Distribution of Free and Bound Phenolic Compounds in Buckwheat Milling Fractions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Reagents and Chemicals
2.3. Extraction Method
2.4. Determination of Free and Bound Phenolic Compounds by HPLC–MS
2.5. Statistical Analysis
3. Results and Discussion
3.1. Analytical Parameters of the Method
3.2. Identification of Phenolic Compounds from Buckwheat Extracts by HPLC–MS
3.3. Quantification of Free and Bound Phenolic Compounds in Buckwheat Fractions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sytar, O. Phenolic acids in the inflorescences of different varieties of buckwheat and their antioxidant activity. J. King Saud Univ.Sci. 2015, 27, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Van Hung, P.; Morita, N. Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chem. 2008, 109, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, M.; Tang, Y.; Li, F.; Tang, Y.; Shao, J. Bioactive compounds in functional buckwheat food. FRIN 2012, 49, 389–395. [Google Scholar] [CrossRef]
- Verardo, V.; Arráez-Román, D.; Segura-Carretero, A.; Marconi, E.; Fernández-Gutiérrez, A.; Caboni, M.F. Identification of buckwheat phenolic compounds by reverse phase high performance liquid chromatography e electrospray ionization-time of flight-mass spectrometry (RP-HPLC e ESI-TOF-MS). J. Cereal Sci. 2010, 52, 170–176. [Google Scholar] [CrossRef]
- Verardo, V.; Arráez-Román, D.; Segura-Carretero, A.; Marconi, E.; Fernández-Gutiérrez, A.; Caboni, M.F. Determination of free and bound phenolic compounds in buckwheat spaghetti by RP-HPLC-ESI-TOF-MS: Effect of thermal processing from farm to fork. J. Agric. Food Chem. 2011, 59, 7700–7707. [Google Scholar] [CrossRef]
- Sedej, I.; Sakač, M.; Mandić, A.; Mišan, A.; Tumbas, V.; Čanadanović-Brunet, J. Buckwheat (Fagopyrum esculentum Moench) Grain and Fractions: Antioxidant Compounds and Activities. J. Food Sci. 2012, 77, C954–C959. [Google Scholar] [CrossRef]
- Kaliora, A.C.; Dedoussis, G.V.Z. Natural antioxidant compounds in risk factors for CVD. Pharmacol. Res. 2007, 56, 99–109. [Google Scholar] [CrossRef]
- Ma, M.S.; In, Y.B.; Hyeon, G.L.; Yang, C.B. Purification and identification of angiotensin I-converting enzyme inhibitory peptide from buckwheat (Fagopyrum esculentum Moench). Food Chem. 2006, 96, 36–42. [Google Scholar] [CrossRef]
- Giménez-Bastida, J.A.; Zieliński, H. Buckwheat as a Functional Food and Its Effects on Health. J. Agric. Food Chem. 2015, 63, 7896–7913. [Google Scholar] [CrossRef]
- Chan, P.K. Inhibition of tumor growth in vitro by the extract of fagopyrum cymosum (fago-c). Life Sci. 2003, 72, 1851–1858. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.K.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Bobkov, S. Biochemical and Technological Properties of Buckwheat Grains. In Molecular Breeding and Nutritional Aspects of Buckwheat; Zhou, M., Kreft, I., Woo, S.H., Chrungoo, N., Wieslander, G., Eds.; Elsevier: Oxford, UK, 2016; pp. 423–440. [Google Scholar]
