Effects of Passive- and Active-Modified Atmosphere Packaging on Physio-Chemical and Quality Attributes of Fresh In-Hull Pistachios (Pistacia vera L. cv. Badami)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Material
2.2. Experimental Design, Packaging, and Storage Conditions
2.3. Weight Loss, Firmness, and Microbial Counts
2.4. External Hull Color Evaluation
2.5. Total Chlorophylls and Carotenoids Content
2.6. Total Anthocyanins Content, Total Antioxidant Activity, and Total Phenolic Compounds
2.7. Enzymes Assay: Polyphenol Oxidase (PPO), pHenylalanine Ammonia-Lyase (PAL), Peroxidase (POX), and Superoxide Dismutase (SOD) Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Weight Loss and Microbial Counts
3.2. External Hull Color and Firmness
3.3. Total Chlorophylls and Carotenoids Content
3.4. Total Anthocyanin Content, Total Antioxidant Activity, and Total Phenolic Compounds
3.5. Enzyme Activity
3.6. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gentile, C.; Tesoriere, L.; Butera, D.; Fazzari, M.; Monastero, M.; Allegra, M.; Livrea, M.A. Antioxidant activity of Sicilian pistachio (Pistacia vera L. Var. Bronte) nut extract and its bioactive components. J. Agric. Food Chem. 2007, 55, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.M.; Ruggio, D.M.; Ashraf-Khorassani, M. Phytosterol composition of nuts and seeds commonly consumed in the United States. J. Agric. Food Chem. 2005, 53, 9436–9445. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Zhang, Y.; Bowerman, S.; Heber, D. 18 Phytochemicals and Health Aspects of Pistachio (Pistacia vera L.). In Tree Nuts: Composition, Phytochemicals, and Health Effects, 1st ed.; Alasalvar, C., Shahidi, F., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 295–304. [Google Scholar]
- Ballistreri, G.; Arena, E.; Fallico, B. Influence of Ripeness and Drying Process on the Polyphenols and Tocopherols of Pistacia vera L. Molecules 2009, 14, 4358–4369. [Google Scholar] [CrossRef] [PubMed]
- Arvanitoyannis, I.S. Principles of MAP and Definitions of MAP, CA, and AP. In Modified Atmosphere and Active Packaging Technologies, 1st ed.; Arvanitoyannis, I.S., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 22–27. [Google Scholar]
- Fonseca, S.C.; Oliveira, F.A.R.; Lino, I.B.M.; Brecht, J.K.; Chau, K.V. Modelling O2 and CO2 exchange for development of perforation-mediated modified atmosphere packaging. J. Food Eng. 2000, 43, 9–15. [Google Scholar] [CrossRef]
- Kader, A.A. Modified Atmospheres during Transport and Storage. In Postharvest Technology of Horticultural Crops, 3rd ed.; Kader, A.A., Ed.; University of California, Agriculture and Natural Resources: Oakland, CA, USA, 2002; pp. 135–144. [Google Scholar]
