The Effect of Increasing Levels of Dehulled Faba Beans (Vicia faba L.) on Extrusion and Product Parameters for Dry Expanded Dog Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diets
2.2. Analytical Methods
2.3. Extrusion Processing
2.4. Statistical Analysis
3. Results
3.1. Diets
3.2. Extrusion Processing
4. Discussion
4.1. Diets
4.2. Extrusion Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- APPA. National Pet Owners Survey. 2018. Available online: http://www.americanpetproducts.org/Uploads/MemServices/GPE2017_NPOS_Seminar.pdf (accessed on 14 November 2018).
- Pet Food Industry. US Pet Food Market to Reach US$27 Billion in 2018. 2017. Available online: https://www.petfoodindustry.com/articles/6826-us-pet-food-market-to-reach-us27-billion-in-2018 (accessed on 14 November 2018).
- Alonso, R.; Aguirre, A.; Marzo, F. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Akibode, S.; Maredia, M. Global and Regional Trends in Production, Trade and Consumption of Food Legume Crops. Available online: https://ispc.cgiar.org/sites/default/files/images/Legumetrends.pdf (accessed on 9 January 2019).
- Hoppner, K.; Lampi, B. Folate retention in dried legumes after different methods of meal preparation. Food Res. Int. 1993, 26, 45–48. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Oomah, B.D. Minor components of pulses and their impact on human health. A review. Food Res. Int. 2010, 43, 461–482. [Google Scholar] [CrossRef]
- Smiricky, M.R.; Grieshop, C.M.; Albin, D.M.; Wubben, J.E.; Gabert, V.M.; Fahey, G.C. The influence of soy oligosaccharides on apparent and true ileal amino acid digestibilities and fecal consistency in growing pigs. J. Anim. Sci. 2002, 80, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, A.R. Significance of biogenic amines to food safety and human health. Food Res. Int. 1996, 29, 675–690. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Fish and Fisheries Products Hazards and Control Guidance, (4th ed.). Available online: https://www.fda.gov/downloads/food/guidanceregulation/ucm251970.pdf (accessed on 9 January 2019).
- El Aribi, H.; Antonsen, S.; Blay, P.; Quilliam, M. Analysis of biogenic amines by ion chromatography coupled with tandem mass spectrometry. In Proceedings of the 54th ASMS Conference, Seattle, WA, USA, 28 May–1 June 2006. [Google Scholar]
- Yoo, J.; Alavi, S.; Vadlani, P.; Amanor-Boadu, V. Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Bioresour. Technol. 2011, 102, 7583–7590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauvant, D.; Perez, J.M.; Tran, G. Tables de Composition Et de Valeur Nutritive Des Mati’eres Premi’eres Destin’ees Aux Animaux D’elevage Engl; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004. [Google Scholar]
- Guillon, F.; Champ, M.J. Carbohydrate fractions of legumes: Uses in human nutrition and potential for health. Br. J. Nutr. 2002, 88, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Duc, G.; Marget, P.; Esnault, R.; Le Guen, J.; Bastianelli, D. Genetic variability for feeding value of faba bean seeds (Vicia faba L.): Comparative chemical composition of isogenics involving zero-tannin and zero-vicine genes. J. Agric. Sci. Camb. 1999, 133, 185–196. [Google Scholar] [CrossRef]
