Measuring Thiols in Single Cultivar South African Red Wines Using 4,4-Dithiodipyridine (DTDP) Derivatization and Ultraperformance Convergence Chromatography-Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Sample Preparation
2.3. Instrumentation and Conditions
2.4. Analytic Method
2.4.1. Selectivity
2.4.2. Linearity
2.4.3. Precision and Accuracy
2.5. Samples
2.6. Statistical Analysis
3. Results
3.1. Method Performance
3.2. Thiol Levels in South African Red Wines
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Herbst-Johnstone, M.; Piano, F.; Duhamel, N.; Barker, D.; Fedrizzi, B. Ethyl propiolate derivatisation for the analysis of varietal thiols in wine. J. Chromatogr. A 2013, 1312, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Rigou, P.; Triay, A.; Razungles, A. Influence of volatile thiols in the development of blackcurrant aroma in red wine. Food Chem. 2014, 142, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Bouchilloux, P.; Darriet, P.; Henry, R.; Lavigne-Cruège, V.; Dubourdieu, D. Identification of volatile and powerful odorous thiols in Bordeaux red wine varieties. J. Agric. Food Chem. 1998, 46, 3095–3099. [Google Scholar] [CrossRef]
- Tominaga, T.; Blanchard, L.; Darriet, P.; Dubourdieu, D. A powerful aromatic volatile thiol, 2-furanmethanethiol, exhibiting roast coffee aroma in wines made from several Vitis vinifera grape varieties. J. Agric. Food Chem. 2000, 48, 1799–1802. [Google Scholar] [CrossRef] [PubMed]
- Naudé, Y.; Rohwer, E.R. Investigating the coffee flavour in South African Pinotage wine using novel offline olfactometry and comprehensive gas chromatography with time of flight mass spectrometry. J. Chromatogr. A 2013, 1271, 176–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piano, F.; Fracassetti, D.; Buica, A.; Stander, M.; Du Toit, W.J.; Borsa, D.; Tirelli, A. Development of a novel liquid/liquid extraction and ultra-performance liquid chromatography tandem mass spectrometry method for the assessment of thiols in South African Sauvignon Blanc wines. Aust. J. Grape Wine Res. 2015, 21, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, T.; Murat, M.L.; Dubourdieu, D. Development of a method for analyzing the volatile thiols involved in the characteristic aroma of wines made from Vitis vinifera L. Cv. sauvignon blanc. J. Agric. Food Chem. 1998, 46, 1044–1048. [Google Scholar] [CrossRef]
- Ferreira, V.; Ortín, N.; Cacho, J.F. Optimization of a procedure for the selective isolation of some powerful aroma thiols: Development and validation of a quantitative method for their determination in wine. J. Chromatogr. A 2007, 1143, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Capone, D.L.; Sefton, M.A.; Jeffery, D.W. Application of a modified method for 3-mercaptohexan-1-ol determination to investigate the relationship between free thiol and related conjugates in grape juice and wine. J. Agric. Food Chem. 2011, 59, 4649–4658. [Google Scholar] [CrossRef] [PubMed]
