Antioxidant and Phytochemical Studies of 31 Cowpeas (Vigna unguiculata (L. Walp.)) Genotypes from Burkina Faso
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction Method
2.3. Phenolic Content
2.3.1. Total Phenolic Content
2.3.2. Total Flavonoid Content
2.4. Antioxidant Activities
2.4.1. Ferric Reducing Antioxidant Power (FRAP) Assay
2.4.2. DPPH Radical Scavenging Activity
2.4.3. Assay of Nitric Oxide (NO) Scavenging Activity
2.4.4. Hydroxyl Radical Scavenging Activity (HRSA)
2.4.5. Lipid Peroxidation Inhibitory Assay
2.5. Statistical Analysis
3. Results and Discussion
3.1. Phytochemistry Analysis: Phenolic Content of Cowpea Varieties
3.2. Antioxidant Activities
3.3. Phenolics Contribution to the Antioxidants Activities
3.4. Seed Colour Contribution to the Antioxidant Activities and Phenolics Contents
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kapravelou, G.; Martínez, R.; Andrade, A.M.; Chaves, C.L.; López-Jurado, M.; Aranda, P.; Arrebola, F.; Cañizares, F.J.; Galisteo, M.; Porres, J.M. Improvement of the antioxidant and hypolipidaemic effects of cowpea flours (Vigna unguiculata) by fermentation: Results of in vitro and in vivo experiments. J. Sci. Food Agric. 2015, 95, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Nassourou, M.A.; Njintang, Y.N.; Nguimbou, R.M.; Bell, J.M. Genetics of seed flavonoid content and antioxidant activity in cowpea (Vigna unguiculata L. Walp.). Crop J. 2016, 4, 391–397. [Google Scholar] [CrossRef]
- Moreira-Araújo, R.S.; Silva, G.R.; Soares, R.A.; Arêas, J.A. Identification and quantification of antioxidant compounds in cowpea. Rev. Ciênc. Agron. 2017, 48, 799–805. [Google Scholar] [CrossRef]
- Mtolo, M.; Gerrano, A.; Mellem, J. Effect of simulated gastrointestinal digestion on the phenolic compound content and in vitro antioxidant capacity of processed Cowpea (V. unguiculata) cultivars. CyTA-J. Food 2017, 15, 391–399. [Google Scholar] [CrossRef]
- Perera, O.; Liyanage, R.; Weththasinghe, P.; Jayawardana, B.; Vidanarachchi, J.; Fernando, P.; Sivakanesan, R. Modulating effects of cowpea incorporated diets on serum lipids and serum antioxidant activity in Wistar rats. J. Natn. Sci. Found. Sri Lanka 2016, 44, 69–76. [Google Scholar] [CrossRef]
- Awika, J.M.; Duodu, K.G. Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: A review. J. Funct. Foods 2016. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, S.; Wang, H.; Cai, M. In vitro antioxidant activity of extracts from common legumes. Food Chem. 2014, 152, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Apea-Bah, F.B.; Serem, J.C.; Bester, M.J.; Duodu, K.G. Phenolic composition and antioxidant properties of koose, a deep-fat fried cowpea cake. Food Chem. 2017, 237, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardisation d’un extrait de propolis et identification des principaux constituants. J. Pharm. Belg. 1994, 49, 462–468. [Google Scholar] [PubMed]
