Impact of Biogenic Amines on Food Quality and Safety
Abstract
:1. Biogenic Amines and Food Safety
2. Biogenic Amines and Quality Control of Food Products
3. Biogenic Amines in Food
4. Legislation Concerning Biogenic Amines in Food and Beverages
5. Analytical Determination of Biogenic Amines
6. Conclusions
7. Future Trends and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FDA (Food and Drug Administration). Food Safety Modernization Act (FSMA). Available online: https://www.fda.gov/food/guidanceregulation/fsma/ (accessed on 18 September 2018).
- CDCP (Centers for Disease Control and Prevention). Available online: https://www.cdc.gov/foodsafety/index.html (accessed on 25 September 2018).
- FDA (Food and Drug Administration). Fish and Fishery Products Hazards and Controls Guidance - Fourth Edition. Available online: https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Seafood/ucm2018426.htm (accessed on 25 October 2018).
- EFSA. Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393. [Google Scholar] [CrossRef] [Green Version]
- Bardócz, S. Polyamines in food and their consequences for food quality and human health. Trends Food Sci. Technol. 1995, 6, 341–346. [Google Scholar] [CrossRef]
- Kalač, P. Health effects and occurrence of dietary polyamines: A review for the period 2005-mid 2013. Food Chem. 2014, 161, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.L.; Eitenmiller, R.R. Histamine food poisoning: Toxicology and clinical aspects. Crit. Rev. Toxicol. 1986, 17, 91–128. [Google Scholar] [CrossRef] [PubMed]
- Lehane, L.; Olley, J. Histamine fish poisoning revisited. Int. J. Food Microbiol. 2000, 58, 1–37. [Google Scholar] [CrossRef]
- Kim, M.K.; Mah, J.H.; Hwang, H.J. Biogenic amine formation and bacterial contribution in fish, squid and shellfish. Food Chem. 2009, 116, 87–95. [Google Scholar] [CrossRef]
- Pegg, A.E. Toxicity of polyamines and their metabolic products. Chem. Res. Toxicol. 2013, 26, 1782–1800. [Google Scholar] [CrossRef]
- Kovacova-Hanuskova, E.; Buday, T.; Gavliakova, S.; Plevkova, J. Histamine, histamine intoxication and intolerance. Allergologia et Immunopathologia 2015, 43, 498–506. [Google Scholar] [CrossRef]
- Prester, L. Biogenic amines in fish, fish products and shellfish: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess. 2011, 28, 1547–1560. [Google Scholar] [CrossRef]
- Halász, A.; Baráth, Á.; Simon-Sarkadi, L.; Holzapfel, W. Biogenic amines and their production by microorganisms in food. Trends Food Sci. Technol. 1994, 5, 42–49. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Jiménez-Colmenero, F. Biogenic amines in meat and meat products. Crit. Rev. Food Sci. Nutr. 2004, 44, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Karovičová, J.; Kohajdová, Z. Biogenic amines in food. Chem. Papers 2005, 59, 70–79. [Google Scholar]
- Linares, D.M.; Martĺn, M.C.; Ladero, V.; Alvarez, M.A.; Fernández, M. Biogenic amines in dairy products. Crit. Rev. Food Sci. Nutr. 2011, 51, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Benkerroum, N. Biogenic Amines in Dairy Products: Origin, Incidence, and Control Means. Compr. Rev. Food Sci. Food Saf. 2016, 15, 801–826. [Google Scholar] [CrossRef] [Green Version]
- Rice, S.L.; Eitenmiller, R.R.; Koehler, P.E. Biologically active amines in food: A review. J. Milk Food Technol. 1976, 39, 353–358. [Google Scholar] [CrossRef]
- Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Biogenic Amine Sources in Cooked Cured Shoulder Pork. J. Agric. Food Chem. 1996, 44, 3097–3101. [Google Scholar] [CrossRef]
