Nutritional Characterization of Prosopis laevigata Legume Tree (Mesquite) Seed Flour and the Effect of Extrusion Cooking on its Bioactive Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Preparation of Mesquite Seed Flour
2.3. Seed Flour Chemical Composition
2.4. Seed Flour Amino Acid Profile
2.5. Seed Flour Extrusion
2.6. Preparation of Extracts
2.7. Total Phenolic Compounds
2.8. DPPH Radical Scavenging Capacity
2.9. Ultraviolet Analysis of Maillard Reaction Products (MRPs)
2.10. Flavonoids
2.11. Water Absorption Index (WAI), Water Solubility Index (WSI) and Expansion Index (EI)
2.12. Statistical Analysis
3. Results and Discussion
3.1. Mesquite Seed Flour Chemical Composition
3.2. Mesquite Seed Flour Amino Acids Profile
3.3. Total Phenolic Compounds, Radical Scavenging Capacity, and Absorbance at 290 nm
3.4. Flavonoids
3.5. Water Absorption Index (WAI), Water Solubility Index (WSI) and Expansion Index (EI)
4. Conclusions
Author Contributions
Conflicts of Interest
References
- FAO. Pulses: Nutritious Seeds for a Sustainable Future; FAO: Rome, Italy, 2016; ISBN 978-92-109463-1. [Google Scholar]
- Foyer, C.H.; Lam, H.; Nguyen, H.T.; Siddique, K.H.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 16112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2017, 54, 858–870. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Varoni, E. Pulses, Healthy, and Sustainable Food Sources for Feeding the Planet. Int. J. Mol. Sci. 2017, 18, 255. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.; Karim, A.A. Exploring the nutritional potential of wild and underutilized legumes. Compr. Rev. Food Sci. Food Saf. 2009, 8, 305–331. [Google Scholar] [CrossRef]
- Morales, P.; Berrios, J.; Varela, J.; Burbano, C.; Cuadrado, C.; Muzquiz, M.; Pedrosa, M. Novel fiber-rich lentil flours as snack-type functional foods: An extrusion cooking effect on bioactive compounds. Food Funct. 2015, 6, 3135. [Google Scholar] [CrossRef] [PubMed]
- El-Hady, E.A.; Habiba, R.A. Effect of soakingand extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT Food Sci. Technol. 2003, 36, 285–293. [Google Scholar] [CrossRef]
- Felker, P.; Takeoka, G.; Dao, L. Pod mesocarp flour of north and south american species of leguminous tree Prosopis (Mesquite): Composition and food applications. Food Rev. Int. 2013, 29, 49–66. [Google Scholar] [CrossRef]
- Sciammaro, L.; Ferrero, C.; Puppo, M.C. Chemical and nutritional properties of different fractions of Prosopis alba pods and seeds. Food Meas. 2015, 10, 103–112. [Google Scholar] [CrossRef]
- Bigne, F.; Romero, A.; Ferrero, C.; Puppo, M.C.; Guerrero, A. Rheological and microstructural study of wheat doughs partially replaced with Mesquite flour (Prosopis alba) and added with transglutaminase. Food Bioprocess Technol. 2017, 10, 819–830.11. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Quispe, C.; Soriano, M.P.; Theoduloz, C.; Jiménez-Aspée, F.; Pérez, M.J.; Cuello, A.S.; Isla, M.I. Chilean Prosopis Mesocarp Flour: Phenolic Profiling and Antioxidant Activity. Molecules 2015, 20, 7017–7033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisamen, B.; George, C.; Dietrich, D.; Genade, S. Cardioprotective and anti-hypertensive effects of Prosopis glandulosa in rat model of prediabetes. Cardiovasc. J. Afr. 2013, 24, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Young, J.E.; Nguyen, T.; Ly, C.; Jarman, S.; Diep, D.; Pham, C.; Pesek, J.J.; Matyska, M.T.; Takeoka, G.R. LC-MS characterization of Mesquite flour constituents. LC GC Eur. 2017, 30, 18–21. [Google Scholar]
- Cattaneo, F.; Costamagna, M.S.; Zampini, I.C.; Sayago, J.; Alberto, M.R.; Chamorro, V.; Isla, M.I. Flour from Prosopis alba cotyledons: A natural source of nutrient and bioactive phytochemicals. Food Chem. 2016, 208, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Batalla, L.; Hernández-Uribe, J.-P.; Román-Gutiérrez, A.D.; Cariño-Cortés, R.; Castro-Rosas, J.; Téllez-Jurado, A.; Gómez-Aldapa, C.A. Chemical and nutritional characterization of raw and thermal-treated flours of Mesquite (Prosopis laevigata) pods and their residual brans. CyTA J. Food 2018, 16, 444–451. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005; ISBN 0-935584-77-3. [Google Scholar]