- Ghidelli, C.; Pérez-Gago, M.B. Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2018, 58, 662–679. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, P.; Gong, B.; Li, S.; Ma, H. Phenol metabolism and preservation of fresh in-hull walnut stored in modified atmosphere packaging. J. Sci. Food Agric. 2017, 97, 5335–5342. [Google Scholar] [CrossRef]
- Moscetti, R.; Frangipane, M.T.; Monarca, D.; Cecchini, M.; Massantini, R. Maintaining the quality of unripe, fresh hazelnuts through storage under modified atmospheres. Postharvest Biol. Technol. 2012, 65, 33–38. [Google Scholar] [CrossRef]
- Raisi, M.; Ghorbani, M.; Mahoonak, A.S.; Kashaninejad, M.; Hosseini, H. Effect of storage atmosphere and temperature on the oxidative stability of almond kernels during long term storage. J. Stored Prod. Res. 2015, 62, 16–21. [Google Scholar] [CrossRef]
- Banda, K.; Caleb, O.J.; Jacobs, K.; Opara, U.L. Effect of active-modified atmosphere packaging on the respiration rate and quality of pomegranate arils (cv. Wonderful). Postharvest Biol. Technol. 2015, 109, 97–105. [Google Scholar] [CrossRef]
- Fagundes, C.; Moraes, K.; Pérez-Gago, M.B.; Palou, L.; Maraschin, M.; Monteiro, A.R. Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biol. Technol. 2015, 109, 73–81. [Google Scholar] [CrossRef]
- Singh, R.; Giri, S.K.; Kotwaliwale, N. Shelf-life enhancement of green bell pepper (Capsicum annuum L.) under active modified atmosphere storage. Food Packag. Shelf Life 2014, 1, 101–112. [Google Scholar] [CrossRef]
- Silveira, A.C.; Araneda, C.; Hinojosa, A.; Escalona, V.H. Effect of non-conventional modified atmosphere packaging on fresh cut watercress (Nasturtium officinale R. Br.) quality. Postharvest Biol. Technol. 2014, 92, 114–120. [Google Scholar] [CrossRef]
- Ozturk, I.; Sagdic, O.; Yalcin, H.; Capar, T.D.; Asyali, M.H. The effects of packaging type on the quality characteristics of fresh raw pistachios (Pistacia vera L.) during the storage. LWT Food Sci. Technol. 2016, 65, 457–463. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Wrolstad, R.E. Color and Pigment Analysis in Fruit Products; Agricultural Experiment Station, Oregon State University, Station Bulletin: Corvallis, OR, USA, 1976; pp. 1–17. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Jiang, Y.M. Purification and some properties of polyphenol oxidase of longan fruit. Food Chem. 1999, 66, 75–79. [Google Scholar] [CrossRef]
- D’Cunha, G.B.; Satyanarayan, V.; Nair, P.M. Purification of phenylalanine ammonia lyase from Rhodotorula glutinis. Phytochemistry 1996, 42, 17–20. [Google Scholar] [CrossRef]
- Mohammadi, M.H.S.; Etemadi, N.; Arab, M.M.; Aalifar, M.; Arab, M.; Pessarakli, M. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiol. Biochem. 2017, 111, 129–143. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Shayanfar, S.; Kashaninejad, M.; Khomeiri, M.; Djomeh, Z.E.; Mostofi, Y. Effect of MAP and different atmospheric conditions on the sensory attributes and shelf life characteristics of fresh pistachio nuts. Int. J. Nuts Relat. Sci. IJNRS 2011, 2, 47–57. [Google Scholar]
