Effects of Two Different Irrigation Systems on the Amino Acid Concentrations, Volatile Composition and Sensory Profiles of Godello Musts and Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Vineyard and Experimental Design
2.2. Sampling and Winemaking
2.3. Analytical Determinations
2.3.1. Chemical Reagents
2.3.2. Determination of Free Amino Acids
2.3.3. Determination of Volatile Compounds
2.4. Sensory Evaluation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions and Vine Water Status
3.2. General Parameters of Musts and Wines
3.3. Amino Acids Profiles of Musts and Wines
3.4. Volatile Composition of Godello Wines
3.5. Sensory Profiles of Godello Wines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Robinson, A.L.; Boss, P.K.; Solomon, P.S.; Trengove, R.D.; Heymann, H.; Ebeler, S.E. Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am. J. Enol. Vitic. 2014, 65, 1–24. [Google Scholar] [CrossRef]
- Song, M.; Fuentes, C.; Loos, A.; Tomasino, E. Free monoterpene isomer profiles of Vitis vinifera L. cv. White wines. Foods 2018, 7, 27. [Google Scholar] [CrossRef]
- Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aus. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Avellone, G.; Salvo, A.; Costa, R.; Saija, E.; Bongiorno, D.; Di Stefano, V.; Calabrese, G.; Dugo, G. Investigation on the influence of spray-drying technology on the quality of Sicilian Nero d’Avola wines. Food Chem. 2018, 240, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Rice, S.; Tursumbayeva, M.; Clark, M.; Greenlee, D.; Dharmadhikari, M.; Fennell, A.; Koziel, J.A. Effects of harvest time on the aroma of white wines made from cold-hardy Brianna and Frontenac Gris grapes using headspace solid-phase microextraction and gas chromatography-mass-spectrometry-olfactometry. Foods 2019, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Future scenarios for viticultural zoning in Europe: Ensemble projections and uncertainties. Int. J. Biometeorol. 2013, 57, 909–925. [Google Scholar] [CrossRef]
- Cancela, J.J.; Trigo-Córdoba, E.; Martínez, E.M.; Rey, B.J.; Bouzas-Cid, Y.; Fandiño, M.; Mirás-Avalos, J.M. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agric. Water Manag. 2016, 170, 99–109. [Google Scholar] [CrossRef]
- Balint, G.; Reynolds, A.G. Irrigation level and time of imposition impact vine physiology, yield components, fruit composition and wine quality of Ontario Chardonnay. Sci. Hortic. 2017, 214, 252–272. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Pérez, D.; Risco, D.; Yeves, A.; Castel, J.R. Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrig. Sci. 2012, 30, 339–349. [Google Scholar] [CrossRef]