- Bonafaccia, G.; Marocchini, M.; Kreft, I. Composition and technological properties of the flour. Food Chem. 2003, 80, 9–15. [Google Scholar] [CrossRef]
- Dreher, M. Food sources and uses of dietary fiber. In Complex Carbohydrates in Foods; Sungsoo cho, S., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 358–359. [Google Scholar]
- Liu, F.; He, C.; Wang, L.; Wang, M. Effect of milling method on the chemical composition and antioxidant capacity of Tartary buckwheat flour. Int. J. Food Sci. Technol. 2018, 53, 2457–2464. [Google Scholar] [CrossRef]
- Morita, N.; Maeda, T.; Sai, R.; Miyake, K.; Yoshioka, H.; Urisu, A.; Adachi, T. Studies on distribution of protein and allergen in graded flours prepared from whole buckwheat grains. Food Res. Int. 2006, 39, 782–790. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Verardo, V.; Berardinelli, A.; Marconi, E.; Caboni, M.F. A chemometric approach to determine the phenolic compounds in different barley samples by two different stationary phases: A comparison between C18 and pentafluorophenyl core shell columns. J. Chromatogr. A 2014, 1355, 134–142. [Google Scholar] [CrossRef]
- Inglett, G.E.; Chen, D.; Berhow, M.; Lee, S. Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions. Food Chem. 2011, 125, 923–929. [Google Scholar] [CrossRef]
- Inglett, G.E.; Xu, J.; Stevenson, D.G.; Chen, D. Rheological and pasting properties of buckwheat (Fagopyrum esculentum Möench) flours with and without jet-cooking. Cereal Chem. 2009, 86, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Steadman, K.J.; Burgoon, M.S.; Lewis, B.A.; Edwardson, S.E.; Obendorf, R.L. Buckwheat seed milling fractions: Description, macronutrient composition and dietary fibre. J. Cereal Sci. 2001, 33, 271–278. [Google Scholar] [CrossRef]
- Kalinová, J.P.; Vrchotováb, N.; Tříska, J. Phenolics levels in different parts of common buckwheat (Fagopyrum esculentum) achenes. J. Cereal Sci. 2019, 85, 243–248. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, C.; Yao, Y.; Xu, B. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary buckwheat produced in China upon thermal processing. J. Sci. Food Agric. 2019, 99, 5565–5576. [Google Scholar] [CrossRef]
- Fu-Hua, L.; Yuan, Y.; Xiao-lan, Y.; Shu-ying, T.; Jian, M. Phenolic Profiles and Antioxidant Activity of Buckwheat (Fagopyrum esculentum Möench and Fagopyrum tartaricum L. Gaerth) Hulls, Brans and Flours. J. Integr. Agric. 2013, 12, 1684–1693. [Google Scholar]
- Guo, X.D.; Wu, C.S.; Ma, Y.J.; Parry, J.; Xu, Y.Y.; Liu, H.; Wang, M. Comparison of milling fractions of tartary buckwheat for their phenolics and antioxidant properties. Food Res. Int. 2012, 49, 53–59. [Google Scholar] [CrossRef]