- Gould, G.W. Methods for preservation and extension of shelf life. Int. J. Food Microbiol. 1996, 33, 51–64. [Google Scholar] [CrossRef]
- Daniels, J.A.; Krishnamurthi, R.; Rizvi, S.S. A review of effects of carbon dioxide on microbial growth and food quality. J. Food Prot. 1985, 48, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Fallico, B.; Ballistreri, G.; Arena, E.; Tokusoglu, O. Nut Bioactives: Phytochemicals and lipid-based components of almonds, hazelnuts, peanuts, pistachios, and walnuts. In Fruit and Cereal Bioactives: Sources, Chemistry, and Applications, 1st ed.; Tokusoglu, O., Hall, C.A., III, Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 185–212. [Google Scholar]
- Li, T.; Zhang, M. Effects of modified atmosphere package (MAP) with a silicon gum film window on the quality of stored green asparagus (Asparagus officinalis L.) spears. LWT Food Sci. Technol. 2015, 60, 1046–1053. [Google Scholar] [CrossRef]
- Yoon, H.S.; Choi, I.L.; Kang, H.M. Different Oxygen Transmission Rate Packing Films During Modified Atmosphere Storage: Effects on Asparagus Spear Quality. Korean J. Hortic. Sci. Technol. 2017, 35, 314–322. [Google Scholar] [CrossRef]
- Caleb, O.J.; Ilte, K.; Fröhling, A.; Geyer, M.; Mahajan, P.V. Integrated modified atmosphere and humidity package design for minimally processed Broccoli (Brassica oleracea L. var. italica). Postharvest Biol. Technol. 2016, 121, 87–100. [Google Scholar] [CrossRef]
- Chitravathi, K.; Chauhan, O.P.; Raju, P.S. Influence of modified atmosphere packaging on shelf-life of green chillies (Capsicum annuum L.). Food Packag. Shelf Life 2015, 4, 1–9. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Espin, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Kanellis, A.K.; Tonutti, P.; Perata, P. Biochemical and molecular aspects of modified and controlled atmospheres. In Modified and Controlled Atmospheres for the Storage, Transportation, and Packaging of Horticultural Commodities, 1st ed.; Yahia, E.M., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 570–585. [Google Scholar]
- Dreher, M.L. Pistachio nuts: Composition and potential health benefits. Nutr. Rev. 2012, 70, 234–240. [Google Scholar] [CrossRef]
- Mudau, A.R.; Soundy, P.; Araya, H.T.; Mudau, F.N. Influence of Modified Atmosphere Packaging on Postharvest Quality of Baby Spinach (Spinacia oleracea L.) Leaves. HortScience 2018, 53, 224–230. [Google Scholar] [CrossRef]