- Sombié, P.A.E.D.; Hilou, A.; Mounier, C.; Coulibaly, A.; Kiendrebeogo, M.; Millogo, J.F.; Nacoulma, O.G. Antioxidant and anti-inflammatory activities from galls of Guiera senegalensis J.F. GMEL (Combretaceae). Res. J. Med. Plant 2011, 5, 448–461. [Google Scholar] [CrossRef]
- Parul, R.; Kundu, S.K.; Saha, P.; Bishwabidyalay, G. In vitro nitric oxide scavenging activity of methanol extracts of three Bangladeshi medicinal plants. Pharma Innov. J. 2013, 1, 83–88. [Google Scholar]
- Perjési, P.; Rozmer, Z. Kinetic analysis of some chalcones and synthetic chalcone analogues on the Fenton-reaction initiated deoxyribose degradation assay. Open Med. Chem. J. 2011, 5, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Jaishree, V.; Ramdas, N.; Sachin, J.; Ramesh, B. In vitro antioxidant properties of new thiazole derivatives. J. Saudi Chem. Soc. 2012, 16, 371–376. [Google Scholar] [CrossRef]
- Giusti, F.; Caprioli, G.; Ricciutelli, M.; Vittori, S.; Gianni, S. Determination of fourteen polyphenols in pulses by high performance liquid chromatography-diode array detection (HPLC-DAD) and correlation study with antioxidant activity and colour. Food Chem. 2017, 221, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Marathe, S.A.; Rajalakshmi, V.; Jamdar, S.N.; Sharma, A. Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food Chem. Toxicol. 2011, 49, 2005–2012. [Google Scholar] [CrossRef] [PubMed]
- Petchiammal, C.; Hopper, W. Antioxidant activity of proteins from fifteen varieties of legume seeds commonly consumed in India. Int. J. Pharm. Pharm. Sci. 2014, 6, 476–479. [Google Scholar] [CrossRef]
- Pal, A.; Kumar, M.; Saharan, V.; Bhushan, B. Anti-oxidant and free radical scavenging activity of ashwagandha (Withania somnifera L.) leaves. J. Glob. Biosci. 2015, 4, 1127–1137. [Google Scholar]
- Bajpai, V.K.; Agrawal, P. Studies on phytochemicals, antioxidant, free radical scavenging and lipid peroxidation inhibitory effects of Trachyspermum ammi seeds. Indian J. Pharm. Educ. Res. 2015, 49, 58–65. [Google Scholar] [CrossRef]
- Njoya, E.M.; Munvera, A.M.; Mkounga, P.; Nkengfack, A.E.; McGaw, L.J. Phytochemical analysis with free radical scavenging, nitric oxide inhibition and antiproliferative activity of Sarcocephalus pobeguinii extracts. BMC Complement. Altern. Med. 2017, 17, 1–9. [Google Scholar] [CrossRef]