- Bhatty, R.S.; Christison, G.I. Composition and nutritional quality of pea (Pisum sativum L.), faba bean (Vicia faba L. spp. minor) and lentil (Lens culinaris Medik.) meals, protein concentrates and isolates. Plant Foods Hum. Nutr. 1984, 34, 41–51. [Google Scholar] [CrossRef]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouee, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Landry, E.J.; Fuchs, S.J.; Hu, J. Carbohydrate composition of mature and immature faba bean seeds. J. Food Compos. Anal. 2016, 50, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, A.R. Changes in biogenic amines in mature and germinating legume seeds and their behavior during cooking. Food 2000, 44, 23–27. [Google Scholar] [CrossRef]
- Giménez, M.A.; Drago, S.R.; De Greef, D.; Gonzalez, R.J.; Lobo, M.O.; Samman, N.C. Rheological, functional and nutritional properties of wheat/broad bean (Vicia faba) flour blends for pasta formulation. Food Chem. 2012, 134, 200–206. [Google Scholar] [CrossRef]
- Doublier, J.L. A rheological comparison of wheat, maize, faba bean and smooth pea starches. J. Cereal Sci. 1987, 5, 247–262. [Google Scholar] [CrossRef]
- Pastor-Cavada, E.; Drago, S.R.; González, R.J.; Juan, R.; Pastor, J.E.; Alaiz, M.; Vioque, J. Effects of the addition of wild legumes (Lathyrus annuus and Lathyrus clymenum) on the physical and nutritional properties of extruded products based on whole corn and brown rice. Food Chem. 2011, 128, 961–967. [Google Scholar] [CrossRef]
- Anton, A.A.; Fulcher, R.G.; Arntfield, S.D. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 113, 989–996. [Google Scholar] [CrossRef]
- Patil, R.T.; Berrios, J.D.J.; Tang, D.J.; Swanson, B.G. Evaluation of methods for expansion properties of legume extrudates. Appl. Eng. Agric. 2007, 23, 777–783. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Hoover, R.; Donner, E.; Liu, Q.; Jaiswal, S.; Chibbar, R.; Nantanga, K.K.M.; Seetharaman, K. Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Res. Int. 2011, 44, 2962–2974. [Google Scholar] [CrossRef]
- Alvarenga, I.C.; Ou, Z.; Thiele, S.; Alavi, S.; Aldrich, C.G. Effects of milling sorghum into fractions on yield, nutrient composition, and their performance in extrusion of dog food. J. Cereal Sci. 2018, 82, 121–128. [Google Scholar] [CrossRef]
Ingredient, % | FB0 | FB10 | FB20 | FB30 |
---|---|---|---|---|
Faba Beans, Dehulled | 0.00 | 10.00 | 20.00 | 30.00 |
Rice, Brewers | 44.59 | 37.90 | 32.00 | 26.10 |
Chicken Meal, Low Ash | 31.85 | 28.98 | 28.91 | 28.84 |
Corn Gluten Meal, 60% | 10.00 | 9.14 | 5.20 | 1.25 |
Beet Pulp | 4.00 | 4.00 | 4.00 | 4.00 |
Salt | 0.650 | 0.650 | 0.650 | 0.650 |
Potassium Chloride | 0.325 | 0.250 | 0.250 | 0.250 |
Choline Chloride, 60% dry | 0.200 | 0.200 | 0.200 | 0.200 |
Dicalcium Phosphate | 0.033 | 0.171 | 0.108 | 0.045 |
Fish Oil | 0.145 | 0.145 | 0.144 | 0.144 |
Dry Natural Antioxidant | 0.034 | 0.033 | 0.033 | 0.033 |
Liquid Natural Antioxidant | 0.031 | 0.033 | 0.033 | 0.033 |
Vitamin Premix | 0.150 | 0.150 | 0.150 | 0.150 |
Trace Mineral Premix | 0.100 | 0.100 | 0.100 | 0.100 |
Chromium Sesquioxide | 0.250 | 0.250 | 0.250 | 0.250 |
Titanium Dioxide | 0.400 | 0.400 | 0.400 | 0.400 |
Chicken Fat (topical) | 6.25 | 6.61 | 6.58 | 6.56 |
Digest, Dry Dog Flavor (topical) | 1.00 | 1.00 | 1.00 | 1.00 |
Item | Dehulled Faba Beans | FB0 | FB10 | FB20 | FB30 |
---|---|---|---|---|---|
Dry Matter, % | 89.34 | 95.69 | 94.08 | 94.28 | 96.5 |
Crude Protein, % | 30.8 | 36.3 | 36.6 | 37.5 | 38.1 |
Crude Fat, % | 1.75 | 13.4 | 12.5 | 14.2 | 12.1 |
Crude Fiber, % | 0.42 | 2.06 | 3.61 | 1.16 | 3.23 |
Ash, % | 3.30 | 5.54 | 5.53 | 5.60 | 6.02 |
Calcium, % | 0.12 | 0.91 | 0.91 | 0.91 | 0.88 |
Phosphorous, % | 0.58 | 0.76 | 0.80 | 0.73 | 0.77 |
Potassium, % | 1.34 | 0.63 | 0.74 | 0.59 | 0.80 |
Magnesium, % | 0.15 | 0.09 | 0.10 | 0.08 | 0.1 |
Sodium, % | 0.01 | 0.47 | 0.47 | 0.48 | 0.44 |
