A Comprehensive Characterisation of Volatile and Fatty Acid Profiles of Legume Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material Handling and Storage
2.2. Sample Preparation
2.3. Moisture Determination
2.4. Headspace Volatile Analysis with HS-SPME-GC-MS Fingerprinting
2.5. Determination of Fatty Acids in Legume Seeds Using FAME-GC-FID
2.5.1. Total Lipid Extraction Based on Soxhlet Method
2.5.2. Lipid Purification
2.5.3. Lipid Derivatisation to Fatty Acid Methyl Esters (FAMEs)
2.5.4. Fatty Acid Profiling Using GC-FID
2.5.5. Identification and Data Preprocessing of FAME
2.6. Multivariate Data Analysis and Identification of Compounds Relevant to Specific Legume Type
3. Results
3.1. Moisture Content of Legume Seeds
3.2. Fatty Acid Analysis of Legume Seeds
3.3. Volatile Analysis of Legume Seeds
3.4. Comparison of the Volatile and Fatty Compositions Among the Eleven Legumes and Identifying Discriminant Compounds
4. Discussion
4.1. Ratio of Unsaturated Fatty Acids in Studied Legumes
4.2. Aldehydes, Alcohols, Ketones and Terpenes in Studied Legumes
4.3. Lipoxygenase is the Most Substantial Contributor for Volatile Evolution
4.4. Soybean and Cowpea Contain Distinctive Butyrolactones
4.5. Orange Lentil Contains Discriminant Terpene and Carotenoid Degradation Products
4.6. Presence of 2-Butanone and Methylated Compounds in Orange Lentil
4.7. Presence of Acid in Chickpea and Fava Bean Suggests Alcohol Dehydrogenase Activity
4.8. Members of the Phaseolus Group Appears to Contain Similar Dominant Volatile Compounds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tharanathan, R.N.; Mahadevamma, S. Grain legumes—A boon to human nutrition. Trends Food Sci. Technol. 2003, 14, 507–518. [Google Scholar] [CrossRef]
- Azarnia, S.; Boye, J.I. Flavour Compounds in Legumes: Chemical and Sensory Aspects. In Progress in Food Science and Technology; Azarnia, S., Boye, J.I., Eds.; Nova Science Publishers, Inc.: New York, NJ, USA, 2011. [Google Scholar]
- MacLeod, G.; Ames, J.; Betz, N.L. Soy flavor and its improvement. Crit. Rev. Food Sci. Nutr. 1988, 27, 219–400. [Google Scholar] [CrossRef] [PubMed]
- Rackis, J.J.; Sessa, D.J.; Honig, D.H. Flavor problems of vegetable food proteins. J. Am. Oil Chem. Soc. 1979, 56, 262–271. [Google Scholar] [CrossRef]
- Roland, W.S.U.; Pouvreau, L.; Curran, J.; van de Velde, F.; de Kok, P.M.T. Flavor aspects of pulse ingredients. Cereal Chem. 2017, 94, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guo, S.; Liu, Z.; Chang, S.K.C. Off-flavor related volatiles in soymilk as affected by soybean variety, grinding, and heat-processing methods. J. Agric. Food Chem. 2012, 60, 7457–7462. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Q.; Zhang, W. Effects of pulsed electric fields on volatile constituents of soymilk. Agro Food Ind. Hi Tech 2012, 23, 6. [Google Scholar]
- Achouri, A.; Boye, J.I.; Zamani, Y. Soybean variety and storage effects on soymilk flavour and quality. Int. J. Food Sci. Technol. 2008, 43, 82–90. [Google Scholar] [CrossRef]