- Suzzi, G.; Gardini, F. Biogenic amines in dry fermented sausages: A review. Int. J. Food Microbiol. 2003, 88, 41–54. [Google Scholar] [CrossRef]
- Stadnik, J.; Dolatowski, Z.J. Biogenic amines in meat and fermented meat products. Acta Sci. Pol. Technol. Aliment 2010, 9, 251–263. [Google Scholar]
- Kalač, P.; Krausová, P. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chem. 2005, 90, 219–230. [Google Scholar] [CrossRef]
- Shalaby, A.R. Significance of biogenic amines to food safety and human health. Food Res. Int. 1996, 29, 675–690. [Google Scholar] [CrossRef]
- Al Bulushi, I.; Poole, S.; Deeth, H.C.; Dykes, G.A. Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation-A review. Crit. Rev. Food Sci. Nutr. 2009, 49, 369–377. [Google Scholar] [CrossRef] [PubMed]
- De Mey, E.; De Klerck, K.; De Maere, H.; Dewulf, L.; Derdelinckx, G.; Peeters, M.C.; Fraeye, I.; Vander Heyden, Y.; Paelinck, H. The occurrence of N-nitrosamines, residual nitrite and biogenic amines in commercial dry fermented sausages and evaluation of their occasional relation. Meat Sci. 2014, 96, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Capillas, C.; Carballo, J.; Jiménez Colmenero, F. Biogenic amines in pressurized vacuum-packaged cooked sliced ham under different chilled storage conditions. Meat Sci. 2007, 75, 397–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, M.A.; Moreno-Arribas, M.V. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci. Technol. 2014, 39, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Carou, M.C.; Izquierdo-Pulido, M.L.; Martín-Morro, M.C.; Mariné, F. Histamine and tyramine in meat products: Relationship with meat spoilage. Food Chem. 1990, 37, 239–249. [Google Scholar] [CrossRef]
- Santos, C.; Jalón, M.; Marine, A. Contenido de tiramina en alimentos de origen animal. I. Carne, derivados cárnicos y productos relacionados. Rev. Agroquim Technol. Aliment. 1985, 25, 362–368. [Google Scholar]
- McCabe-Sellers, B.J.; Staggs, C.G.; Bogle, M.L. Tyramine in foods and monoamine oxidase inhibitor drugs: A crossroad where medicine, nutrition, pharmacy, and food industry converge. J. Food Composit. Anal. 2006, 19, S58–S65. [Google Scholar] [CrossRef]
- Herrero, A.M. Raman spectroscopy a promising technique for quality assessment of meat and fish: A review. Food Chem. 2008, 107, 1642–1651. [Google Scholar] [CrossRef]
- Mietz, J.L.; Karmas, E. Polyamine and histamine content of rockfish, salmon, lobster, and shrimp as an indicator of decomposition. J. Assoc. Off. Anal. Chem. (USA) 1978, 61, 139–145. [Google Scholar]
- Smith, T.A. Amines in food. Food Chem. 1980, 6, 169–200. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Moral, A. Production of biogenic amines and their potential use as quality control indices for hake (Merluccius merluccius, L.) stored in ice. J. Food Sci. 2001, 66, 1030–1032. [Google Scholar] [CrossRef]
- Rokka, M.; Eerola, S.; Smolander, M.; Alakomi, H.-L.; Ahvenainen, R. Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions: B. Biogenic amines as quality-indicating metabolites. Food Control 2004, 15, 601–607. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Jiménez-Colmenero, F. Biogenic amines in seafood products. In Handbook of Seafood and Seafood Products Analysis; Leo, M.L., Nollet, F.T., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009; pp. 833–850. [Google Scholar]
- Galgano, F.; Favati, F.; Bonadio, M.; Lorusso, V.; Romano, P. Role of biogenic amines as index of freshness in beef meat packed with different biopolymeric materials. Food Res. Int. 2009, 42, 1147–1152. [Google Scholar] [CrossRef]