- Li, P.; Zeng, Z.; Wang, D.; Xue, L.; Zhang, R.; Piao, X. Effects of the standardized ileal digestible lysine to metabolizable energy ratio on performance and carcass characteristics of growing-finishing pigs. J. Anim. Sci. Biotechnol. 2012, 3, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, H.; Klein, A.; Hurrell, R. Stability of tryptophan during food processing and storage. Br. J. Nutr. 1985, 53, 293–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuutila, A.M.; Kammiovirta, K.; Oksman-Caldentey, K.M. Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC. Food Chem. 2002, 76, 519–525. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, M.; Hu, J.; Zeng, S.; Bai, X. Correspondence analysis of antioxidant activity and UV-Vis absorbance of Maillard reaction products as related to reactants. LWT Food Sci. Technol. 2012, 46, 1–9. [Google Scholar] [CrossRef]
- Díaz-Batalla, L.; Widholm, J.M.; Fahey, J.C.; Castaño-Tostado, E.; Paredes-López, O. Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). J. Agric. Food Chem. 2006, 54, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, C.; Leonel, M.; Mischan, M.M. Effects of processing on physical properties of extruded snacks with blends of sour cassava starch and flaxseed flour. Food Sci. Technol. Camp. 2013, 33, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Grela, E.R.; Kiczorowska, B.; Samolińska, W.; Matras, J.; Kiczorowski, P.; Rybiński, W.; Hanczakowska, E. Chemical composition of leguminous seeds: Part I—Content of basic nutrients, amino acids, phytochemical compounds, and antioxidant activity. Eur. Food Res. Technol. 2017, 243, 1385–1395. [Google Scholar] [CrossRef]
- Khattab, R.Y.; Arntfield, S.D.; Nyachoti, C.M. Nutritional quality of legume seeds as affected by some physical treatments, Part 1: Protein quality evaluation. LWT Food Sci. Technol. 2009, 42, 1107–1112. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Gao, J.; Tong, P.; Yang, A.; Chen, H. Germination-assisted enzymatic hydrolysis can improve the quality of soybean protein. J. Food Sci. 2017, 82, 1814–1819. [Google Scholar] [CrossRef] [PubMed]
- FAO. Dietary Protein Quality Evaluation in Human Nutrition; Report of an FAO Expert Consultation; FAO Food and Nutrition Paper 92; FAO: Rome, Italy, 2013; ISBN 978-92-5-107417-6. [Google Scholar]
- Sahin, H.; Topuz, A.; Pischetsrieder, M. Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. Eur. Food Res. Technol. 2009, 30, 155–161. [Google Scholar] [CrossRef]
- Lund, M.N.; Ray, C.A. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. J. Agric. Food Chem. 2017, 65, 4537–4552. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.J.; Zampini, I.C.; Alberto, M.R.; Isla, M.I. Prosopis nigra mesocarp fine flour, a source of phytochemicals with potential effect on enzymes linked to metabolic syndrome, oxidative stress, and inflammatory process. J. Food Sci. 2018, 83, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Pegg, R.B. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 2008, 110, 865–878. [Google Scholar] [CrossRef]
- Magalhães, S.; Taveira, M.; Cabrita, A.; Fonseca, A.; Valentão, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Sadhukhan, P.; Saha, S.; Sil, P.C. An insight into the prophylactic effects of the leguminosae family plants against oxidative stress-induced pathophysiological conditions. React. Oxyg. Species 2018, 6, 220–247. [Google Scholar] [CrossRef]
