient content of fish powder from low value fish and fish by-products. Food Sci. Nutr. 2016, 5, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M. Bioactive peptides and their potential use for the prevention of diseases associated with Alzheimers’ disease and mental health disorders: Food for Thought? Ann. Psychiatry Ment. Health 2014, 2, 1017. [Google Scholar]
- Sidhu, K.S. Health benefits and potential risks related to consumption of fish or fish oil. Regul. Toxicol. Pharmacol. 2003, 38, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Langelaan, M.L.P.; Boonen, K.J.M.; Polak, R.B.; Baaijens, F.P.T.; Post, M.J.; van der Schaft, D.W.J. Meet the new meat: Tissue engineered skeletal muscle. Trends Food Sci. Technol. 2010, 21, 59–66. [Google Scholar] [CrossRef]
- Mattick, C.S.; Landis, A.E.; Allenby, B.R. A case for systemic environmental analysis of cultured meat. J. Integr. Agric. 2015, 14, 249–254. [Google Scholar] [CrossRef]
- Verbeke, W.; Sans, P.; Van Loo, E.J. Challenges and prospects for consumer acceptance of cultured meat. J. Integr. Agric. 2015, 14, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Hocquette, J.-F. Is in vitro meat the solution for the future? Meat Sci. 2016, 120, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Wilks, M.; Phillips, C.J.C. Attitudes to In Vitro meat: A survey of potential consumers in the United States. PLoS ONE 2017, 12, e0171904. [Google Scholar] [CrossRef] [PubMed]
- Schader, C.; Muller, A.; Sciaballa, N.E.-H.; Hecht, J.; Isensee, A.; Erb, K.-H.; Smith, P.; Makkar, H.P.S.; Klocke, P.; Leiber, F.; et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 2015, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyland, J.J.; McCarthy, M.B.; Henchion, M.; McCarthy, S.N. Dietary emissions patterns and their effect on the overall climate impact of food consumption. Int. J. Food Sci. Technol. 2017. [Google Scholar] [CrossRef]
- Halloran, A.; Roos, N.; Eilenberg, J.; Cerutti, A.; Bruun, S. Life cycle assessment of edible insects for food protein: a review. Agron. Sustain. Dev. 2016, 36, 57. [Google Scholar] [CrossRef]
Scenario | Pop. (000,000) | Consumption g/capita/day | Tonnes/Annum | % Change from 202.352 m Tonnes |
---|---|---|---|---|
1: Existing population at current consumption levels but increased population at average protein consumption for developing world for 2009–2011 | 9.6 | 76 | 263,802,000 | +32% |
2: Existing population at current consumption levels but increased population at average protein consumption for the world for 2009–2011 | 9.6 | 80 | 267,160,000 | +33% |
3: Existing population at current consumption levels but increased population at average protein consumption for the developed world for 2009–2011 | 9.6 | 103 | 286,468,500 | +43% |
4: Entire population at current max. consumption levels | 9.6 | 103 | 360,912,000 | +78% |
5: Entire population at level required for sedentary adult | 9.6 | 50 2 | 175,200,000 | −13% |
Pulses | Protein Content | Pulses | Protein Content |
---|---|---|---|
Kidney bean | 23.58 [62,63] | Navy beans | 22.33 [62] |
Chickpea | 19.30 [62,64], 19.29 [65] | Gt. northern bean | 21.80 [62] |
Lentils | 25.80 [64], 26.1 [66] | French beans | 18.81 [62] |
Mung bean | 23.86 [62], 27.5 [67] | Winged beans | 29.65 [62] |
Mungo bean | 25.21 [62], 26.22 [65] | Hyacinth beans | 23.90 [62] |
Pigeon pea | 21.70 [62,65] | White beans | 23.36 [62,67] |
Peas | 24.55 [62], 19.3 [63] | Horse gram | 22.50 [68,69,70] |
Adzuki bean | 19.87 [62,71] | Cowpea | 23.85 [62,66], 24.1 [70] |
Black beans | 21.60 [62], 23.6 [64] | Navy beans | 22.33 [62] |
Lima beans | 21.46 [62] | Gt. Northern bean | 21.86 [62] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. https://doi.org/10.3390/foods6070053
Henchion M, Hayes M, Mullen AM, Fenelon M, Tiwari B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods. 2017; 6(7):53. https://doi.org/10.3390/foods6070053
Chicago/Turabian StyleHenchion, Maeve, Maria Hayes, Anne Maria Mullen, Mark Fenelon, and Brijesh Tiwari. 2017. "Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium" Foods 6, no. 7: 53. https://doi.org/10.3390/foods6070053
APA StyleHenchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods, 6(7), 53. https://doi.org/10.3390/foods6070053