- Vinci, G.; Antonelli, M.L. Biogenic amines: Quality index of freshness in red and white meat. Food Control 2002, 13, 519–524. [Google Scholar] [CrossRef]
- Kalač, P.; Křížek, M. A review of biogenic amines and polyamines in beer. J. Inst. Brewing 2003, 109, 123–128. [Google Scholar] [CrossRef]
- Triki, M.; Herrero, A.M.; Jiménez-Colmenero, F.; Ruiz-Capillas, C. Quality Assessment of Fresh Meat from Several Species Based on Free Amino Acid and Biogenic Amine Contents during Chilled Storage. Foods 2018, 7, 132–148. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Ion-Pair High-Performance Liquid Chromatographic Determination of Biogenic Amines in Meat and Meat Products. J. Agric. Food Chem. 1996, 44, 2710–2715. [Google Scholar] [CrossRef]
- Latorre-Moratalla, M.L.; Veciana-Nogués, T.; Bover-Cid, S.; Garriga, M.; Aymerich, T.; Zanardi, E.; Ianieri, A.; Fraqueza, M.J.; Patarata, L.; Drosinos, E.H.; et al. Biogenic amines in traditional fermented sausages produced in selected European countries. Food Chem. 2008, 107, 912–921. [Google Scholar] [CrossRef]
- Gardini, F.; Özogul, Y.; Suzzi, G.; Tabanelli, G.; Özogul, F. Technological factors affecting biogenic amine content in foods: A review. Frontiers in Microbiology 2016, 7. [Google Scholar] [CrossRef]
- Eerola, H.S.; Roig Sagués, A.X.; Hirvi, T.K. Biogenic amines in Finnish dry sausages. J. Food Saf. 1998, 18, 127–138. [Google Scholar] [CrossRef]
- Silla Santos, M.H. Biogenic amines: Their importance in foods. Int. J. Food Microbiol. 1996, 29, 213–231. [Google Scholar] [CrossRef]
- Bodmer, S.; Imark, C.; Kneubühl, M. Biogenic amines in foods: Histamine and food processing. Inflamm. Res. 1999, 48, 296–300. [Google Scholar] [CrossRef]
- Komprda, T.; Smělá, D.; Pechová, P.; Kalhotka, L.; Štencl, J.; Klejdus, B. Effect of starter culture, spice mix and storage time and temperature on biogenic amine content of dry fermented sausages. Meat Sci. 2004, 67, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Roig-Roig-Sagués, A.X.; Ruiz-Capillas, C.; Espinosa, D.; Hernández, M. The decarboxylating bacteria present in foodstuffs and the effect of emerging technologies on their formation. In Biological Aspects of Biogenic Amines, Polyamines and Conjugates; Dandrifosse, G., Ed.; Transworld Research Network: Kerala, India, 2009. [Google Scholar]
- Naila, A.; Flint, S.; Fletcher, G.; Bremer, P.; Meerdink, G. Control of biogenic amines in food - existing and emerging approaches. J. Food Sci. 2010, 75, R139–R150. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Ahn, H.J.; Lee, J.W.; Park, H.J.; Ryu, G.H.; Kang, I.J.; Byun, M.W. Effects of gamma irradiation on the biogenic amines in pepperoni with different packaging conditions. Food Chem. 2005, 89, 199–205. [Google Scholar] [CrossRef]
- Ten Brink, B.; Damink, C.; Joosten, H.M.; Huis in ‘t Veld, J.H. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 1990, 11, 73–84. [Google Scholar] [CrossRef]
- Bover-Cid, S.; Miguélez-Arrizado, M.J.; Vidal-Carou, M.C. Biogenic amine accumulation in ripened sausages affected by the addition of sodium sulphite. Meat Sci. 2001, 59, 391–396. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M.; Jiménez-Colmenero, F. Determination of biogenic amines. In Flow Injection Analysis of Food Additives; Ruiz-Capillas, C., Nollet, L.M.L., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 675–690. [Google Scholar]