- Talaverano, I.; Valdés, E.; Moreno, D.; Gamero, E.; Mancha, L.; Vilanova, M. He combined effect of water status and crop level on Tempranillo wine volatiles. J. Sci. Food Agric. 2017, 97, 1533–1542. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Heras, M.; Pérez-Magariño, S.; Del Villar-Garrachón, V.; González-Huerta, C.; Moro-González, L.C.; Guadarrama-Rodríguez, A.; Villanueva-Sánchez, S.; Gallo-González, R.; Martín de la Helguera, S. Study of the effect of vintage, maturity degree and irrigation on the amino acid and biogenic amine content of a white wine from the Verdejo variety. J. Sci. Food Agric. 2014, 94, 2073–2082. [Google Scholar] [CrossRef] [PubMed]
- Canoura, C.; Kelly, M.T.; Ojeda, H. Effect of irrigation and timing and type of nitrogen application on the biochemical composition of Vitis vinifera L. cv. Chardonnay and Syrah grapeberries. Food Chem. 2018, 241, 171–181. [Google Scholar] [CrossRef]
- Bouzas-Cid, Y.; Falqué, E.; Orriols, I.; Mirás-Avalos, J.M. Effects of irrigation over three years on the amino acid composition of Treixadura (Vitis vinifera L.) musts and wines, and on the aromatic composition and sensory profiles of its wines. Food Chem. 2018, 240, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, M.; Rodríguez-Nogales, J.M.; Vila-Crespo, J.; Yuste, J. Influence of water regime on yield components, must composition and wine volatile compounds of Vitis vinifera cv. Verdejo. Aust. J. Grape Wine Res. 2019, 25, 83–91. [Google Scholar] [CrossRef]
- Versini, G.; Orriols, I.; Dalla Serra, A. Aroma components of Galician Albariño, Loureira and Godello wines. Vitis 1994, 33, 165–170. [Google Scholar]
- Losada, M.; Andrés, J.; Cacho, J.; Revilla, E.; López, J.F. Influence of some prefermentative treatments on aroma composition and sensory evaluation of white Godello wines. Food Chem. 2011, 125, 884–891. [Google Scholar] [CrossRef]
- Bouzas-Cid, Y.; Trigo-Córdoba, E.; Falqué, E.; Orriols, I.; Mirás-Avalos, J.M. Influence of supplementary irrigation on the amino acid and volatile composition of Godello wines from the Ribeiro Designation of Origin. Food Res. Int. 2018, 111, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Fandiño, M.; Trigo-Córdoba, E.; Martínez, E.M.; Moutinho-Pereira, J.; Correia, C.M.; Dinis, L.T.; Rey, B.J.; Malheiro, A.C.; Cancela, J.J. Effects of surface and subsurface drip irrigation on physiology and yield of ‘Godello’ grapevines grown in Galicia, NW Spain. Ciência Téc. Vitiv. 2017, 32, 42–52. [Google Scholar] [CrossRef] [Green Version]
- OIV (Office International de la Vigne et du Vin). Recueil des méthodes internationales d’analyse des vins et des Moûts; Office International de la Vigne et du Vin: Paris, France, 2009. [Google Scholar]
- Garde-Cerdán, T.; Lorenzo, C.; Lara, J.F.; Pardo, F.; Ancín-Azpilicueta, C.; Salinas, M.R. Study of the evolution of nitrogen compounds during grape ripening. Application to differentiate grape varieties and cultivated systems. J. Agric. Food Chem. 2009, 57, 2410–2419. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Hopfer, H.; Heymann, H. Judging wine quality: Do we need experts, consumers or trained panelists? Food Qual. Prefer. 2014, 32, 221–233. [Google Scholar] [CrossRef]