- Li, Y.; Ishikawa, Y.; Satake, T.; Kitazawa, H.; Qiu, X.; Rungchang, S. Effect of active modified atmosphere packaging with different initial gas compositions on nutritional compounds of shiitake mushrooms (Lentinus edodes). Postharvest Biol. Technol. 2014, 92, 107–113. [Google Scholar] [CrossRef]
- Camm, E.L.; Towers, G.N. Phenylalanine ammonia lyase. Phytochemistry 1973, 12, 961–973. [Google Scholar] [CrossRef]
- Du, W.X.; Avena-Bustillos, R.J.; Breksa III, A.P.; McHugh, T.H. Effect of UV-B light and different cutting styles on antioxidant enhancement of commercial fresh-cut carrot products. Food Chem. 2012, 134, 1862–1869. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Duan, X.; Joyce, D.; Zhang, Z.; Li, J. Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chem. 2004, 88, 443–446. [Google Scholar] [CrossRef]
- Fridovich, I. The biology of oxygen radicals. Science 1978, 201, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Terefe, N.S.; Buckow, R.; Versteeg, C. Quality-related enzymes in fruit and vegetable products: Effects of novel food processing technologies, part 1: High-pressure processing. Crit. Rev. Food Sci. Nutr. 2014, 54, 24–63. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Khan, A.S.; Malik, A.U.; Shahid, M. Effect of controlled atmosphere storage on pericarp browning, bioactive compounds and antioxidant enzymes of litchi fruits. Food Chem. 2016, 206, 18–29. [Google Scholar] [CrossRef]
- Amir-Shapira, D.; Goldschmidt, E.E.; Altman, A. Chlorophyll catabolism in senescing plant tissues: In vivo breakdown intermediates suggest different degradative pathways for citrus fruit and parsley leaves. Proc. Natl. Acad. Sci. USA 1987, 84, 1901–1905. [Google Scholar] [CrossRef]
- Hörtensteiner, S. Chlorophyll degradation during senescence. Annu. Rev. Plant Biol. 2006, 57, 55–77. [Google Scholar] [CrossRef]
- Su, X.; Jiang, Y.; Duan, X.; Liu, H.; Li, Y.; Lin, W.; Zheng, Y. Effects of pure oxygen on the rate of skin browning and energy status in longan fruit. Food Technol. Biotechnol. 2005, 43, 359. [Google Scholar]
- Sukhonthara, S.; Kaewka, K.; Theerakulkait, C. Inhibitory effect of rice bran extracts and its phenolic compounds on polyphenol oxidase activity and browning in potato and apple puree. Food Chem. 2016, 190, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.A. The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and blackcurrant drink. Food Chem. 1997, 60, 331–337. [Google Scholar] [CrossRef]
- Arcan, I.; Yemenicioğlu, A. Antioxidant activity and phenolic content of fresh and dry nuts with or without the seed coat. J. Food Compos. Anal. 2009, 22, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Tomaino, A.; Martorana, M.; Arcoraci, T.; Monteleone, D.; Giovinazzo, C.; Saija, A. Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochimie 2010, 92, 1115–1122. [Google Scholar] [CrossRef]