- Rivoira, L.; Zorz, M.; Martelanc, M.; Budal, S.; Carena, D.; Franko, M.; Bruzzoniti, M.C. Novel approaches for the determination of biogenic amines in food samples. Stud. u. Babes-Bol. Chem. 2017, 62, 103–122. [Google Scholar] [CrossRef]
- Önal, A. A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem. 2007, 103, 1475–1486. [Google Scholar] [CrossRef]
- Mohammed, G.I.; Bashammakh, A.S.; Alsibaai, A.A.; Alwael, H.; El-Shahawi, M.S. A critical overview on the chemistry, clean-up and recent advances in analysis of biogenic amines in foodstuffs. Trends Anal. Chem. 2016, 78, 84–94. [Google Scholar] [CrossRef]
- Ordóñez, J.L.; Troncoso, A.M.; García-Parrilla, M.D.C.; Callejón, R.M. Recent trends in the determination of biogenic amines in fermented beverages–A review. Anal. Chim. Acta 2016, 939, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Kłodzińska, E.; Namieśnik, J.; Płotka-Wasylka, J. Literature update of analytical methods for biogenic amines determination in food and beverages. Trends Anal. Chem. 2018, 98, 128–142. [Google Scholar] [CrossRef]
- Taylor, S.L.; Lieber, E.R.; Leatherwood, M. A simplified method for histamine analysis of foods. J. Food Sci. 1978, 43, 247–250. [Google Scholar] [CrossRef]
- AOAC. Histamine in seafood: Fluorometric method Sec. 35.1.32, Method 977.13. In Official Methods of Analysis of AOAC International; Cunniff, P.A., Ed.; AOAC International: Gaithersburg, MD, USA, 1995; pp. 6–17. [Google Scholar]
- Patange, S.B.; Mukundan, M.K.; Kumar, K.A. A simple and rapid method for colorimetric determination of histamine in fish flesh. Food Control 2005, 16, 465–472. [Google Scholar] [CrossRef]
- Marcobal, A.; Polo, M.C.; Martín-Álvarez, P.J.; Moreno-Arribas, M.V. Biogenic amine content of red Spanish wines: Comparison of a direct ELISA and an HPLC method for the determination of histamine in wines. Food Res. Int. 2005, 38, 387–394. [Google Scholar] [CrossRef]
- Lapa-Guimarães, J.; Pickova, J. New solvent systems for thin-layer chromatographic determination of nine biogenic amines in fish and squid. J. Chromatogr. 2004, 1045, (1–2). [Google Scholar] [CrossRef]
- Latorre-Moratalla, M.L.; Bover-Cid, S.; Veciana-Nogués, T.; Vidal-Carou, M.C. Thin-layer chromatography for the identification and semi-quantification of biogenic amines produced by bacteria. J. Chromatogr. 2009, 1216, 4128–4132. [Google Scholar] [CrossRef] [PubMed]
- Cinquina, A.L.; Calì, A.; Longo, F.; De Santis, L.; Severoni, A.; Abballe, F. Determination of biogenic amines in fish tissues by ion-exchange chromatography with conductivity detection. J. Chromatogr. 2004, 1032, 73–77. [Google Scholar] [CrossRef]
- Costa, M.P.; Balthazar, C.F.; Rodrigues, B.L.; Lazaro, C.A.; Silva, A.C.O.; Cruz, A.G.; Conte Junior, C.A. Determination of biogenic amines by high-performance liquid chromatography (HPLC-DAD) in probiotic cow’s and goat’s fermented milks and acceptance. Food Sci. Nutr. 2015, 3, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Xu, J.J.; Ma, C.L.; Guo, C.F. A comparative analysis of derivatization strategies for the determination of biogenic amines in sausage and cheese by HPLC. Food Chem. 2018, 266, 275–283. [Google Scholar] [CrossRef]
- Eerola, S.; Hinkkanen, R.; Lindfors, E.; Hirvi, T. Liquid chromatographic determination of biogenic amines in dry sausages. J. AOAC Int. 1993, 76, 575–577. [Google Scholar] [PubMed]