Standards | Calibration Ranges (mg/L) | Calibration Curves (mg/g) | r2 | LOD (mg/L) | LOQ (mg/L) |
---|---|---|---|---|---|
Ferulic acid | LOQ-100 | y = 119572x + 16157 | 0.9995 | 0.0136 | 0.0452 |
Catechin | LOQ-100 | y = 170925x + 8609.5 | 0.9994 | 0.0095 | 0.0316 |
Quercetin | LOQ-100 | y = 402162x + 44862 | 0.9996 | 0.0040 | 0.0134 |
Gallic acid | LOQ-100 | y = 123892x − 4971.6 | 0.9984 | 0.0131 | 0.0437 |
Rutin | LOQ-100 | y = 199694x − 2067.2 | 0.9999 | 0.0081 | 0.0271 |
Peak | Retention Time | [M-H] | Molecular Formula | Compound | In Source Fragments |
---|---|---|---|---|---|
1 | 2.1 | 315 | C13H15O9 | 2-hydroxy-3- O-β-d-glucopyranosylbenzoic acid | 153 |
2 | 2.6 | 315 | C13H15O9 | Protocatechuic-4-O-glucoside acid | 153 |
3 | 3.3 | 451 | C21H23O11 | Catechin-glucoside | 289 |
4 | 4.1 | 341 | C15H17O9 | Caffeic acid hexose | 179 |
5 | 4.2 | 289 | C15H13O6 | Catechin | |
6 | 4.4 | 487 | C21 H27 O13 | Swertiamacroside | 179 |
7 | 5.0 | 179 | C9H7O4 | Caffeic acid | |
8 | 5.5 | 289 | C15H13O6 | Epicatechin | |
9 | 6.2 | 561 | C30H25O11 | (Epi)afzelchin-(epi) catechin isomer A | 543, 289, 271, 435 |
10 | 6.8 | 447 | C21H19O11 | Orientin | |
11 | 7.0 | 447 | C21H19O12 | Isorientin | |
12 | 7.8 | 431 | C21H19O10 | Vitexin | |
13 | 7.9 | 609 | C27H29O16 | Rutin | |
14 | 7.9 | 441 | C22H17O10 | Epicatechin-gallate | 289 |
15 | 8.0 | 833 | C45H37O16 | Epiafzelchin–epiafzelchin–epicatechin | |
16 | 8.2 | 487 | C21H27O13 | Swertiamacroside | |
17 | 8.3 | 463 | C21H19O12 | Hyperin | |
18 | 8.7 | 727 | C38H31O15 | Epiafzelchin-epicatechin-O-methylgallate | 455, 289, 271 |
19 | 9.4 | 455 | C23H19O10 | (−)-Epicatechin-3-(3”-O-methyl) gallate | 289 |
20 | 9.5 | 561 | C30H25O11 | (Epi)afzelchin-(epi)catechin isomer B | 543, 425, 289, 271 |
21 | 9.9 | 757 | C39H33O16 | Procyanidin B2-dimethylgallate | |
22 | 10.7 | 741 | C39H33O15 | Epiafzelchin–epicatechin-O-dimethylgallate | |
23 | 11.5 | 469 | C24H21O10 | Epicatechin-O-3,4-dimethylgallate | |
24 | 12.3 | 463 | C21H19O12 | Isoquercitrin | |
25 | 12.6 | 301 | C15H10O7 | Quercetin |
Peak | Retention Time | [M-H] | Molecular Formula | Compound |
---|---|---|---|---|
1 | 2.1 | 315 | C13H15O9 | 2-hydroxy-3-O-β-d-glucopyranosylbenzoic acid |
2 | 2.6 | 315 | C13H15O9 | Protocatechuic-4-O-glucoside acid |
3 | 3.2 | 341 | C15H17O9 | Caffeic acid hexose isomer a |
4 | 4.1 | 341 | C15H17O9 | Caffeic acid hexose isomer b |
5 | 4.2 | 289 | C15H13O6 | Catechin |
6 | 4.4 | 487 | C21H27O13 | Swertiamacroside isomer a |
7 | 5.0 | 179 | C9H7O4 | Caffeic acid |
8 | 5.5 | 289 | C15H13O6 | Epicatechin |
9 | 6.3 | 197 | C9H9O5 | Syringic acid |
10 | 6.8 | 447 | C21H19O11 | Orientin |