- Christopoulos, M.V.; Tsantili, E. Effects of temperature and packaging atmosphere on total antioxidants and colour of walnut (Juglans regia L.) kernels during storage. Sci. Hortic. 2011, 131, 49–57. [Google Scholar] [CrossRef]
- Habibie, A.; Yazdani, N.; Saba, M.K.; Vahdati, K. Ascorbic acid incorporated with walnut green husk extract for preserving the postharvest quality of cold storage fresh walnut kernels. Sci. Hortic. 2019, 245, 193–199. [Google Scholar] [CrossRef]
Item | Values/Characteristics | ||
---|---|---|---|
Factors | A: Atmospheric combination | AMA1 (active-MAP1) | 5% O2 + 5% CO2 + 90% N2 |
AMA2 (active-MAP2) | 5% O2 + 25% CO2 + 70% N2 | ||
AMA3 (active-MAP3) | 5% O2 + 45% CO2 + 50% N2 | ||
AMA4 (active-MAP4) | 2.5% O2 + 5% CO2 + 92.5% N2 | ||
AMA5 (active-MAP5) | 2.5% O2 + 25% CO2 + 72.5% N2 | ||
AMA6 (active-MAP6) | 2.5% O2 + 45% CO2 + 52.5% N2 | ||
PMA (passive-MAP) | 21% O2 + 0.03% CO2 + 78% N2 | ||
B: Storage time (days) | 0 (at harvest), 15, 30, 45 | - | |
Factors’ level | A = 7 | Treatments simple effect | - |
B = 4 | Storage time simple effect | - | |
A × B = 28 | Treatment × Storage time interactions | - | |
Replications | 4 | - | - |
Environmental factors | Storage temperature Relative humidity (R.H.) | 4 ± 1 °C 90 ± 5% | - - |
Parameters | |||||||
---|---|---|---|---|---|---|---|
Storage Time (Days) | L* | a* | b* | C* | h° | Kernel Firmness (N) | Hull Firmness (N) |
0 | x 62.14 ± 0.10 ay | 10.76 ± 0.07 c | 16.98 ± 0.09 c | 20.11 ± 0.09 c | 1.00 ± 0.00 b | 1.14 ± 0.003 a | 1.34 ± 0.01 a |
15 | 54.58 ± 0.30 b | 13.16 ± 0.23 a | 17.15 ± 0.16 bc | 21.66 ± 0.08 a | 0.91 ± 0.01 d | 1.13 ± 0.004 b | 0.72 ± 0.01 b |
30 | 54.29 ± 0.29 b | 12.46 ± 0.21 b | 17.54 ± 0.17 ab | 21.57 ± 0.08 a | 0.95 ± 0.01 c | 1.13 ± 0.004 b | 0.70 ± 0.01 b |
45 | 54.77 ± 0.25 b | 9.99 ± 0.20 d | 17.95 ± 0.13 a | 20.57 ± 0.07 b | 1.06 ± 0.01 a | 1.11 ± 0.004 c | 0.74 ± 0.01 b |
Parameter | Storage Time (Days) | Treatment | ||||||
---|---|---|---|---|---|---|---|---|
AMA1 | AMA2 | AMA3 | AMA4 | AMA5 | AMA6 | PMA | ||
Hull TCL (mg kg−1) | 0 | x 13.68 ± 0.19 ay | 13.68 ± 0.19 a | 13.68 ± 0.19 a | 13.68 ± 0.19 a | 13.68 ± 0.19 a | 13.68 ± 0.19 a | 13.68 ± 0.19 a |
15 | 11.5 ± 0.09 b | 9.08 ± 0.16 c | 7.14 ± 0.07 d | 6.82 ± 0.19 de | 5.09 ± 0.13 h | 4.92 ± 0.14 h | 7.00 ± 0.07 de | |
30 | 5.58 ± 0.10 fg | 5.75 ± 0.14 f | 5.66 ± 0.12 fg | 5.72 ± 0.16 f | 5.29 ± 0.15 gh | 5.02 ± 0.23 h | 6.6 ± 0.11 e | |
45 | 4.48 ± 0.21 i | 4.35 ± 0.16 i | 4.24 ± 0.05 i | 4.31 ± 0.16 i | 4.36 ± 0.18 i | 4.55 ± 0.17 i | 4.4 ± 0.16 i | |
Kernel TCL (mg kg−1) | 0 | 11.67 ± 0.09 a | 11.67 ± 0.09 a | 11.67 ± 0.09 a | 11.67 ± 0.09 a | 11.67 ± 0.09 a | 11.67 ± 0.09 a | 11.67 ± 0.09 a |
15 | 10.72 ± 0.13 c | 11.50 ± 0.17 ab | 11.25 ± 0.09 b | 9.80 ± 0.16 d | 7.38 ± 0.15 e | 5.10 ± 0.15 h | 11.42 ± 0.10 ab | |