- Capone, D.L.; Ristic, R.; Pardon, K.H.; Jeffery, D.W. Simple quantitative determination of potent thiols at ultratrace levels in wine by derivatization and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. Anal. Chem. 2015, 87, 1226–1231. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, N.; Sasamoto, K.; Kishimoto, T. Development of a method for the quantitation of three thiols in beer, hop, and wort samples by stir bar sorptive extraction with in situ derivatization and thermal desorption–gas chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2015, 63, 6698–6706. [Google Scholar] [CrossRef] [PubMed]
- Pavez, C.; Agosin, E.; Steinhaus, M. Odorant screening and quantitation of thiols in carmenere red wine by gas chromatography-olfactometry and stable isotope dilution assays. J. Agric. Food Chem. 2016, 64, 3417–3421. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, L.E.; Ryona, I.; Pan, B.S.; Loscos, N.; Feng, H.; Cleary, M.T.; Sacks, G.L. Quantification of polyfunctional thiols in wine by HS-SPME-GC-MS following extractive alkylation. Molecules 2015, 20, 12280–12299. [Google Scholar] [CrossRef] [PubMed]
Time (min) | Flow (mL/min) | % A (CO2) | % B (MeOH) | Gradient Curve | |
---|---|---|---|---|---|
1 | Initial | 1.5 | 99 | 1 | |
2 | 2.7 | 1.5 | 92 | 8 | 5 |
3 | 4.5 | 1.5 | 90 | 10 | 8 |
4 | 5.0 | 1.5 | 70 | 30 | 6 |
5 | 5.5 | 1.5 | 70 | 30 | 6 |
6 | 5.7 | 1.5 | 99 | 1 | 6 |
7 | 7.0 | 1.5 | 99 | 1 | 6 |
Compound | Derivative | Retention Time (min) | MS/MS Transition (m/z) |
---|---|---|---|
3-mercaptohexyl acetate (3-MHA) | 3-MHA-DTDP | 1.47 | 286 → 111 |
286 → 144 | |||
2-furanmethanethiol (FMT) | FMT-DTDP | 1.52 | 224 → 79 |
224 → 143 | |||
4-mercapto-4-methylpentan-2-one (4-MMP) | 4-MMP-DTDP | 1.62 | 242 → 111 |
242 → 144 | |||
3-mercaptohexanol (3-MH) | 3-MH-DTDP | 3.08 | 244 → 111 |
244 → 144 | |||
6-mercaptohexanol (6-MH, IS) | 6-MH-DTDP | 3.20 | 244 → 111 |
244 → 144 |
Compound—Matrix | OT (ng/L) | Calibration Range (ng/L) | R2 | LOD (ng/L) | LOD * (ng/L) | LOQ (ng/L) | LOQ * (ng/L) | Repeatability ** (RSD%) | Accuracy (%) | |
---|---|---|---|---|---|---|---|---|---|---|
3-MH | MW | 60 | 50–2500 | 0.9691 | 3.8 | 6.4 | 22.6 | 21.0 | 18 | 101 |
WW | 0.9764 | 4.0 | 8.3 | 24.0 | 27.5 | 10 | 109 | |||
RW | 0.9911 | 3.5 | 10.6 | 21.2 | 35.4 | 9 | 95 | |||
3-MHA | MW | 4.2 | 25–1250 | 0.9697 | 2.3 | 2.2 | 13.9 | 7.4 | 11 | 102 |
WW | 0.9821 | 2.1 | 1.3 | 12.4 | 4.3 | 11 | 96 | |||
RW | 0.9800 | 3.4 | 2.2 | 10.2 | 7.2 | 13 | 119 | |||
4-MMP | MW | 0.8 | 2.5–125 | 0.9891 | 0.42 | 0.8 | 2.5 | 2.6 | 10 | 89 |
WW | 0.9833 | 0.20 | 0.9 | 1.2 | 3.1 | 12 | 85 | |||
RW | 0.9832 | 0.15 | 1.6 | 1.8 | 5.3 | 8 | 91 | |||
FMT | MW | 0.4 | 1–50 | 0.9307 | 0.13 | 0.7 | 0.8 | 2.3 | 9 | 114 |
WW | 0.9711 | 0.17 | 1.0 | 1.0 | 3.3 | 11 | 94 | |||
RW | 0.9495 | 0.13 | 1.5 | 1.7 | 5.0 | 9 | 101 |
Pinotage | Cabernet Sauvignon | Shiraz | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID (Vintage) | 3-MH | 3-MHA | 4-MMP | FMT | ID (Vintage) | 3-MH | 3-MHA | 4-MMP | FMT | ID (Vintage) | 3-MH | 3-MHA | 4-MMP | FMT |
PT1 (2015) | 215 | 7.6 | 1.6 | 11 | CS1 (2015) | 78 | 23.2 | 2.7 | 1.8 | SH1 (2017) | 111 | <LOD * | 2.1 | 2.9 |
PT2 (2015) | 141 | 6.9 | 1.0 | 3.8 | CS2 (2015) | 77 | 23.2 | 2.8 | 2.8 | SH2 (2016) | 110 | 5.6 | 0.7 * | 33.7 |