- Arangoa, D.; Morohashic, K.; Yilmazc, A.; Kuramochid, K.; Pariharb, A.; Brahimajc, B.; Grotewoldc, E.; Doseff, A. Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proc. Natl. Acad. Sci. USA 2013, 110, E2153–E2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, U.J.; Cho, Y.; Choi, M. Apigenin ameliorates dyslipidemia, hepatic steatosis and insulin resistance by modulating metabolic and transcriptional profiles in the liver of high-fat diet-induced obese mice. Nutrients 2016, 8, 305. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, R.; Datt, M.; Liu, X.; Gupta, S. Dietary flavones as dual Inhibitors of DNA methyltransferases and histone methyltransferases. PLoS ONE 2016, 11, e162956. [Google Scholar] [CrossRef]
- Oikonomou, N.A.; Krokida, M.K. Literature data compilation of WAI and WSI of extrudate foods products. Int. J. Food Prop. 2011, 14, 199–240. [Google Scholar] [CrossRef]
- Natabirwa, H.; Muyonga, J.; Nakimbugwea, D.; Lungahoc, M. Physico-chemical properties and extrusion behaviour of selected common bean varieties. J. Sci. Food Agric. 2017, 98, 1492–1501. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 445–473. [Google Scholar] [CrossRef] [PubMed]
- Lazou, A.E.; Michailidis, P.A.; Thymi, S.; Krokida, M.K.; Bisharat, G.I. Structural properties of corn-legume based extrudates as a function of processing conditions and raw material characteristics. Int. J. Food Prop. 2007, 10, 721–738. [Google Scholar] [CrossRef]
- Patil, S.S.; Brennan, M.A.; Mason, S.L.; Brennan, C.S. The effects of fortification of legumes and extrusion on the protein digestibility of wheat based snack. Foods 2016, 5, 26. [Google Scholar] [CrossRef] [PubMed]
Component | g/100 g * |
---|---|
Moisture | 8.28 ± 0.15 |
Ash | 4.14 ± 0.03 |
Protein | 36.51 ± 0.36 |
Fat | 4.83 ± 0.04 |
Crude Fiber | 7.73 ± 0.46 |
NFE | 38.45 ± 0.66 |
AA | Seed Flour | * FAO, 2013 |
---|---|---|
Asp | 83.4 ± 1.27 | |
Thr | 29.8 ± 0.35 | 25 |
Ser | 48.1 ± 0.15 | |
Glu | 177.2 ± 2.08 | |
Pro | 62.6 ± 0.95 | |
Gly | 50.6 ± 0.05 | |
Ala | 43.1 ± 0.29 | |
Val | 34.8 ± 0.31 | 40 |
Ile | 29.2 ± 0.1 | 30 |
Leu | 69.1 ± 0.45 | 61 |
Tyr | 22.8 ± 0.61 | |
Phe | 35.6 ± 0.49 | |
His | 24.2 ± 0.3 | 16 |
Lys | 54.8 ± 0.41 | 48 |
Arg | 112.2 ± 1.93 | |
Cis | 25.9 ± 0.12 | |
Met | 9.1 ± 0.21 | |
Trp | 6.5 ± 0.22 | 6.6 |
Met + Cis | 34.9 ± 0.34 | 23 |
Phe + Tyr | 58.4 ± 1.10 | 41 |
Seed Flour * | Extruded Seed Flour * | |
---|---|---|
Total phenolics (mg GAE/g) | 6.68 ± 0.05 a | 6.46 ± 0.06 b |
DPPH (mg AAE/g) | 9.11 ± 0.11 a | 9.32 ± 0.12 b |
Abs 290 nm | 0.13 ± 0.01 a | 0.12 ± 0.01 a |
Apigenin (mg/kg) | 41.6 ± 0.51 a | 39.52 ± 0.47 b |
WAI | 2.53 ± 0.01 a | 3.47 ± 0.11 b |
WSI (%) | 36.36 ± 0.57 a | 30.52 ± 0.99 b |
Expansion index | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Batalla, L.; Hernández-Uribe, J.P.; Gutiérrez-Dorado, R.; Téllez-Jurado, A.; Castro-Rosas, J.; Pérez-Cadena, R.; Gómez-Aldapa, C.A. Nutritional Characterization of Prosopis laevigata Legume Tree (Mesquite) Seed Flour and the Effect of Extrusion Cooking on its Bioactive Components. Foods 2018, 7, 124. https://doi.org/10.3390/foods7080124
Díaz-Batalla L, Hernández-Uribe JP, Gutiérrez-Dorado R, Téllez-Jurado A, Castro-Rosas J, Pérez-Cadena R, Gómez-Aldapa CA. Nutritional Characterization of Prosopis laevigata Legume Tree (Mesquite) Seed Flour and the Effect of Extrusion Cooking on its Bioactive Components. Foods. 2018; 7(8):124. https://doi.org/10.3390/foods7080124
Chicago/Turabian StyleDíaz-Batalla, Luis, Juan P. Hernández-Uribe, Roberto Gutiérrez-Dorado, Alejandro Téllez-Jurado, Javier Castro-Rosas, Rogelio Pérez-Cadena, and Carlos A. Gómez-Aldapa. 2018. "Nutritional Characterization of Prosopis laevigata Legume Tree (Mesquite) Seed Flour and the Effect of Extrusion Cooking on its Bioactive Components" Foods 7, no. 8: 124. https://doi.org/10.3390/foods7080124
APA StyleDíaz-Batalla, L., Hernández-Uribe, J. P., Gutiérrez-Dorado, R., Téllez-Jurado, A., Castro-Rosas, J., Pérez-Cadena, R., & Gómez-Aldapa, C. A. (2018). Nutritional Characterization of Prosopis laevigata Legume Tree (Mesquite) Seed Flour and the Effect of Extrusion Cooking on its Bioactive Components. Foods, 7(8), 124. https://doi.org/10.3390/foods7080124