30 | 9.58 ± 0.12 d | 7.52 ± 0.10 e | 6.76 ± 0.15 f | 5.84 ± 0.14 g | 4.94 ± 0.21 h | 3.66 ± 0.09 jk | 7.41 ± 0.09 e | |
45 | 5.00 ± 0.09 h | 5.10 ± 0.13 h | 5.00 ± 0.08 h | 3.96 ± 0.17 ij | 3.08 ± 0.16 l | 3.44 ± 0.07 kl | 4.24 ± 0.18 i | |
Hull CAC (mg kg−1) | 0 | 4.07 ± 0.06 cde | 4.07 ± 0.06 cde | 4.07 ± 0.06 cde | 4.07 ± 0.06 cde | 4.07 ± 0.06 cde | 4.07 ± 0.06 cde | 4.07 ± 0.06 cde |
15 | 4.18 ± 0.02 bc | 3.62 ± 0.03 k | 4.02 ± 0.04def | 4.11 ± 0.04 cde | 4.63 ± 0.07 a | 4.10 ± 0.07 cde | 4.31 ± 0.06 b | |
30 | 4.16 ± 0.03 cd | 4.02 ± 0.05 def | 3.78 ± 0.04 hij | 3.87 ± 0.05 ghi | 3.69 ± 0.02 jk | 4.00 ± 0.03 efg | 3.90 ± 0.07 fgh | |
45 | 3.71 ± 0.05 jk | 3.74 ± 0.04 ijk | 3.68 ± 0.04 jk | 3.60 ± 0.07 k | 3.61 ± 0.05 k | 3.66 ± 0.03 jk | 3.68 ± 0.04 jk | |
Kernel CAC (mg kg−1) | 0 | 8.4195 ± 0.03 cd | 8.4195 ± 0.03 cd | 8.4195 ± 0.03 cd | 8.4195 ± 0.03 cd | 8.4195 ± 0.03 cd | 8.4195 ± 0.03 cd | 8.4195 ± 0.03 cd |
15 | 9.0498 ± 0.1 b | 8.3588 ± 0.03 cde | 9.1703 ± 0.03 b | 9.2253 ± 0.11 b | 8.1876 ± 0.07 e | 7.2076 ± 0.05 g | 9.1426 ± 0.07 b | |
30 | 5.8312 ± 0.10 j | 7.3809 ± 0.08 fg | 6.1495 ± 0.06 i | 6.4947 ± 0.13 h | 5.8764 ± 0.05 j | 8.417 ± 0.1 cd | 8.3192 ± 0.09 de | |
45 | 9.0909 ± 0.06 b | 7.1607 ± 0.11 g | 9.8496 ± 0.05 a | 9.2305 ± 0.10 b | 7.5551 ± 0.11 f | 5.83 ± 0.10 j | 8.5699 ± 0.12 c |
Parameter | Storage Time (Days) | Treatment | ||||||
---|---|---|---|---|---|---|---|---|
AMA1 | AMA2 | AMA3 | AMA4 | AMA5 | AMA6 | PMA | ||
Hull TAA (%) | 0 | x 90.19 ± 0.24 ghijy | 90.19 ± 0.24 ghij | 90.19 ± 0.24 ghij | 90.19 ± 0.24 ghij | 90.19 ± 0.24 ghij | 90.19 ± 0.24 ghij | 90.19 ± 0.24 ghij |
15 | 93.69 ± 0.14 a | 93.26 ± 0.28 ab | 93.1 ± 0.25 ab | 90.35 ± 0.29 efghij | 90.01±0.32 hij | 90.16±0.39 ghij | 92.63 ± 0.57 bc | |
30 | 89.4 ± 0.45 j | 90.05 ± 0.29 ghij | 92.07 ± 0.56 cd | 90.91 ± 0.40 efgh | 90.13 ± 0.36 ghij | 90.21 ± 0.57 ghij | 91.27 ± 0.54 def | |
45 | 91.36 ± 0.32 de | 91.32 ± 0.31 def | 90.33 ± 0.27 fghij | 90.45 ± 0.42 efghi | 90.65 ± 0.42 efghi | 89.83 ± 0.31 ij | 91.04 ± 0.25 efg | |
Kernel TAA (%) | 0 | 44.08 ± 0.92 cd | 44.08 ± 0.92 cd | 44.08 ± 0.92 cd | 44.08 ± 0.92 cd | 44.08 ± 0.92cd | 44.08 ± 0.92 cd | 44.08 ± 0.92 cd |
15 | 48.90 ± 0.57 a | 41.71 ± 0.76efg | 40.51 ± 0.97 fghi | 40.85 ± 1.16 efghi | 38.95 ± 0.77 i | 42.50 ± 0.46 def | 39.55 ± 0.86 ghi | |
30 | 40.65 ± 1.24 fghi | 43.03 ± 0.87 de | 39.44 ± 0.78 ghi | 40.84 ± 0.33 efghi | 41.59 ± 1.22 efg | 47.34 ± 0.61 ab | 41.00 ± 0.58 efghi | |
45 | 44.37 ± 0.36 cd | 41.41 ± 0.77efg | 44.15 ± 0.38 cd | 39.06 ± 0.55 hi | 38.78 ± 1.20 i | 41.38 ± 0.38 efgh | 46.11 ± 0.66 bc | |
Hull TPC (g kg−1 GAE) | 0 | 11.22 ± 0.38 g | 11.22 ± 0.38 g | 11.22 ± 0.38 g | 11.22 ± 0.38 g | 11.22 ± 0.38 g | 11.22 ± 0.38 g | 11.22 ± 0.38 g |