- Uchegbu, N.N.; Ishiwu, C.N. Germinated Pigeon Pea (Cajanus cajan): A novel diet for lowering oxidative stress and hyperglycemia. Food Sci. Nutr. 2016, 4, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.J.; Chang, S.K.C. Comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2007, 72, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Coulibaly, A.Y.; Kiendrebeogo, M.; Kehoe, P.G.; Sombié, P.A.E.D.; Lamien, C.E.; Millogo, J.F.; Nacoulma, O.G. Antioxidant and anti-Inflammatory effects of Scoparia dulcis L. J. Med. Food 2011, 14, 1576–1582. [Google Scholar] [CrossRef] [PubMed]
- Salawu, S.O.; Bester, M.J.; Duodu, K.G. Phenolic composition and bioactive properties of cell wall preparations and whole grains of selected cereals and legumes. J. Food Biochem. 2014, 38, 62–72. [Google Scholar] [CrossRef]
- Yusri, N.M.; Chan, K.W.; Iqbal, S.; Ismail, M. Phenolic content and antioxidant activity of Hibiscus cannabinus L. seed extracts after sequential solvent extraction. Molecules 2012, 17, 12612–12621. [Google Scholar] [CrossRef] [PubMed]
Samples | Phytochemical Data | Antioxidant Powers | ||||||
---|---|---|---|---|---|---|---|---|
Cowpea Genotype | Seed Colour | Total Phenolic Content (mg GAE/100 g of Seeds dw) | Total Flavonoid Content (mg QE/100 g of Seeds dw) | DPPH (mg AAE/100 g of Seeds dw) | FRAP (mg QE/100 g of Seeds dw) | Lipid Peroxidation Leucithine Inhibition (%) | Hydroxyl Radical Scavenging Activity (%) | NO (mg AAE/100 g of Seeds dw) |
Gorom local | Brown | 265.07 ± 16.56 c,d | 22.05 ± 1.87 a,b | 9.97 ± 0.12 a,b,c | 123.67 ± 0.71 e,f | 82.40 ± 0.62 b,c | 51.62 ± 0.23 k,l | 3.60 ± 0.1 b,c |
58-57 | White | 75.29 ± 11.16 j,k | 11.65 ± 0.30 i,j,k | 6.55 ± 0.18 i | 61.02 ± 0.19 m,n,o,p | 42.56 ± 0.87 q | 60.78 ± 0.41 c | 3.75 ± 0.37 a,b,c |
CR06-07 | Red | 250.84 ± 19.79 d | 20.86 ± 0.55 a,b,c | 10.18 ± 0.15 a,b | 128.41 ± 1.85 e | 83.05 ± 1.06 b | 58.75 ± 0.23 d | 3.62 ± 0.24 b,c |
IT 81 D-994 | White | 72.03 ± 4.13 k,l | 14.23 ± 1.42 e,f,g,h,i,j | 8.46 ± 0.02 f,g,h | 53.32 ± 0.39 p,q | 54.29 ± 0.81 m | 58.00 ± 0.58 d,e | 4.30 ± 0.39 a |
IT 93 K-693-2 | Brown | 293.96 ± 4.70 c | 17.84 ± 0.68 b,c,d,e,f,g | 9.93 ± 0.2 a,b,c,d | 160.49 ± 11.91 d | 76.61 ± 0.21 d | 48.22 ± 0.59 m | 3.35 ± 0.07 c |
IT 97 K-489-35 | White | 91.44 ± 5.1 g,h,i,j,k,l | 16.53 ± 0.14 b,c,d,e,f,g,h,i | 8.24 ± 0.71 g,h | 63.31 ± 0.12 m,n,o | 58.87 ± 0.37 i,j,k | 50.70 ± 0.51 l | 3.30 ± 0.13 c |
IT 97K-573-2 (Yiisyandé) | White | 78.25 ± 22.38 j,k,l | 20.54 ± 1.00 a,b,c | 9.57 ± 0.2 a,b,c,d,e | 56.47 ± 2.27 o,p | 50.76 ± 1.26 o,p | 57.57 ± 0.2 d,e | 3.91 ± 0.34 a,b,c |
IT 98K-205-8 (Niizwé) | White | 80.47 ± 5.87 j,k,l | 19.98 ± 1.65 a,b,c,d,e | 9.76 ± 0.14 a,b.c.d.e | 100.22 ± 1.87 g | 65.88 ± 1.26 f,g,h | 56.46 ± 0.54 e,f,g,h | 3.85 ± 0.11 a,b,c |
Kondèsyoungo local | White | 127.88 ± 7.57 f,g,h | 17.33 ± 2.05 b,c,d,e,f,g,h,i | 10.13 ± 0.19 a,b | 90.83 ± 2.95 h,i | 67.02 ± 0.75 f | 52.96 ± 1.37 j,k | 3.62 ± 0.11 b,c |