11 | 6.9 | 163 | C9H7O3 | p-coumaric acid derivative |
12 | 7.0 | 575 | C30H23O12 | Procyanidin A |
13 | 7.5 | 317 | C15H9O8 | Myricetin |
14 | 7.8 | 431 | C21H19O10 | Vitexin |
15 | 7.9 | 609 | C27H29O16 | Rutin |
16 | 7.9 | 441 | C22H17O10 | Epicatechin gallate |
17 | 8.2 | 451 | C21H23O11 | Catechin-glucoside |
18 | 8.2 | 487 | C21H27O13 | Swertiamacroside isomer b |
19 | 8.7 | 727 | C38H31O15 | Epiafzelchin–epicatechin-O-methylgallate |
20 | 9.3 | 163 | C9H7O3 | p-coumaric acid |
21 | 9.4 | 455 | C23H19O10 | (−)-epicatechin-3-(3’’-O-methyl) gallate |
22 | 11.5 | 469 | C24H21O10 | Epicatechin-O-3,4-dimethylgallate |
23 | 12.3 | 463 | C21H19O12 | Isoquercitrin |
24 | 12.6 | 301 | C15H10O7 | Quercetin |
Free Phenolic Compounds | Bran Meal | Middling Flour | Light Flour | De-hulled Grain Meal |
---|---|---|---|---|
2-hydroxy-3-O-β-Dglucopyranosylbenzoic acid | 42.17 b | 78.22 a | 2.67 d | 32.71 c |
Protocatechuic-4-O-glucoside acid | 79.69 b | 120.59 a | 2.93 d | 65.56 c |
Catechin-glucoside | 23.87 b | 34.97 a | 1.88 d | 13.53 c |
Caffeic acid hexose | 41.02 a | 37.39 b | 1.06 d | 30.95 c |
Catechin | 20.40 a | 17.25 b | 1.36 d | 7.33 c |
Swertiamacroside | 33.14 a | 22.81 b | 0.85 d | 9.84 c |
Caffeic acid | 36.82 a | 22.35 b | 0.15d | 0.96 c |
Epicatechin | 69.56 a | 26.48 b | 2.60 d | 14.01 c |
(Epi)afzelchin-(epi) catechin isomer A | 58.11 a | 35.49 b | 1.71 d | 20.06 c |
Orientin | 5.18 a | 3.79 b | 0.02 d | 1.58 c |
Isorientin | 4.61 a | 2.84 b | <LOQ | 0.82 c |
Vitexin | 9.14 a | 6.26 b | 0.06 d | 2.02 c |
Rutin | 214.99 a | 148.63 b | 7.03 d | 87.33 c |
Epicatechin-gallate | 18.56 a | 7.82 b | 0.28 d | 5.22 c |
Epiafzelchin–epiafzelchin–epicatechin | 20.37 a | 12.69 b | 0.84 d | 8.01 c |
Swertiamacroside | 27.41 a | 20.92 b | 4.23 d | 9.47 c |
Hyperin | 2.84 a | 1.59 b | <LOQ | 0.13 c |
Epiafzelchin–epicatechin-O-methyl gallate | 76.84 a | 39.84 b | 1.00 d | 28.73 c |
(−)-Epicatechin-3-(3”-O-methyl) gallate | 31.61 a | 17.77 b | 0.51 d | 15.18 c |
(Epi)afzelchin-(epi) catechin isomer B | 25.04 a | 15.03 b | 0.47 d | 9.95 c |
Procyanidin B2-dimethylgallate | 51.46 a | 29.22 b | 0.67 d | 21.06 c |
Epiafzelchin–epicatechin-O-dimethylgallate | 216.94 a | 176.67 b | 13.11 d | 93.83 c |
Epicatechin-O-3,4-dimethylgallate | 98.07 a | 8.05 c | 2.31 d | 39.10 b |
Isoquercitrin | 1.41 a,b | 2.05 a | 0.54 d | 1.09 c |
Quercetin | 33.21 a | 12.39 b | 0.06 d | 2.27 c |
Flavonoids | 982.23 a | 598.23 b | 34.47 d | 371.25 c |
Phenolic acids | 260.26 b | 302.28 a | 11.89 d | 149.49 c |
Sum | 1242.49 a | 901.10 b | 46.36 d | 520.74 c |
Bound Phenolic Compounds | Bran Meal | Middling Flour | Light Flour | De-Hulled Grain Meal |
---|---|---|---|---|
2-hydroxy-3-O-β-d-glucopyranosylbenzoic acid | 23.02 b | 34.56 a | 6.19 c,d | 7.88 d |
Protocatechuic-4-O-glucoside acid | 18.44 b | 25.50 a | 5.51 c | 5.95 c |