- Yoon, H.; Park, J.H.; Choi, A.; Hwang, H.J.; Mah, J.H. Validation of an HPLC analytical method for determination of biogenic amines in agricultural products and monitoring of biogenic amines in Korean fermented agricultural products. Toxicol. Res. 2015, 31, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Dadáková, E.; Křížek, M.; Pelikánová, T. Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC). Food Chem. 2009, 116, 365–370. [Google Scholar] [CrossRef]
- Saaid, M.; Saad, B.; Hashim, N.H.; Mohamed Ali, A.S.; Saleh, M.I. Determination of biogenic amines in selected Malaysian food. Food Chem. 2009, 113, 1356–1362. [Google Scholar] [CrossRef]
- Anli, R.E.; Vural, N.; Yilmaz, S.; Vural, Ỳ.H. The determination of biogenic amines in Turkish red wines. J. Food Compos. Anal. 2004, 17, 53–62. [Google Scholar] [CrossRef]
- Casal, S.; Oliveira, M.B.P.P.; Ferreira, M.A. Determination of biogenic amines in coffee by an optimized liquid chromatographic method. J. Liq. Chromatogr. Relat. Technol. 2002, 25, 2535–2549. [Google Scholar] [CrossRef]
- Tamim, N.M.; Bennett, L.W.; Shellem, T.A.; Doerr, J.A. High-performance liquid chromatographic determination of biogenic amines in poultry carcasses. J. Agric. Food Chem. 2002, 50, 5012–5015. [Google Scholar] [CrossRef]
- Triki, M.; Jiménez-Colmenero, F.; Herrero, A.M.; Ruiz-Capillas, C. Optimisation of a chromatographic procedure for determining biogenic amine concentrations in meat and meat products employing a cation-exchange column with a post-column system. Food Chem. 2012, 130, 1066–1073. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.A.; Ruiz-Capillas, C. Application of the simplex method for optimization of chromatographic analysis of biogenic amines in fish. Eur. Food Res. Technol. 2012, 234, 285–294. [Google Scholar] [CrossRef]
- Zhao, Q.X.; Xu, J.; Xue, C.H.; Sheng, W.J.; Gao, R.C.; Xue, Y.; Li, Z.J. Determination of biogenic amines in squid and white prawn by high-performance liquid chromatography with postcolumn derivatization. J. Agric. Food Chem. 2007, 55, 3083–3088. [Google Scholar] [CrossRef]
- Zotou, A.; Notou, M. Enhancing Fluorescence LC Analysis of Biogenic Amines in Fish Tissues by Precolumn Derivatization with Naphthalene-2,3-dicarboxaldehyde. Food Anal. Method. 2013, 6, 89–99. [Google Scholar] [CrossRef]
- Vidal-Carou, M.C.; Lahoz-Portolés, F.; Bover-Cid, S.; Mariné-Font, A. Ion-pair high-performance liquid chromatographic determination of biogenic amines and polyamines in wine and other alcoholic beverages. J. Chromatogr. 2003, 998, 235–241. [Google Scholar] [CrossRef]
- Lavizzari, T.; Teresa Veciana-Nogués, M.; Bover-Cid, S.; Mariné-Font, A.; Carmen Vidal-Carou, M. Improved method for the determination of biogenic amines and polyamines in vegetable products by ion-pair high-performance liquid chromatography. J. Chromatogr. 2006, 1129, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Latorre-Moratalla, M.L.; Bosch-Fusté, J.; Lavizzari, T.; Bover-Cid, S.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Validation of an ultra high pressure liquid chromatographic method for the determination of biologically active amines in food. J. Chromatogr. 2009, 1216, 7715–7720. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Dong, L.; Wang, A.; Wang, W.; Hu, N.; You, J. Simultaneous determination of biogenic amines and estrogens in foodstuff by an improved HPLC method combining with fluorescence labeling. LWT Food Sci. Technol. 2014, 55, 355–361. [Google Scholar] [CrossRef]