KVx 30-309-6G | White | 87.44 ± 1.68 i,j,k,l | 10.66 ± 2.57 j,k | 10.04 ± 0.00 a,b | 55.79 ± 1.46 o,p | 41.77 ± 0.25 q | 55.12 ± 0.46 h,i | 3.73 ± 0.17 a,b,c |
KVx 396-4-5-2D | White | 63.14 ± 4.45 l | 13.24 ± 0.66 f,g,h,i,j,k | 8.43 ± 0.26 f,g,h | 45.05 ± 1.1 q | 51.79 ± 1.43 n,o | 55.38 ± 0.43 f,g,h | 3.56 ± 0.11 c |
KVx 402-5-2 | Brown | 480.03 ± 5.3 b | 15.02 ± 0.43 c,d,e,f,g,h,i,j | 9.16 ± 0.06 b,c,d,e,f,g | 179.65 ± 4.31 c | 71.60 ± 0.33 e | 51.82 ± 0.70 k,l | 3.59 ± 0.18 b,c |
KVx 414-22-2 | White | 74.70 ± 5.15 j,k,l | 16.73 ± 0.18 b,c,d,e,f,g,h,i | 9.19 ± 0.45 b,c,d,e,f | 58.19 ± 0.78 n,o,p | 49.21 ± 0.69 p | 66.83 ± 0.20 b | 3.63 ± 0.03 b,c |
KVx 421-2J | Brown | 186.84 ± 20.50 e | 14.59 ± 0.30 d,e,f,g,h,i,j | 8.88 ± 0.37 d,e,f,g,h | 73.03 ± 3.67 k,l | 53.51 ± 0.45 m,n | 48.38 ± 0.54 m | 3.42 ± 0.11 c |
KVx 442-3-25-SH (Komcallé) | White | 130.25 ± 14.77 f,g | 13.95 ± 7.94 f,g,h,i,j | 10.13 ± 0.16 a,b | 84.22 ± 0.29 i,j | 65.24 ± 0.12 f,g,h | 57.64 ± 0.25 d,e | 3.75 ± 0.05 a,b,c |
KVx 61-1 | White | 164.33 ± 5.73 e,f | 16.77 ± 1.65 b,c,d,e,f,g,h,i | 9.90 ± 0.18 a,b,c,d | 79.20 ± 1.25 j,k | 81.76 ± 0.54 b,c | 61.50 ± 0.32 c | 4.20 ± 0.24 a,b |
KVx 65-114 | Brown | 268.33 ± 7.18 c,d | 13.87 ± 0.07 f,g,h,i,j | 8.80 ± 1.25 e,f,g,h | 97.52 ± 1.72 g,h | 60.44 ± 0.43 i | 47.60 ± 0.26 m,n | 3.44 ± 0.10 c |
KVx 745-11P | White | 114.55 ± 1.28 g,h,i,j | 20.38 ± 2.37 a,b,c,d | 10.38 ± 0.02 a | 62.35 ± 0.65 m,n,o | 64.23 ± 0.21 h | 69.94 ± 0.87 a | 3.66 ± 0.05 b,c |
KVx 771-10G (Nafi) | White | 103.59 ± 10.97 g,h,i,j,k | 17.56 ± 0.99 b,c,d,e,f,g,h | 9.45 ± 0.16 a,b,c,d,e,f | 86.76 ± 0.9 i,j | 58.15 ± 0.12 j,k | 46.45 ± 0.1 n | 3.90 ± 0.13 a,b,c |
KVx 775-33-2G (Tiligré) | White | 107.14 ± 3.59 g,h,i,j,k | 21.93 ± 0.94 a,b | 9.58 ± 0.22 a,b,c,d,e | 68.88 ± 1.63 l,m | 55.58 ± 0.33 l,m | 60.71 ± 0.67 c | 3.80 ± 0.09 a,b,c |
KVx 780-1 | White | 100.03 ± 2.24 g,h,i,j,k,l | 7.46 ± 1.01 k | 9.90 ± 0.29 a,b,c,d | 62.54 ± 3.71 m,n,o | 66.60 ± 0.21 f,g | 56.89 ± 0.72 e,f,g | 3.75 ± 0.21 a,b,c |
KVx 780-3 | White | 105.81 ± 0.93 g,h,i,j,k | 12.37 ± 0.79 g,h,i,j,k | 10.12 ± 0.12 a,b | 66.28 ± 1.95 l,m,n | 57.44 ± 0.25 k,l | 56.79 ± 0.26 e,f,g,h | 3.85 ± 0.32 a,b,c |
KVx 780-4 | White | 124.47 ± 9.58 f,g,h,i | 14.11 ± 1.00 f,g,h,i,j | 10.22 ± 0.33 a,b | 83.98 ± 1.95 i,j | 64.59 ± 0.86 g,h | 57.05 ± 0.40 e,f | 3.74 ± 0.15 a,b,c |
KVx 780-6 | White | 106.25 ± 19.12 g,h,i,j,k | 13.48 ± 0.94 f,g,h,i,j | 9.96 ± 0.2 a,b,c | 68.94 ± 0.18 l,m | 65.45 ± 0.37 f,g,h | 55.25 ± 0.17 g,h,i | 3.84 ± 0.31 a,b,c |
KVx 780-9 | White | 114.55 ± 35.44 g,h,i,j | 11.73 ± 0.25 h,i,j,k | 10.08 ± 0.10 a,b | 63.47 ± 0.72 m,n,o | 2.43 ± 1.46 r | 60.61 ± 0.97 c | 3.80 ± 0.31 a,b,c |