15 | 12.60 ± 0.19 ef | 15.03 ± 0.62 ab | 14.32 ± 0.74 bc | 12.88 ± 0.54 def | 12.70 ± 0.15 ef | 12.96 ± 0.76 def | 13.77 ± 0.55 bcde | |
30 | 13.17 ± 0.44 cdef | 13.25 ± 0.33 cdef | 16.25 ± 0.70 a | 12.06 ± 0.30 fg | 13.12 ± 0.18 cdef | 12.77 ± 0.52 ef | 12.87 ± 0.47 def | |
45 | 12.86 ± 0.69 def | 12.97 ± 0.40 cdef | 12.54 ± 0.51 efg | 12.5 ± 0.43 efg | 11.92 ± 0.56 fg | 12.20 ± 0.21 fg | 14.15 ± 0.63 bcd | |
Kernel TPC (g kg−1 GAE) | 0 | 4.71 ± 0.06 gh | 4.71 ± 0.06 gh | 4.71 ± 0.06 gh | 4.71 ± 0.06 gh | 4.71 ± 0.06 gh | 4.71 ± 0.06 gh | 4.71 ± 0.06 gh |
15 | 4.60 ± 0.10 hi | 4.61 ± 0.11 hi | 4.56 ± 0.07 hi | 4.46 ± 14 ij | 4.28 ± 0.03 j | 4.47 ± 0.11 ij | 4.30 ± 0.9 j | |
30 | 4.95 ± 0.11 def | 4.86 ± 0.05 efg | 4.58 ± 0.03 hi | 5.14 ± 0.04 bcd | 4.89 ± 0.06 efg | 5.84 ± 0.05 a | 5.04 ± 0.03 cde | |
45 | 5.01 ± 0.05 cde | 4.92 ± 0.07 defg | 5.23 ± 0.11 bc | 5.02 ± 0.09 cde | 4.75 ± 0.06 fgh | 5.27 ± 0.07 b | 5.36 ± 0.10 b |
Parameter | Storage Time (Days) | Treatment | ||||||
---|---|---|---|---|---|---|---|---|
AMA1 | AMA2 | AMA3 | AMA4 | AMA5 | AMA6 | PMA | ||
PPO (U mg−1 protein) | 0 | x 0.013 ± 0.00 hy | 0.013 ± 0.00 h | 0.013 ± 0.00 h | 0.013 ± 0.00 h | 0.013 ± 0.00 h | 0.013 ± 0.00 h | 0.013 ± 0.00 h |
15 | 0.025 ± 0.00 e | 0.027 ± 0.00 cd | 0.026 ± 0.00 de | 0.016 ± 0.00 g | 0.022 ± 0.00 f | 0.026 ± 0.00 de | 0.029 ± 0.00 c | |
30 | 0.032 ± 0.00 b | 0.032 ± 0.00 b | 0.033 ± 0.00 b | 0.031 ± 0.00 b | 0.032 ± 0.00 b | 0.032 ± 0.00 b | 0.032 ± 0.00 b | |
45 | 0.044 ± 0.00 a | 0.046 ± 0.00 a | 0.044 ± 0.00 a | 0.045 ± 0.00 a | 0.044 ± 0.00 a | 0.045 ± 0.00 a | 0.044 ± 0.00 a | |
PAL (U mg−1 protein) | 0 | 5.31 ± 0.19 a | 5.31 ± 0.19 a | 5.31 ± 0.19 a | 5.31 ± 0.19 a | 5.31 ± 0.19 a | 5.31±0.19 a | 5.31 ± 0.19 a |
15 | 4.00 ± 0.13 bc | 2.82 ± 0.21 hijkl | 3.88 ± 0.36 bcd | 4.08 ± 0.23 b | 2.96 ± 0.18 ghijk | 2.78 ± 0.16 hijkl | 2.53 ± 0.08 jkl | |
30 | 3.51 ± 0.19 cdef | 2.61 ± 0.08 ijkl | 3.22 ± 0.17 efgh | 2.82 ± 0.06 hijkl | 2.47 ± 0.22 kl | 3.03 ± 0.26 fghij | 2.43 ± 0.07 l | |
45 | 3.69 ± 0.20 bcde | 3.08 ± 0.25 fghi | 3.16 ± 0.05 fgh | 3.01 ± 0.03 fghij | 3.44 ± 0.07 defg | 3.37 ± 0.08 efg | 3.33 ± 0.06 efg | |
POX (U mg−1 protein) | 0 | 0.008 ± 0.00 d | 0.008 ± 0.00 d | 0.008 ± 0.00 d | 0.008 ± 0.00 d | 0.008 ± 0.00 d | 0.008 ± 0.00 d | 0.008 ± 0.00 d |
15 | 0.013 ± 0.00 b | 0.013 ± 0.00 b | 0.011 ± 0.00 c | 0.015 ± 0.00 a | 0.010 ± 0.00 c | 0.011 ± 0.00 c | 0.010 ± 0.00 c | |
30 | 0.003 ± 0.00 e | 0.003 ± 0.00 e | 0.003 ± 0.00 e | 0.003 ± 0.00 e | 0.002 ± 0.00 e | 0.003 ± 0.00 e | 0.003 ± 0.00 e | |
45 | 0.002 ± 0.00 e | 0.002 ± 0.00 e | 0.002 ± 0.00 e | 0.002 ± 0.00 e | 0.002 ± 0.00 e | 0.002 ± 0.00 e | 0.002 ± 0.00 e | |