PT3 (2016) | 188 | 7.4 | 1.5 | 9.2 | CS3 (2016) | 81 | 23.7 | 2.8 | 5.3 | SH3 (2015) | 363 | <LOD * | 2.7 | 0.8 |
PT4 (2016) | 155 | 8.8 | 1.3 | 142 | CS4 (2016) | 93 | 23.3 | 2.7 | 1.0 | SH4 (2015) | 241 | 4.7 | 3.1 | 9.6 |
PT5 (2017) | 182 | 12.2 | 0.4 * | 162 | CS5 (2017) | 82 | 23.5 | 2.7 | 0.5 | SH5 (2017) | 176 | 8.4 | 2.3 | 36.3 |
PT6 (2016) | 224 | 9.6 | 1.7 | 8.8 | CS6 (2016) | 107 | 23.4 | 2.8 | 3.9 | SH6 (2014) | 232 | <LOD * | 2.5 | 15.8 |
PT7 (2017) | 214 | 9.1 | 1.1 | 1.5 | CS7 (2015) | 88 | 23.1 | 2.6 | 7.8 | SH7 (2015) | 106 | 5.3 | 1.4 | 5.5 |
PT8 (2016) | 164 | 7.4 | 0.9 | 0.9 | CS8 (2016) | 82 | 23.2 | 2.7 | 6.8 | SH8 (2015) | 133 | <LOD * | 2.3 | 2.9 |
PT9 (2017) | 246 | 8.7 | 1.6 | 12 | CS9 (2015) | 82 | 23.3 | 2.7 | 5.8 | SH9 (2015) | 131 | <LOD * | 2.2 | 4.3 |
PT10 (2016) | 311 | 7.9 | 1.3 | 26 | CS10 (2016) | 116 | 23.8 | 2.9 | 10 | SH10 (2014) | 76 | <LOD * | 2.3 | 5.3 |
PT11 (2016) | 226 | 6.8 | 0.9 | 148 | CS11 (2015) | 147 | 23.2 | 3.2 | 9.9 | SH11 (2017) | 209 | 5.6 | 2.2 | 8.7 |
PT12 (2017) | 138 | 10.6 | 0.4 * | 186 | CS12 (2014) | 86 | 23.0 | 2.6 | <LOD * | SH12 (2016) | 120 | <LOD * | 2.1 | 2.2 |
PT13 (2017) | 127 | 7.3 | 0.5 * | 5 | CS13 (2015) | 90 | 23.2 | 2.8 | 3.5 | SH13 (2015) | 265 | <LOD * | 2.8 | 1.8 |
PT14 (2016) | 151 | 9.4 | 2.4 | 112 | CS14 (2015) | 67 | 23.2 | 2.6 | 5.9 | SH14 (2015) | 246 | <LOD * | 2.5 | 6.4 |
PT15 (2016) | 141 | 6.7 | 0.7 * | 45 | CS15 (2016) | 77 | 23.1 | 2.6 | 2.9 | SH15 (2016) | 69 | 5.1 | <LOD * | 4.3 |
PT16 (2014) | 287 | 6.8 | 1.6 | 59 | CS16 (2016) | 94 | 23.1 | 2.8 | 2.0 | SH16 (2016) | 121 | <LOD * | 2.3 | 4.7 |
Average concentration | 194 ± 53 | 8.3 ± 1.5 | 1.2 ± 0.5 | 58 ± 65 | 90 ± 19 | 23.3 ± 0.2 | 2.8 ± 0.1 | 4.7 ± 2.9 | 169 ± 79 | 5.8 ± 1.2 | 2.1 ± 0.7 | 9.1 ± 10.4 | ||
Range (min–max) | 127–311 | 6.7–12.2 | 0.3–2.41 | 0.9–186 | 77–147 | 23.0–23.8 | 2.6–3.2 | 0.5–10.2 | 76–363 | 4.7–8.4 | 0.03–3.1 | 0.8–36.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mafata, M.; Stander, M.A.; Thomachot, B.; Buica, A. Measuring Thiols in Single Cultivar South African Red Wines Using 4,4-Dithiodipyridine (DTDP) Derivatization and Ultraperformance Convergence Chromatography-Tandem Mass Spectrometry. Foods 2018, 7, 138. https://doi.org/10.3390/foods7090138
Mafata M, Stander MA, Thomachot B, Buica A. Measuring Thiols in Single Cultivar South African Red Wines Using 4,4-Dithiodipyridine (DTDP) Derivatization and Ultraperformance Convergence Chromatography-Tandem Mass Spectrometry. Foods. 2018; 7(9):138. https://doi.org/10.3390/foods7090138
Chicago/Turabian StyleMafata, Mpho, Maria A. Stander, Baptiste Thomachot, and Astrid Buica. 2018. "Measuring Thiols in Single Cultivar South African Red Wines Using 4,4-Dithiodipyridine (DTDP) Derivatization and Ultraperformance Convergence Chromatography-Tandem Mass Spectrometry" Foods 7, no. 9: 138. https://doi.org/10.3390/foods7090138
APA StyleMafata, M., Stander, M. A., Thomachot, B., & Buica, A. (2018). Measuring Thiols in Single Cultivar South African Red Wines Using 4,4-Dithiodipyridine (DTDP) Derivatization and Ultraperformance Convergence Chromatography-Tandem Mass Spectrometry. Foods, 7(9), 138. https://doi.org/10.3390/foods7090138