- Min, S.; Yu, Y.; Yoo, S.; Martin, S.S. Effect of soybean varieties and growing locations on the flavor of soymilk. J. Food Sci. 2005, 70, C1–C7. [Google Scholar] [CrossRef]
- Oomah, B.D.; Liang, L.S.Y.; Balasubramanian, P. Volatile Compounds of dry beans (Phaseolus vulgaris L.). Plant Foods Hum. Nutr. 2007, 62, 177. [Google Scholar] [CrossRef]
- Rembold, H.; Wallner, P.; Nitz, S.; Kollmannsberger, H.; Drawert, F. Volatile components of chickpea (Cicer arietinum L.) seed. J. Agric. Food Chem. 1989, 37, 659–662. [Google Scholar] [CrossRef]
- Lovegren, N.V.; Fisher, G.S.; Legendre, M.G.; Schuller, W.H. Volatile constituents of dried legumes. J. Agric. Food Chem. 1979, 27, 851–853. [Google Scholar] [CrossRef]
- Fisher, G.S.; Legendre, M.G.; Lovgren, N.V.; Schuller, W.H.; Wells, J.A. Volatile constituents of southernpea seed (Vigna unguiculata (L.) Walp.). J. Agric. Food Chem. 1979, 27, 7–11. [Google Scholar] [CrossRef]
- Vervoort, L.; Grauwet, T.; Kebede, B.T.; Van der Plancken, I.; Timmermans, R.; Hendrickx, M.; Van Loey, A. Headspace fingerprinting as an untargeted approach to compare novel and traditional processing technologies: A case-study on orange juice pasteurisation. Food Chem. 2012, 134, 2303–2312. [Google Scholar] [CrossRef] [PubMed]
- Chigwedere, C.M.; Tadele, W.W.; Yi, J.; Wibowo, S.; Kebede, B.T.; Van Loey, A.M.; Grauwet, T.; Hendrickx, M.E. Insight into the evolution of flavor compounds during cooking of common beans utilizing a headspace untargeted fingerprinting approach. Food Chem. 2019, 275, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Grauwet, T.; Kebede, B.T.; Van Loey, A.; Liao, X.; Hendrickx, M. Comparing the Effects of High Hydrostatic Pressure and Thermal Processing on Blanched and Unblanched Mango (Mangifera indica L.) Nectar: Using Headspace Fingerprinting as an Untargeted Approach. Food Bioprocess Technol. 2014, 7, 3000–3011. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. AOAC Official Method 963.22 Methyl Esters of Fatty Acids in Oils and Fats; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Kebede, B.T.; Grauwet, T.; Tabilo-Munizaga, G.; Palmers, S.; Vervoort, L.; Hendrickx, M.; Van Loey, A. Headspace components that discriminate between thermal and high pressure high temperature treated green vegetables: Identification and linkage to possible process-induced chemical changes. Food Chem. 2013, 141, 1603–1613. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, Squalene, Tocopherol Content and Fatty Acid Profile of Selected Seeds, Grains, and Legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Damodaran, S.; Parkin, K.L. Fennema’s Food Chemistry, 4th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Del Rosario, R.; de Lumen, B.O.; Habu, T.; Flath, R.A.; Richard Mon, T.; Teranishi, R. Comparison of headspace volatiles from winged beans and soybeans. J. Agric. Food Chem. 1984, 32, 1011–1015. [Google Scholar] [CrossRef]
- Baysal, T.; Demirdöven, A. Lipoxygenase in fruits and vegetables: A review. Enzym. Microb. Technol. 2007, 40, 491–496. [Google Scholar] [CrossRef]