- Mihnea, M.; Aleixandre-Tudó, J.L.; Kidd, M.; du Toit, W. Basic in-mouth attribute evaluation: A comparison of two panels. Foods 2019, 8, 3. [Google Scholar] [CrossRef]
- Vilanova, M. Sensory descriptive analysis and consumer acceptability of Godello wines from Valdeorras apellation origen controllée (Nortwest Spain). J. Sens. Stud. 2006, 21, 362–372. [Google Scholar] [CrossRef]
- Vilanova, M.; Escudero, A.; Graña, M.; Cacho, J. Volatile composition and sensory properties of North West Spain white wines. Food Res. Int. 2013, 54, 562–568. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: https://www.R-project.org/ (accessed on 11 May 2016).
- Olkin, I.; Lou, Y.; Stokes, L.; Cao, J. Analysis of wine-tasting data: A tutorial. J. Wine Econ. 2015, 10, 4–30. [Google Scholar] [CrossRef]
- Volschenk, H.; van Vuuren, H.J.J.; Viljoen-Bloom, M. Malic acid in wine: Origin, function and metabolism during vinification. S. Afr. J. Enol. Vitic. 2006, 27, 123–136. [Google Scholar] [CrossRef]
- Matthews, M.A.; Anderson, M.M. Fruit ripening in Vitis vinifera L.: Responses to seasonal water deficits. Am. J. Enol. Vitic. 1988, 39, 313–320. [Google Scholar]
- Reynolds, A.G.; Lowrey, W.; Tomek, L.; Hakimi, J.; de Savigny, C. Influence of irrigation on vine performance, fruit composition, and wine quality of Vitis vinifera L. cv. Chardonnay in a cool, humid climate. Am. J. Enol. Vitic. 2007, 58, 217–228. [Google Scholar]
- Deluc, L.G.; Quilici, D.R.; Decendit, A.; Grimplet, J.; Wheatley, M.D.; Schlauch, K.A.; Mérillon, J.M.; Cushman, J.C.; Cramer, G.R. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genom. 2009, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Bouzas-Cid, Y.; Díaz-Losada, E.; Trigo-Córdoba, E.; Falqué, E.; Orriols, I.; Garde-Cerdán, T.; Mirás-Avalos, J.M. Effects of irrigation over three years on the amino acid composition of Albariño (Vitis vinifera L.) musts and wines in two different terroirs. Sci. Hortic. 2018, 227, 313–325. [Google Scholar] [CrossRef]
- Vilanova, M.; Fandiño, M.; Frutos-Puerto, S.; Cancela, J.J. Assessment fertigation effects on chemical composition of Vitis vinifera L. cv. Albariño. Food Chem. 2019, 278, 636–643. [Google Scholar] [CrossRef] [PubMed]
Year | Growing Season Rainfall (mm) | Annual Rainfall (mm) | Growing Season Mean Temperature (°C) | Annual Mean Temperature (°C) | Growing Season ETo (mm) |
---|---|---|---|---|---|
2012 | 260 | 543 | 16.8 | 12.7 | 706 |
2013 | 331 | 926 | 17.1 | 12.7 | 741 |
2014 | 239 | 825 | 17.4 | 13.4 | 698 |
Year | Treatment | Midday Stem Water Potential from Veraison to Harvest (MPa) | Clusters per Vine | Yield (kg vine−1) | Cluster Weight (g cluster−1) |