- Hlabangana, L.; Hernández-Cassou, S.; Saurina, J. Determination of biogenic amines in wines by ion-pair liquid chromatography and post-column derivatization with 1,2-naphthoquinone-4-sulphonate. J. Chromatogr. 2006, 1130, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Loukou, Z.; Zotou, A. Determination of biogenic amines as dansyl derivatives in alcoholic beverages by high-performance liquid chromatography with fluorimetric detection and characterization of the dansylated amines by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. 2003, 996, 103–113. [Google Scholar] [CrossRef]
- Lange, J.; Thomas, K.; Wittmann, C. Comparison of a capillary electrophoresis method with high-performance liquid chromatography for the determination of biogenic amines in various food samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 779, 229–239. [Google Scholar] [CrossRef]
- Nalazek-Rudnicka, K.; Wasik, A. Development and validation of an LC–MS/MS method for the determination of biogenic amines in wines and beers. Monatshefte fur Chemie 2017, 148, 1685–1696. [Google Scholar] [CrossRef] [Green Version]
- Calbiani, F.; Careri, M.; Elviri, L.; Mangia, A.; Pistarà, L.; Zagnoni, I. Rapid assay for analyzing biogenic amines in cheese: Matrix solid-phase dispersion followed by liquid chromatography-electrospray-tandem mass spectrometry. J. Agric. Food Chem. 2005, 53, 3779–3783. [Google Scholar] [CrossRef]
- Staruszkiewicz, W.F., Jr.; Bond, J.F. Gas chromatographic determination of cadaverine, putrescine, and histamine in foods. J. Assoc. Off. Anal. Chem. 1981, 64, 584–591. [Google Scholar] [PubMed]
- Płotka-Wasylka, J.; Simeonov, V.; Namieśnik, J. An in situ derivatization - dispersive liquid-liquid microextraction combined with gas-chromatography - mass spectrometry for determining biogenic amines in home-made fermented alcoholic drinks. J. Chromatogr. 2016, 1453, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Faria, M.A.; Fernandes, J.O. Gas chromatography-mass spectrometry assessment of amines in port wine and grape juice after fast chloroformate extraction/derivatization. J. Agric. Food Chem. 2011, 59, 8742–8753. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.O.; Judas, I.C.; Oliveira, M.B.; Ferreira, I.M.P.L.V.; Ferreira, M.A. A GC-MS method for quantitation of histamine and other biogenic amines in beer. Chromatographia 2001, 53, S327–S331. [Google Scholar] [CrossRef]
- Hungerford, J.M.; Walker, K.D.; Wekell, M.M.; LaRose, J.E.; Throm, H.R. Selective Determination of Histamine by Flow Injection Analysis. Anal. Chem. 1990, 62, 1971–1976. [Google Scholar] [CrossRef] [PubMed]
- Hungerford, J.M.; Hollingworth, T.A.; Wekell, M.M. Automated kinetics-enhanced flow-injection method for histamine in regulatory laboratories: Rapid screening and suitability requirements. Anal. Chim. Acta 2001, 438, 123–129. [Google Scholar] [CrossRef]
- Del Campo, G.; Gallego, B.; Berregi, I. Fluorimetric determination of histamine in wine and cider by using an anion-exchange column-FIA system and factorial design study. Talanta 2006, 68, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, M.; Frébort, I.; Peč, P.; Galuszka, P.; Mattiasson, B.; Csöregi, E. Amine oxidase based amperometric biosensors for histamine detection. Electroanalysis 2000, 12, 369–375. [Google Scholar] [CrossRef]
- Takagi, K.; Shikata, S. Flow injection determination of histamine with a histamine dehydrogenase-based electrode. Anal. Chim. Acta 2004, 505, 189–193. [Google Scholar] [CrossRef]
- Santos, B.; Simonet, B.M.; Ríos, A.; Valcárcel, M. Direct automatic determination of biogenic amines in wine by flow injection-capillary electrophoresis-mass spectrometry. Electrophoresis 2004, 25, 3427–3433. [Google Scholar] [CrossRef] [PubMed]