SOD (U mg−1 protein) | 0 | 44.39 ± 0.83 kl | 44.39 ± 0.83 kl | 44.39 ± 0.83 kl | 44.39 ± 0.83 kl | 44.39 ± 0.83 kl | 44.39 ± 0.83 kl | 44.39 ± 0.83 kl |
15 | 47.07 ± 0.77 jk | 51.92 ± 1.06g hi | 47.78 ± 1.03 ijk | 60.28 ± 1.67 de | 66.57 ± 1.07 bc | 60.46 ± 1.79 de | 52.57 ± 1.88 gh | |
30 | 58.32 ± 2.13 ef | 60.10 ± 1.35 de | 63.85 ± 1.64 cd | 65.78 ± 1.43 c | 73.53 ± 1.32 a | 70.21 ± 1.20 ab | 66.85 ± 0.95 bc | |
45 | 49.71 ± 2.00 hij | 37.96 ± 1.13 m | 58.39 ± 3.50 ef | 41.75 ± 1.16 lm | 58.75 ± 1.62 ef | 55.67 ± 2.50 fg | 30.07 ± 0.76 n |
L* | a* | b* | C* | h° | Hull TCL | Hull CAC | |
---|---|---|---|---|---|---|---|
a* | −0.30 ns | ||||||
b* | −0.02 ns | −0.73 *** | |||||
C* | −0.46 * | 0.85 *** | 0.27 ns | ||||
h° | 0.25 ns | −0.99 *** | 0.81 *** | −0.77 *** | |||
Hull TCL | 0.67 *** | 0.26 ns | −0.47 * | 0.00 ns | −0.32 ns | ||
Hull CAC | 0.13 ns | 0.60 ** | −0.47 * | 0.48 * | −0.60 ** | 0.31 ns | |
PPO | −0.36 ns | −0.68 *** | 0.64 *** | −0.47 * | 0.71 *** | −0.71 *** | −0.70 *** |
TAC | Hull TAA | Kernel TAA | Hull TPC | Kernel TPC | PPO | PAL | POX | |
---|---|---|---|---|---|---|---|---|
Hull TAA | 0.38 ns | |||||||
Kernel TAA | 0.00 ns | 0.13 ns | ||||||
Hull TPC | 0.25 ns | 0.51 * | −0.15 ns | |||||
Kernel TPC | −0.64 *** | −0.35 ns | 0.45 * | −0.23 ns | ||||
PPO | −0.81 *** | −0.12 ns | −0.04 ns | 0.00 ns | 0.55 ** | |||
PAL | 0.25 ns | 0.03 ns | 0.28 ns | −0.29 ns | −0.11 ns | −0.34 ns | ||
POX | 0.70 *** | 0.45 * | 0.02 ns | 0.13 ns | −0.72 *** | −0.77 *** | 0.28 ns | |
SOD | −0.03 ns | −0.32 ns | −0.22 ns | −0.04 ns | 0.00 ns | −0.27 ns | −0.41 ns | −0.04 ns |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheikhi, A.; Mirdehghan, S.H.; Karimi, H.R.; Ferguson, L. Effects of Passive- and Active-Modified Atmosphere Packaging on Physio-Chemical and Quality Attributes of Fresh In-Hull Pistachios (Pistacia vera L. cv. Badami). Foods 2019, 8, 564. https://doi.org/10.3390/foods8110564
Sheikhi A, Mirdehghan SH, Karimi HR, Ferguson L. Effects of Passive- and Active-Modified Atmosphere Packaging on Physio-Chemical and Quality Attributes of Fresh In-Hull Pistachios (Pistacia vera L. cv. Badami). Foods. 2019; 8(11):564. https://doi.org/10.3390/foods8110564
Chicago/Turabian StyleSheikhi, Abdollatif, Seyed Hossein Mirdehghan, Hamid Reza Karimi, and Louise Ferguson. 2019. "Effects of Passive- and Active-Modified Atmosphere Packaging on Physio-Chemical and Quality Attributes of Fresh In-Hull Pistachios (Pistacia vera L. cv. Badami)" Foods 8, no. 11: 564. https://doi.org/10.3390/foods8110564
APA StyleSheikhi, A., Mirdehghan, S. H., Karimi, H. R., & Ferguson, L. (2019). Effects of Passive- and Active-Modified Atmosphere Packaging on Physio-Chemical and Quality Attributes of Fresh In-Hull Pistachios (Pistacia vera L. cv. Badami). Foods, 8(11), 564. https://doi.org/10.3390/foods8110564