---|---|---|---|---|---|
2012 | R | −0.93 b | 22.2 | 2.8 | 130.3 |
DI | −0.85 ab | 19.4 | 2.9 | 145.0 | |
SDI | −0.80 a | 21.6 | 3.5 | 152.5 | |
2013 | R | −0.91 b | 21.3 a | 3.2 | 142.7 |
DI | −0.78 a | 20.8 a | 3.7 | 171.0 | |
SDI | −0.71 a | 26.7 b | 4.2 | 152.8 | |
2014 | R | −0.72 b | 22.9 | 2.9 | 122.1 |
DI | −0.62 a | 21.4 | 2.7 | 125.0 | |
SDI | −0.58 a | 19.3 | 2.4 | 117.7 |
Parameter | 2012 | 2013 | 2014 | T | Y | T × Y | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | DI | SDI | R | DI | SDI | R | DI | SDI | ||||
Total soluble solids (°Brix) | 23.3 ± 0.1 | 22.8 ± 0.1 | 22.2 ± 0.4 | 24.3 ± 0.2 | 24.1 ± 0.6 | 24.0 ± 0.3 | 22.0 ± 0.0 | 21.7 ± 0.1 | 21.7 ± 0.2 | ns | ns | ns |
Total acidity (g L−1) | 6.5 ± 0.7 | 7.0 ± 0.2 | 7.9 ± 0.6 | 6.2 ± 0.2 | 6.1 ± 0.1 | 6.9 ± 0.5 | 7.1 ± 0.6 | 7.4 ± 0.3 | 7.9 ± 0.2 | ns | ns | ns |
pH | 3.20 ± 0.02 | 3.18 ± 0.01 | 3.14 ± 0.01 | 3.33 ± 0.01 | 3.33 ± 0.02 | 3.26 ± 0.06 | 3.17 ± 0.05 | 3.13 ± 0.04 | 3.06 ± 0.02 | ns | ns | ns |
Malic acid (g L−1) | 4.0 ± 1.4 | 3.4 ± 0.2 | 4.1 ± 0.3 | 2.8 ± 0.3 | 2.9 ± 0.1 | 3.1 ± 0.1 | 3.0 ± 0.3 | 3.1 ± 0.2 | 3.2 ± 0.1 | ns | ns | ns |
Tartaric acid (g L−1) | 5.7 ± 0.1 | 4.7 ± 0.8 | 6.3 ± 0.4 | 6.6 ± 0.0 | 6.3 ± 0.2 | 6.8 ± 0.4 | 8.2 ± 0.4 | 8.2 ± 0.3 | 8.6 ± 0.4 | ns | *** | ns |
Parameter | 2012 | 2013 | 2014 | T | Y | T × Y | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | DI | SDI | R | DI | SDI | R | DI | SDI | ||||
Alcohol (%vol.) | 14.1 ± 0.1 | 14.0 ± 0.2 | 13.6 ± 0.5 | 14.0 ± 0.2 | 14.2 ± 0.1 | 14.1 ± 0.0 | 14.3 ± 0.2 | 14.3 ± 0.1 | 14.0 ± 0.0 | ns | ns | ns |
Total acidity (g L−1) | 7.0 ± 0.1 ab | 6.7 ± 0.1 a | 7.6 ± 0.2 b | 7.1 ± 0.2 a | 7.5 ± 0.2 a | 8.0 ± 0.3 b | 7.9 ± 0.3 | 8.1 ± 0.2 | 8.7 ± 0.3 | *** | *** | ns |
pH | 3.26 ± 0.02 | 3.26 ± 0.02 | 3.12 ± 0.06 | 3.37 ± 0.08 | 3.39 ± 0.01 | 3.26 ± 0.06 | 3.18 ± 0.01 b | 3.09 ± 0.09 ab | 2.89 ± 0.01 a | ns | ns | ns |
Malic acid (g L−1) | 2.4 ± 0.3 | 2.4 ± 0.2 | 2.7 ± 0.1 | 2.5 ± 0.3 | 2.9 ± 0.1 | 2.7 ± 0.1 | 2.3 ± 0.2 | 2.4 ± 0.1 | 2.2 ± 0.2 | ns | ns | ns |
Tartaric acid (g L−1) | 2.2 ± 0.3 | 2.4 ± 0.1 | 2.8 ± 0.4 | 2.9 ± 0.3 | 2.7 ± 0.1 | 3.3 ± 0.3 | 4.2 ± 0.2 a | 4.3 ± 0.4 a | 5.6 ± 0.3 b | * | *** | ns |
Compound | 2012 | 2013 | 2014 | T | Y | T × Y | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | DI | SDI | R | DI | SDI | R | DI | SDI | ||||
Aspartic acid | 42.5 ± 8.5 | 44.5 ± 5.9 | 54.1 ± 0.1 | 51.7 ± 0.8 | 59.8 ± 3.1 | 58.7 ± 1.9 | 22.2 ± 3.8 | 24.7 ± 1.7 | 25.3 ± 2.1 | ns | * | ns |
Glutamic acid | 75.7 ± 10.0 | 60.3 ± 4.8 | 42.7 ± 1.9 | 95.7 ± 2.3 | 101.9 ± 4.4 | 100.4 ± 3.0 | 102.8 ± 10.7 | 96.5 ± 2.9 | 89.6 ± 2.3 | ns | ** | ns |
Asparagine | 3.2 ± 0.7 | 3.0 ± 1.3 | 2.8 ± 1.0 | 3.1 ± 0.6 | 3.4 ± 0.2 | 4.2 ± 0.5 | 1.3 ± 0.3 | 1.3 ± 0.0 | 1.7 ± 0.4 | ns | * | ns |