- Sanz, L.C.; Perez, A.G.; Olias, J.M. Purification and catalytic properties of chickpea lipoxygenases. Phytochemistry 1992, 31, 2967–2972. [Google Scholar] [CrossRef]
- Gardner, H.W.; Weisleder, D.; Plattner, R.D. Hydroperoxide lyase and other hydroperoxide-metabolizing activity in tissues of soybean. Glycine Max Plant Physiol. 1991, 97, 1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olias, J.M.; Rios, J.J.; Valle, M.; Zamora, R.; Sanz, L.C.; Axelrod, B. Fatty acid hydroperoxide lyase in germinating soybean seedlings. J. Agric. Food Chem. 1990, 38, 624–630. [Google Scholar] [CrossRef]
- Matoba, T.; Hidaka, H.; Kitamura, K.; Kaizuma, N.; Kito, M. Contribution of hydroperoxide lyase activity to n-hexanal formation in soybean. J. Agric. Food Chem. 1985, 33, 856–858. [Google Scholar] [CrossRef]
- Liu, K. Soybeans: Chemistry, Technology, and Utilization; Springer: Boston, MA, USA, 1997. [Google Scholar]
- Gomes, J.; Jadrić, S.; Winterhalter, M.; Brkić, S. Alcohol dehydrogenase isoenzymes in chickpea cotyledons. Phytochemistry 1982, 21, 1219–1224. [Google Scholar] [CrossRef]
- Stark, W.; Forss, D. A compound responsible for mushroom flavour in dairy products. J. Dairy Res. 1964, 31, 253–259. [Google Scholar] [CrossRef]
- Sessa, D.; Honig, D.; Rackis, J. Lipid oxidation in full-fat and defatted soybean flakes as related to soybean flavor. Cereal Chem. 1969, 46, 675–686. [Google Scholar]
- Sessa, D.J.; Rackis, J.J. Lipid-Derived flavors of legume protein products. J. Am. Oil Chem. Soc. 1977, 54, 468–473. [Google Scholar] [CrossRef]
- Blank, I.; Fay, L.B. Formation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone and 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone through Maillard reaction based on pentose sugars. J. Agric. food Chem. 1996, 44, 531–536. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Tang, Y.; Chen, P.; Liu, R.; Ramdath, D.D.; Liu, Q.; Hernandez, M.; Tsao, R. Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food Chem. 2014, 161, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Mosciano, G. Organoleptic characteristics of flavor materials. Perfum. Flavorist 2000, 25, 26. [Google Scholar]
- Ma, Z.; Boye, J.I.; Azarnia, S.; Simpson, B.K. Volatile flavor profile of saskatchewan grown pulses as affected by different thermal processing treatments. Int. J. Food Prop. 2016, 19, 2251–2271. [Google Scholar] [CrossRef] [Green Version]
- Grosch, W. Lipid oxidation product and flavour. In Food Flavors: Part A, Introduction; Morton, I.D., MacLeod, A.J., Eds.; Elsevier: New York, NY, USA, 1982; p. 325. [Google Scholar]
Legumes | Total Lipid Extracted (g/100g Sample) | C16:0 (g/100g Lipid) | C18:0 (g/100g Lipid) | C18:1 (g/100g Lipid) | C18:2n-6 (g/100g Lipid) | C18:3n-3 (g/100g Lipid) | SFAs (g/100g Lipid) | MUFAs (g/100g Lipid) | PUFAs (g/100g Lipid) | n-6/n-3 Ratio |
---|---|---|---|---|---|---|---|---|---|---|
Soybean | 19.20 d ± 1.98 | 11.76 a ± 0.13 | 3.68 c,d ± 0.01 | 19.20 c ± 0.28 | 55.15 g ± 0.15 | 8.88 b ± 0.02 | 15.44 a,b ± 0.13 | 19.20 c ± 0.28 | 64.03 c,d ± 0.14 | 6.21 c ± 0.02 |