- Křížek, M.; Pelikánová, T. Determination of seven biogenic amines in foods by micellar electrokinetic capillary chromatography. J. Chromatogr. 1998, 815, 243–250. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, H.; Zhang, Z.X.; Deng, Y.H.; Zhang, H.S. Sensitive determination of biogenic amines by capillary electrophoresis with a new fluorogenic reagent 3-(4-fluorobenzoyl)-2-quinolinecarboxaldehyde. Talanta 2008, 76, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yang, X.; Wang, E. Determination of biogenic amines by capillary electrophoresis with pulsed amperometric detection. J. Chromatogr. 2003, 1005, 189–195. [Google Scholar] [CrossRef]
- An, D.; Chen, Z.; Zheng, J.; Chen, S.; Wang, L.; Huang, Z.; Weng, L. Determination of biogenic amines in oysters by capillary electrophoresis coupled with electrochemiluminescence. Food Chem. 2015, 168, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Daniel, D.; dos Santos, V.B.; Vidal, D.T.R.; do Lago, C.L. Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry. J. Chromatogr. 2015, 1416, 121–128. [Google Scholar] [CrossRef] [PubMed]
Analyte | Method/ Equipment | Sample | Extraction Solvents | Separation Technique | Derivatization Reagents | Detection System | Time of Analysis (min) | LOD | Ref |
---|---|---|---|---|---|---|---|---|---|
HIS | Fluorometric | Seafood, meats, cheeses, sauerkraut, etc. | MeOH | --- | OPA | PF | --- | 0.02 mg/100 g | [59] |
HIS | Fluorometric | Fish (fresh, dry, salted, frozen, brine, etc.) | MeOH | Ion exchange resin | OPA | PF | --- | -- | [60] |
HIS | Colorimetric | Fish (tuna, mackerel), | NaCl solution | --- | p-phenyldiazonium sulfonate | UV/vis | --- | 1 mg/100 g | [61] |
HIS | ELISA immunoassay | Fish, wine | --- | --- | UV/vis | 10 | -- | [62] | |
HIS, Tyr, Cad, Put, Phe, Trp, Spd, Spm | TLC | Cod, squid, MRS, TSB | TCA | --- | Dansyl chloride | PF | --- | 5 ng–10 ng (1 mg/L per 10 μL spotted) | [63,64] |
HIS, Cad, Put, Spm | IEC | Tuna fish | MSA, HCL, PCA, PB | IonPac CS17 | MSA | EDC | 20 | 0.15–0.50 mg/kg | [65] |
HIS, Tyr, Cad, Put, Spd | HPLC | Milk (cow, goat) | PCA | ODS2-C18 | Benzoyl Chloride | UV/vis | 13 | 0.03–1.30 mg/L | [66] |
His, Tyr, Phe, Try, Cad, Put Spm Spd | HPLC | Sausages, cheese | PCA, HCL | Eclipse XDB-C18 | Dansyl chloride, Fluorenylmethoxy-carbonyl chloride, Benzoyl chloride, Dansyl chloride | UV/vis | 25–50 | 0.03–0.38 mg/kg, | [67] |
HIS, Tyr, Cad, Put, Phe, Trp, Spd, Spm | HPLC or UHPLC | Meat, beer, wine, rice, mushroom, sausage, juice, oil, peanut butter, fish, shrimp sauce, etc. | PCA TCA HCL | ODS2-C-18, Nova-Pak C18, Zorbax XDB C18 | Dansyl chloride | UV/vis | 6–30 | 0.01–0.10 mg/kg 4.43–6.96 μg/L | [68,69,70,71] |
HIS, Tyr, Cad, Put, Phe, Spd, Spm, Ser, Met, Etm | HPLC or UHPLC | Wines, meat, beverages, coffee | TCA | Phenomenex Luna 5u RP-18 Kromasil | Dansyl chloride | DAD | 35 | 0.5 mg/kg | [72,73] |
Trp, Phe, Put, Cad, HIS, Tyr, Spm, Spd | HPLC | Chicken carcasses | PCA | C18 | Dansyl chloride | FLD | 32 | 0.05–25 μg/mL | [74] |
HIS, Met, Etm, Tyr, Phe, Put, Cad | HPLC | Wine | --- | Nova-Pak C18 | OPA | FLD | 42 | 0.006–0.057 mg/L | [62] |
HIS, Tyr, Cad, Put, Phe, Agm, Trp, Spd, Spm | HPLC or UHPLC | Meat, fish, squid, prawn | TCA PCA | Cation exchange-Capcell Pak MG-C18 | OPA | FLD | 25–55 | 0.05–0.2 mg/L 0.2–2.0 µg/L | [75,76,77] |
Met, Etm, HIS, Tym, Trp, Phe, Put, Cad | HPLC | Canned tuna fish | TCA | Inertsil ODS-3 | Naphthalene-2,3-dicarboxaldehyde | FLD | 50 | 2.5–330 mg/kg | [78] |