Caffeic acid hexose isomer a | 5.52 b | 11.34 a | 0.67 c | 0.43 c,d |
Caffeic acid hexose isomer b | 40.42 b | 56.73 a | 13.28 d | 26.35 c |
Catechin | 207.74 a | 200.17 a | 54.67 c | 95.45 b |
Swertiamacroside | 23.25 c,d | 31.84 a,b | 25.40 d | 33.66 a |
Caffeic acid | <LOQ | <LOQ | <LOQ | <LOQ |
Epicatechin | 59.08 b | 97.50 a | 34.67 d | 41.55 c |
Syringic acid | 85.86 a | 43.57 b | 7.74 d | 35.62 c |
Orientin | 0.46 a | 0.56 a | 0.19 c | 0.22 b |
p-coumaric acid derivative | 9.65 a | 3.53 b | 1.39 d | 3.24 c |
Procyanidin A | 8.82 a | 9.03 a | 0.95 c | 4.95 b |
Myricetin | 4.12 a | 3.80 a | 2.06 b,c | 2.92 b |
Vitexin | 4.22 a | 3.86 a | 0.67 c | 2.30 b |
Rutin | 51.64 a | 45.19 b | 6.82 d | 33.71 c |
Epicatechin gallate | 16.24 a | 15.57 a | 4.21 c | 10.75 b |
Catechin-glucoside | 16.48 a | 17.51 a | 1.04 c | 13.26 b |
Swertiamacroside | 39.40 a | 32.37 b | 23.52 d | 30.43 c |
Epiafzelchin–epicatechin-O-methylgallate | 28.04 a | 27.81 a | 3.57 c | 9.72 b |
p-coumaric acid | 3.96 b | 6.91 a | 0.67 d | 2.74 c |
(−)-epicatechin-3-(3”-O-methyl) gallate | 6.09 a | 6.05 a | 2.06 c | 4.17 b |
Epicatechin-O-3,4-dimethylgallate | 4.65 a | 4.11 a | 0.50 c | 1.78 b |
Isoquercitrin | 6.06 a | 5.89 a | 1.03 c | 3.64 b |
Quercitrin | 26.64 a | 21.05 b | 10.94 d | 18.78 c |
Flavonoids | 440.29 b | 458.11 a | 123.37 d | 243.20 c |
Phenolic acids | 249.52 a | 246.35 b | 84.37 d | 146.31 c |
Total | 689.81 b | 704.47 a | 207.74 d | 389.51 c |
Flavonoids | Phenolic Acids | Total | |
---|---|---|---|
Bran meal | 1422.52 a | 509.78 b | 1932.30 a |
Middling flour | 1056.94 b | 548.63 a | 1605.57 b |
Light flour | 157.84 d | 96.261 d | 254.10 d |
De-hulled grain meal | 614.46 c | 295.80 c | 910.25 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-García, B.; Pasini, F.; Verardo, V.; Gómez-Caravaca, A.M.; Marconi, E.; Caboni, M.F. Distribution of Free and Bound Phenolic Compounds in Buckwheat Milling Fractions. Foods 2019, 8, 670. https://doi.org/10.3390/foods8120670
Martín-García B, Pasini F, Verardo V, Gómez-Caravaca AM, Marconi E, Caboni MF. Distribution of Free and Bound Phenolic Compounds in Buckwheat Milling Fractions. Foods. 2019; 8(12):670. https://doi.org/10.3390/foods8120670
Chicago/Turabian StyleMartín-García, Beatriz, Federica Pasini, Vito Verardo, Ana María Gómez-Caravaca, Emanuele Marconi, and Maria Fiorenza Caboni. 2019. "Distribution of Free and Bound Phenolic Compounds in Buckwheat Milling Fractions" Foods 8, no. 12: 670. https://doi.org/10.3390/foods8120670
APA StyleMartín-García, B., Pasini, F., Verardo, V., Gómez-Caravaca, A. M., Marconi, E., & Caboni, M. F. (2019). Distribution of Free and Bound Phenolic Compounds in Buckwheat Milling Fractions. Foods, 8(12), 670. https://doi.org/10.3390/foods8120670