Chickpea | 7.73 c ± 0.73 | 10.94 a ± 0.20 | 1.80 a ± 0.0.16 | 37.87 e ± 0.16 | 45.78 f ± 0.42 | 2.33 a ± 0.05 | 12.74 a ± 0.35 | 37.87 e ± 0.16 | 48.11 a ± 0.46 | 19.67 e ± 0.36 |
Lentil | 3.90 a,b ± 0.21 | 21.40 e ± 0.41 | 2.77 a,b,c ± 0.10 | 28.06 d ± 0.35 | 38.21 c,d ± 0.55 | 9.07 b ± 0.09 | 24.29 e ± 0.40 | 28.06 d ± 0.35 | 47.27 a ± 0.64 | 4.21 b,c ± 0.03 |
Cowpea | 3.46 a,b ± 0.10 | 27.68 f ± 0.26 | 4.76 e ± 0.53 | 7.35 a,b ± 1.64 | 35.97 b,c ± 0.85 | 23.34 e ± 0.48 | 33.34 f ± 0.97 | 7.35 a,b ± 1.64 | 59.31 b,c ± 1.05 | 1.54 a ± 0.04 |
Pea | 3.41 a,b ± 0.12 | 13.48 a,b ± 0.35 | 4.50d e ± 0.11 | 34.40 e ± 2.30 | 38.66 c,d ± 2.38 | 8.78 b ± 0.67 | 17.98 b,c ± 0.44 | 34.40 e ± 2.30 | 47.44 a ± 3.04 | 4.41 b,c ± 0.07 |
Mung bean | 3.20 a,b ± 0.15 | 27.04 f ± 1.56 | 5.73 f ± 0.12 | 6.54 a ± 37.78 | 43.71 e,f ± 2.23 | 15.82 c ± 1.17 | 33.75 f ± 2.22 | 6.54 a ± 3.78 | 59.53 b,c,d ± 3.18 | 2.76 a,b ± 0.14 |
Fava bean | 2.75 a,b ± 0.19 | 15.25b c ± 0.39 | 3.64 c,d ± 0.93 | 24.57 c,d ± 0.34 | 52.68 g ± 0.88 | 3.61 a ± 0.57 | 19.14 c,d ± 1.02 | 24.57 c,d ± 0.34 | 56.29 b ± 1.17 | 14.59 d ± 2.06 |
Navy bean | 3.87 b ± 0.17 | 18.00 d ± 0.22 | 3.12 bc ± 0.13 | 19.49 c ± 0.81 | 28.30 a ± 0.45 | 31.09 f ± 0.33 | 21.12 d ± 0.15 | 19.49 c ± 0.81 | 59.39 b,c,d ± 0.73 | 0.91 a ± 0.01 |
Kidney bean | 3.59 a,b ± 0.14 | 17.97 d ± 0.49 | 2.40 a,b ± 0.27 | 12.71 b ± 2.00 | 29.02 a ± 1.16 | 35.71 g ± 1.39 | 20.49 c,d ± 0.65 | 12.71 b ± 2.00 | 64.74 d ± 2.55 | 0.81 a ± 0.00 |
Black bean | 3.20 a,b ± 0.16 | 17.17c d ± 0.48 | 2.39 a,b ± 0.29 | 8.29 a,b ± 0.16 | 33.65 b ± 0.34 | 37.30 g ± 1.22 | 19.56 c,d ± 0.71 | 8.29 a,b ± 0.16 | 70.95 e ± 1.50 | 0.90 a ± 0.02 |
Adzuki bean | 1.96 a ± 0.10 | 27.96 f ± 1.02 | 3.36 c ± 0.40 | 3.92 a ± 0.52 | 41.88 d,e ± 1.12 | 20.31 d ± 0.73 | 31.35 f ± 1.45 | 3.92 a ± 0.52 | 62.19 c,d ± 1.96 | 2.06 a ± 0.01 |
F-value | 170.887 | 229.2 | 33.7 | 93.3 | 114.7 | 1047.5 | 148.5 | 93.3 | 46.0 | 218.0 |
Significant | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
VID | Identity | RI | Chemical Group |
---|---|---|---|
Soybean (18) | |||
0.989 | α-methyl-γ-butyrolactone | 1621 | Ester & Lactone |
0.977 | 1-octen-3-one | 1321 | Ketone |
0.971 | β-methyl-γ-butyro-lactone | 1644 | Ester & Lactone |
0.967 | Heptanal | 1189 | Aldehyde |
0.964 | Linoleic acid | * | Fatty Acid |
0.959 | 2(Z)-heptenal | 1349 | Aldehyde |
0.958 | Stearic acid | * | Fatty Acid |
0.941 | 1-octen-3-ol | 1461 | Alcohol |
0.934 | 1-pentanol | 1251 | Alcohol |
0.934 | 2(E)-octenal | 1458 | Aldehyde |
0.920 | Palmitic acid | * | Fatty Acid |
0.902 | 3,5-octadien-2-ol | 1433 | Alcohol |
0.889 | 2(Z)-penten-1-ol | 1330 | Alcohol |
0.878 | 2,4-nonadienal | 1710 | Aldehyde |
0.874 | 5-ethylcyclopent-1-enecarboxaldehyde | 1451 | Aldehyde |
0.867 | 3-octanone | 1268 | Ketone |
0.823 | Pentanal | 949 | Aldehyde |
0.804 | Oleic acid | * | Fatty Acid |
Lentil (15) | |||
0.984 | 2-butanone | 873 | Ketone |
0.982 | Pyrrole | 1540 | Pyrrole |
0.976 | Menthol | 1647 | Alcohol |