HIS, Tyr, Phe, Ser, Trp, Oct, Dopa, Cad, Put, Agm, Spd, Spm | HPLC | Wine, cider, spinach hazelnut, banana, potato, milk, chocolate, meat | PCA | Nova-Pak C18 | OPA | FLD | 55–60 | 0.03–0.06 mg/L 0.07–0.2 mg/L ≤1.5 mg/kg | [41,79,80] |
HIS, Tyr, Phe, Ser, Trp, Oct, Dopa, Cad, Put, Agm, Spd, Spm | UHPLC | Wine, fish, cheese, sausage | PCA | Acquity BEH C18 | OPA | FLD | 7 | 0.2–0.3 mg/L | [81] |
Put, HIS, Cad, Phe, Tyr, Spd, Spm | HPLC- | Beer, cheese, fish, sausage, shrimp | TCA | Hypersil BDS C18 | EAC | FLD | 6 | 0.27–0.69 ng/mL | [82] |
HIS, Tyr, Cad, Put, Phe, Agm, Trp, Spd, Spm, Ser, Oct, Dopa | HPLC | Wines | --- | A Zorbax C18 | NQS | DAD | 45 | 0.2–3 mg/L, | [83] |
Met, HIS, Put, Cad, Tyr, Spm, Spd, Trip, Phe, Etm | HPLC | Wine, beer | PVP | Inertsil ODS-3 column | Dansyl chloride | DAD–APCI-MS | 35 | 0.008–40.0 mg/L | [84] |
His, Tyr, Spd, Spm, Cad, Put, Agm | HPLC | Fish, cheese, meat, vegetable | HCL, TCA, MeOH | LiChrospher RP 18, | OPA | FLD–DAD | 20 | 0.5–8.5 mg/kg | [85] |
HIS, Cad, Agm, Tyr, Put, Phe | HPLC | Beer, wines | BB | Gemini C-18 | p-toluenesulfonyl chloride | MS | 22 | 0.023–12 µg/dm3 | [86] |
HIS, Tyr, Phe | HPLC | Cheese | HCL | Luna C18 | --- | MS | 11 | 0.05–0.25 mg/kg | [87] |
Cad, Put, HIS | GC | Cheese, fish | --- | OV-225 | Perfluoropropionyl derivatives | ECD | 20 | <1.1 µg/g | [88] |
Etm, HIS, Put, Spm, Trp, Tyr, Phe, Met, Prp | GC | Wine | MeOH, CHCl3 (DLLME) | ZB-5MS capillary column | IBCF, PCF | MS–MS | 25 | <4.1 μg/L. | [89] |
Cad, Put HIS | GC | Apple juice | DLLME | CC-DB-5 | --- | MS | 8 | 0.06–2.20 μg/L | [90] |
Put, Cad, HIS, Phe, Tyr | GC | Alcoholic beverages | Toluene | CC-HP-5MS | Isobutyl chloroformate | MS | 12 | 1–10 μg/L | [91] |
HIS | FIA | Mackerel, mahi-mahi | MeOH | --- | OPA | FLD | --- | 0.8–6 mg/kg | [92,93] |
HIS | FIA | Cider, wine | --- | Anion exchange mini-column | OPA | FLD | --- | 30–101 µg/L | [94] |
HIS, Tyr, Put, Cad, Agm, Spm | FIA | Tuna | Water | Electrode-Biosensor (AO, HmDH) | OPA | APMD | --- | 100 pmol | [95,96] |
HIS, Phe | CE–FIA | Standard solutions | Water | --- | --- | MS | 22 | 0.018–0.09 μg/mL | [97] |
Put, Cad, Spm, Spd, Trp, Tyr, HIS | CE | Sauerkraut | PCA | Silica capillary | Benzoyl chloride | UV/vis | 35 | 0.2–0.7 mg/L | [98] |
HIS, Tyr, Phe, Put, Cad, Spm, Spd | CE | Soy sauce, fish, wine | TCA | Silica capillary | FBQCA | LIFD | 14 | 0.4–10 nM | [99] |
Put, Cad, Spd, Spm | CE | Fresh milk | PCA | Ag/AgCl electrode | --- | APMD | 27 | 100–400 nM | [100] |
Put, HIS, Try, Phe, Spd | CE | Oyster | PCA | capillary column- Ag/AgCl | --- | ECHL | 30 | 9.2 × 10−4–9.6 × 10−2 μg/mL | [101] |
HIS, Tyr | CE | Meat, cheese, fish, vegetable | HCL, MeOH, TCA | --- | --- | DAD | 9 | 2–6 mg/kg | [85] |
Spm, Spd, Put, Cad, HIS, Phe, Trp, Tyr | CE | Beer, wine | --- | Electrophoretic separation | --- | MS | 10 | 1–2 μg/L | [102] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Capillas, C.; Herrero, A.M. Impact of Biogenic Amines on Food Quality and Safety. Foods 2019, 8, 62. https://doi.org/10.3390/foods8020062
Ruiz-Capillas C, Herrero AM. Impact of Biogenic Amines on Food Quality and Safety. Foods. 2019; 8(2):62. https://doi.org/10.3390/foods8020062
Chicago/Turabian StyleRuiz-Capillas, Claudia, and Ana M. Herrero. 2019. "Impact of Biogenic Amines on Food Quality and Safety" Foods 8, no. 2: 62. https://doi.org/10.3390/foods8020062
APA StyleRuiz-Capillas, C., & Herrero, A. M. (2019). Impact of Biogenic Amines on Food Quality and Safety. Foods, 8(2), 62. https://doi.org/10.3390/foods8020062