Sulfur, % | 0.24 | 0.44 | 0.42 | 0.46 | 0.37 |
Manganese, ppm | 21.7 | 21.3 | 21.9 | 21.1 | 18.3 |
Copper, ppm | 15.6 | 18.2 | 18.9 | 17.7 | 19.1 |
Iron, ppm | 76.7 | 124 | 128 | 127 | 117 |
Zinc, ppm | 61.9 | 140 | 135 | 130 | 138 |
Item, μg/g | Brewers Rice | Dehulled Faba Beans | FB0 | FB10 | FB20 | FB30 |
---|---|---|---|---|---|---|
Sucrose | 1711 | 33,468 | 3098 | 5744 | 9088 | 10,920 |
Raffinose | 81 | 2620 | 108 | 321 | 547 | 787 |
Stachyose | 0 | 6967 | 23 | 673 | 1423 | 2037 |
Verbascose | 0 | 25,268 | 0 | 2459 | 4968 | 7430 |
Item, ppm | Dehulled Faba Beans | FB0 | FB10 | FB20 | FB30 |
---|---|---|---|---|---|
2-phenylethylamine | n.d. | n.d. | n.d. | n.d. | n.d. |
Cadaverine | n.d. | n.d. | n.d. | n.d. | n.d. |
Histamine | 12.1 | n.d. | n.d. | n.d. | n.d. |
Putrescine | 8.9 | 9.1 | 9.2 | 9.5 | 11.3 |
Spermidine | n.d. | 5.5 | n.d. | 5.6 | n.d. |
Spermine | 17.4 | n.d. | n.d. | n.d. | n.d. |
Tryptamine | n.d. | n.d. | n.d. | n.d. | n.d. |
Tyramine | n.d. | n.d. | n.d. | n.d. | n.d. |
Item | FB0 | FB10 | FB20 | FB30 |
---|---|---|---|---|
1N | 8 | 6 | 7 | 4 |
2PC speed, rpm | 185 ± 0 | 182 ± 8.16 | 165 ± 0 | 165 ± 0 |
2PC water, kg/h | 20.7 ± 0.49 | 21.3 ± 1.79 | 24.7 ± 0.24 | 24.6 ± 0.13 |
2PC steam, kg/h | 69.0 ± 4.09 | 82.0 ± 10.72 | 60.8 ± 0.72 | 61.8 ± 0.80 |
3EX screw speed, rpm | 481 ± 34.7 | 500 ± 0 | 521 ± 9.45 | 525 ± 0 |
4MRV, % | 55.0 ± 9.26 | 50.0 ± 0 | 37.1 ± 5.67 | 35.0 ± 0 |
Item | FB0 | FB10 | FB20 | FB30 | MSE | FB0 vs. T | L | Q | C |
---|---|---|---|---|---|---|---|---|---|
1N | 8 | 6 | 7 | 4 | |||||
Wet Bulk density, g/L | 365 | 358 | 364 | 363 | 49.44 | 0.2571 | 0.9348 | 0.2780 | 0.1369 |
2TMF, kg/h | 271 | 275 | 274 | 274 | 0.1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
3SME, kJ/kg | 187 | 157 | 157 | 145 | 593 | 0.0042 | 0.0133 | 0.4093 | 0.3336 |
4PC discharge temp, °C | 66.2 | 70.2 | 72.5 | 75.0 | 2.89 | <0.0001 | <0.0001 | 0.3062 | 0.5827 |
5EX die temp, °C | 104 | 110 | 146 | 144 | 48.1 | <0.0001 | <0.0001 | 0.2007 | <0.0001 |
5EX die pressure, MPa | 3.16 | 3.28 | 3.29 | 3.46 | 0.016 | 0.0027 | 0.0011 | 0.6668 | 0.2440 |
1N | 4 | 3 | 4 | 3 | |||||
Piece density, g/cm3 | 0.426 | 0.398 | 0.476 | 0.517 | 0.0009 | 0.0574 | 0.0006 | 0.0525 | 0.0679 |
6Piece SEI (dry), mm2/mm2 | 2.82 | 2.90 | 2.67 | 2.52 | 0.017 | 0.1552 | 0.0059 | 0.1398 | 0.2570 |
Piece hardness, kg | 8.15 | 6.93 | 8.35 | 10.20 | 1.521 | 0.6500 | 0.0295 | 0.0440 | 0.4780 |
Piece toughness, kg·mm | 767 | 360 | 601 | 678 | 31,141.3 | 0.0617 | 0.9537 | 0.0296 | 0.0860 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corsato Alvarenga, I.; Aldrich, C.G. The Effect of Increasing Levels of Dehulled Faba Beans (Vicia faba L.) on Extrusion and Product Parameters for Dry Expanded Dog Food. Foods 2019, 8, 26. https://doi.org/10.3390/foods8010026
Corsato Alvarenga I, Aldrich CG. The Effect of Increasing Levels of Dehulled Faba Beans (Vicia faba L.) on Extrusion and Product Parameters for Dry Expanded Dog Food. Foods. 2019; 8(1):26. https://doi.org/10.3390/foods8010026
Chicago/Turabian StyleCorsato Alvarenga, Isabella, and Charles Gregory Aldrich. 2019. "The Effect of Increasing Levels of Dehulled Faba Beans (Vicia faba L.) on Extrusion and Product Parameters for Dry Expanded Dog Food" Foods 8, no. 1: 26. https://doi.org/10.3390/foods8010026
APA StyleCorsato Alvarenga, I., & Aldrich, C. G. (2019). The Effect of Increasing Levels of Dehulled Faba Beans (Vicia faba L.) on Extrusion and Product Parameters for Dry Expanded Dog Food. Foods, 8(1), 26. https://doi.org/10.3390/foods8010026