0.974 | 2-methoxyethylbenzene | 1519 | Hydrocarbon |
0.970 | Anethole | 1816 | Hydrocarbon |
0.966 | Caryophyllene | 1630 | Terpene |
0.958 | o-cymene | 1291 | Terpene |
0.953 | α-copaene | 1529 | Terpene |
0.944 | Linalool | 1554 | Terpene |
0.941 | Terpinen-4-ol | 1620 | Terpene |
0.898 | α-terpinyl acetate | 1705 | Terpene |
0.892 | γ-Terpinene | 1262 | Terpene |
0.820 | p-Cymen-7-ol | 2009 | Terpene |
0.819 | D-limonene | 1208 | Terpene |
0.806 | 2(E)-hexenal | 1230 | Aldehyde |
Chickpea (8) | |||
0.967 | Allyl nonanoate | 1632 | Ester & Lactone |
0.943 | 1,4-dichlorobenzene | 1478 | Hydrocarbon |
0.884 | 6-methyl-5-hepten-2-one | 1358 | Ketone |
0.883 | 1-octanol | 1564 | Alcohol |
0.883 | Nonanal | 1418 | Alcohol |
0.859 | Hexanoic acid | 1831 | Acid |
0.833 | 2(E)-decenal | 1657 | Aldehyde |
0.800 | 6-methyl-3,5-heptadiene-2-one | 1613 | Ketone |
Cowpea (6) | |||
0.975 | α-muurolene | 1734 | Hydrocarbon |
0.971 | 4,1 methylethyl benzaldehyde | 1785 | Aldehyde |
0.967 | α-terpinen-7-al | 1796 | Aldehyde |
0.953 | γ-ethyl-γ-butyrolactone | 1719 | Ester & Lactone |
0.925 | 3-p-menthen-7-al | 1598 | Aldehyde |
0.803 | γ-methyl-γ-butyrolactone | 1639 | Ester & Lactone |
Mung bean (5) | |||
0.967 | p-xylene | 1194 | Hydrocarbon |
0.954 | Isophorone | 1624 | Ketone |
0.900 | o-xylene | 1133 | Hydrocarbon |
0.877 | 1,3-dimethylbenzene | 1141 | Hydrocarbon |
0.868 | Toluene | 1019 | Hydrocarbon |
Fava bean (2) | |||
0.904 | 7-epi-silphiperfol-5-ene | 1490 | Ester & Lactone |
0.863 | 3-methylbutanoic acid | 1684 | Acid |
Pea (1) | |||
0.875 | 2-pentanone | 947 | Ketone |
Adzuki bean (6) | |||
0.934 | 3-furaldehyde | 1455 | Aldehyde |
0.925 | 3-furanmethanol | 1680 | Furan |
0.846 | 2-methylfuran | 869 | Furan |
0.810 | Methyl salicylate | 1782 | Ester & Lactone |
Kidney bean (1) | |||
0.838 | 3-methyl-1-butanol | 1202 | Alcohol |
Black bean (5) | |||
0.900 | β-pinene | 1099 | Terpene |
0.873 | α-pinene | 997 | Terpene |
0.869 | 3-methyl-1-butanol | 1202 | Alcohol |
0.859 | 4(Z)-heptenal | 1254 | Aldehyde |
0.847 | 1-penten-3-ol | 1148 | Alcohol |
Navy bean (1) | |||
0.871 | 3-methyl-1-butanol | 1202 | Alcohol |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khrisanapant, P.; Kebede, B.; Leong, S.Y.; Oey, I. A Comprehensive Characterisation of Volatile and Fatty Acid Profiles of Legume Seeds. Foods 2019, 8, 651. https://doi.org/10.3390/foods8120651
Khrisanapant P, Kebede B, Leong SY, Oey I. A Comprehensive Characterisation of Volatile and Fatty Acid Profiles of Legume Seeds. Foods. 2019; 8(12):651. https://doi.org/10.3390/foods8120651
Chicago/Turabian StyleKhrisanapant, Prit, Biniam Kebede, Sze Ying Leong, and Indrawati Oey. 2019. "A Comprehensive Characterisation of Volatile and Fatty Acid Profiles of Legume Seeds" Foods 8, no. 12: 651. https://doi.org/10.3390/foods8120651
APA StyleKhrisanapant, P., Kebede, B., Leong, S. Y., & Oey, I. (2019). A Comprehensive Characterisation of Volatile and Fatty Acid Profiles of Legume Seeds. Foods, 8(12), 651. https://doi.org/10.3390/foods8120651