Labagela local | White | 190.70 ± 21.13 e | 20.06 ± 0.50 a,b,c,d,e | 9.93 ± 0.15 a,b,c,d | 118.87 ± 0.98 f | 60.68 ± 0.22 i | 65.59 ± 0.29 b | 3.69 ± 0.05 a,b,c |
Mougne | White | 470.25 ± 5.43 b | 23.95 ± 0.21 a | 5.58 ± 0.57 i | 247.26 ± 0.86 b | 80.69 ± 0.45 c | 47.33 ± 0.37 m,n | 3.84 ± 0.07 a,b,c |
Moussa local | White | 78.40 ± 2.04 j,k,l | 18.00 ± 0.55 b,c,d,e,f,g | 9.71 ± 0.16 a,b,c,d,e | 63.49 ± 0.27 m,n,o | 53.72 ± 0.45 m,n | 53.25 ± 0.25 j,k | 3.53 ± 0.06 c |
Niango local | White | 73.07 ± 4.38 k,l | 11.93 ± 0.66 h,i,j,k | 8.93 ± 0.08 c,d,e,f,g,h | 25.51 ± 0.77 r | 60.37 ± 0.66 i,j | 57.31 ± 0.28 d,e | 3.80 ± 0.24 a,b,c |
TVU 14676 | Brown | 692.03 ± 9.58 a | 20.10 ± 0.96 a,b,c,d | 7.97 ± 0.18 h | 311.46 ± 0.82 a | 98.21 ± 0.12 a | 52.40 ± 0.54 j,k | 3.80 ± 0.07 a,b,c |
TZ-1 (Gourgou) | White | 89.36 ± 7.40 h,i,j,k,l | 18.99 ± 1.50 a,b,c,d,e,f | 9.69 ± 0.04 a,b,c,d,e | 55.98 ± 1.69 o,p | 54.86 ± 0.87 m | 53.58 ± 0.20 i,j | 3.68 ± 0.10 b,c |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Total phenolic (1) | 1 | 0.340 | −0.348 | 0.954 | 0.616 | −0.381 | −0.101 | 0.792 |
Total flavonoid (2) | 1 | −0.099 | 0.446 | 0.430 | −0.028 | −0.010 | 0.348 | |
DPPH (3) | 1 | −0.367 | −0.080 | 0.286 | −0.024 | 0.203 | ||
FRAP (4) | 1 | 0.640 | −0.366 | −0.057 | 0.721 | |||
LPO Inhibition (5) | 1 | −0.257 | −0.012 | 0.481 | ||||
HRS (6) | 1 | 0.261 | 0.391 | |||||
NO (7) | 1 | 0.315 | ||||||
Colour of seeds (8) | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sombié, P.A.E.D.; Compaoré, M.; Coulibaly, A.Y.; Ouédraogo, J.T.; Tignégré, J.-B.D.L.S.; Kiendrébéogo, M. Antioxidant and Phytochemical Studies of 31 Cowpeas (Vigna unguiculata (L. Walp.)) Genotypes from Burkina Faso. Foods 2018, 7, 143. https://doi.org/10.3390/foods7090143
Sombié PAED, Compaoré M, Coulibaly AY, Ouédraogo JT, Tignégré J-BDLS, Kiendrébéogo M. Antioxidant and Phytochemical Studies of 31 Cowpeas (Vigna unguiculata (L. Walp.)) Genotypes from Burkina Faso. Foods. 2018; 7(9):143. https://doi.org/10.3390/foods7090143
Chicago/Turabian StyleSombié, Pierre Alexandre Eric Djifaby, Moussa Compaoré, Ahmed Yacouba Coulibaly, Jeremy Tinga Ouédraogo, Jean-Baptiste De La Salle Tignégré, and Martin Kiendrébéogo. 2018. "Antioxidant and Phytochemical Studies of 31 Cowpeas (Vigna unguiculata (L. Walp.)) Genotypes from Burkina Faso" Foods 7, no. 9: 143. https://doi.org/10.3390/foods7090143
APA StyleSombié, P. A. E. D., Compaoré, M., Coulibaly, A. Y., Ouédraogo, J. T., Tignégré, J. -B. D. L. S., & Kiendrébéogo, M. (2018). Antioxidant and Phytochemical Studies of 31 Cowpeas (Vigna unguiculata (L. Walp.)) Genotypes from Burkina Faso. Foods, 7(9), 143. https://doi.org/10.3390/foods7090143