Serine | 44.4 ± 3.8 | 47.9 ± 7.5 | 40.8 ± 7.3 | 36.7 ± 3.7 | 39.5 ± 4.6 | 38.3 ± 0.5 | 26.6 ± 5.3 | 28.4 ± 0.9 | 26.7 ± 1.2 | ns | *** | ns |
Glutamine | 61.3 ± 8.9 | 69.5 ± 24.5 | 55.1 ± 11.0 | 43.6 ± 6.6 | 43.7 ± 7.0 | 41.3 ± 2.3 | 54.9 ± 17.8 | 56.0 ± 1.5 | 49.6 ± 4.1 | ns | ns | ns |
Histidine | 18.7 ± 3.3 | 17.5 ± 4.1 | 12.9 ± 2.7 | 10.0 ± 1.3 | 10.9 ± 1.6 | 10.0 ± 0.4 | 8.9 ± 1.9 | 9.5 ± 0.1 | 8.8 ± 1.0 | ns | ** | ns |
Glycine | 2.5 ± 0.3 | 2.6 ± 0.3 | 2.0 ± 0.6 | 2.7 ± 0.3 | 2.8 ± 0.5 | 2.7 ± 0.0 | 2.6 ± 0.3 | 3.0 ± 0.0 | 2.8 ± 0.0 | ns | ns | ns |
Threonine | 79.8 ± 13.1 | 85.6 ± 19.7 | 74.4 ± 13.7 | 55.3 ± 7.2 | 54.6 ± 7.5 | 54.4 ± 2.3 | 44.0 ± 11.5 | 46.7 ± 1.4 | 44.9 ± 3.3 | ns | *** | ns |
Arginine | 153.9 ± 23.8 | 245.6 ± 88.3 | 148.7 ± 41.9 | 120.4 ± 21.3 | 127.9 ± 16.8 | 126.5 ± 2.4 | 157.7 ± 47.1 | 170.0 ± 2.9 | 159.6 ± 20.6 | ns | ns | ns |
Alanine | 62.4 ± 15.9 | 78.6 ± 27.8 | 57.1 ± 16.5 | 51.0 ± 11.1 | 57.8 ± 12.8 | 56.5 ± 4.1 | 46.5 ± 13.4 | 51.9 ± 3.7 | 43.5 ± 3.4 | ns | ns | ns |
γ-Aminobutyric acid (GABA) | 102.1 ± 4.3 | 111.3 ± 4.7 | 82.8 ± 18.9 | 30.0 ± 3.7 | 32.8 ± 6.9 | 28.6 ± 1.7 | 26.6 ± 3.0 | 26.5 ± 1.2 | 20.6 ± 1.8 | ns | *** | ns |
Proline | 4.9 ± 1.1 | 3.5 ± 1.9 | 2.2 ± 1.3 | 6.4 ± 0.0 | 6.1 ± 0.4 | 6.7 ± 1.0 | 3.2 ± 0.4 | 2.7 ± 0.2 | 2.7 ± 0.2 | ns | ns | ns |
Tyrosine | 3.0 ± 0.3 | 3.2 ± 0.5 | 2.8 ± 0.1 | 2.5 ± 0.6 | 2.3 ± 0.3 | 1.9 ± 0.5 | 2.0 ± 0.2 | 2.4 ± 0.1 | 2.2 ± 0.1 | ns | * | ns |
Ammonium ion | 124.3 ± 19.4 | 124.1 ± 21.9 | 120.9 ± 1.1 | 142.4 ± 3.4 | 148.6 ± 10.9 | 149.1 ± 13.2 | 117.0 ± 23.0 | 132.1 ± 6.4 | 127.3 ± 9.4 | ns | ns | ns |
Valine | 18.8 ± 1.5 | 17.9 ± 1.4 | 12.0 ± 2.2 | 13.6 ± 0.7 | 14.7 ± 2.7 | 13.4 ± 0.4 | 13.9 ± 1.4 | 14.8 ± 0.1 | 13.2 ± 0.6 | ns | ns | ns |
Methionine | 1.6 ± 0.2 | 1.9 ± 0.6 | 1.2 ± 0.2 | 1.7 ± 0.2 | 1.5 ± 0.0 | 1.7 ± 0.0 | 1.2 ± 0.2 | 1.5 ± 0.2 | 1.3 ± 0.1 | ns | ns | ns |
Cysteine | 2.5 ± 0.2 | 2.3 ± 0.2 | 2.6 ± 0.0 | 2.2 ± 0.1 | 2.3 ± 0.0 | 2.1 ± 0.1 | 1.9 ± 0.0 | 1.9 ± 0.1 | 1.9 ± 0.1 | ns | *** | ns |
Isoleucine | 8.8 ± 1.0 | 7.9 ± 0.9 | 6.0 ± 1.0 | 5.7 ± 0.3 | 6.1 ± 1.1 | 5.8 ± 0.1 | 7.0 ± 0.8 | 7.4 ± 0.1 | 6.7 ± 0.4 | ns | ns | ns |
Tryptophan | 5.7 ± 0.2 | 5.3 ± 2.3 | 5.5 ± 0.3 | 4.3 ± 0.2 b | 3.7 ± 0.0 ab | 2.7 ± 0.3 a | 2.1 ± 0.3 | 2.2 ± 0.2 | 1.5 ± 0.1 | ns | *** | ns |
Leucine | 10.3 ± 0.9 | 11.1 ± 1.5 | 6.9 ± 1.4 | 6.0 ± 0.6 | 7.4 ± 1.4 | 7.3 ± 0.4 | 9.2 ± 0.7 | 9.2 ± 0.0 | 8.8 ± 0.8 | ns | ns | ns |
Phenylalanine | 8.0 ± 0.3 | 8.3 ± 1.8 | 6.1 ± 1.2 | 5.5 ± 0.7 | 5.8 ± 0.9 | 5.5 ± 0.1 | 7.1 ± 0.9 | 7.6 ± 0.0 | 7.1 ± 0.1 | ns | ns | ns |
Ornithine | 1.1 ± 0.3 | 1.6 ± 0.7 | 1.0 ± 0.2 | 0.7 ± 0.2 | 0.7 ± 0.1 | 0.7 ± 0.0 | 0.5 ± 0.1 | 0.5 ± 0.0 | 0.5 ± 0.0 | ns | ** | ns |
Lysine | 3.7 ± 0.6 | 3.9 ± 1.0 | 3.1 ± 0.7 | 2.6 ± 0.5 | 2.8 ± 0.4 | 2.8 ± 0.1 | 2.1 ± 0.3 | 2.2 ± 0.1 | 2.1 ± 0.2 | ns | ** | ns |
Sum of amino acids | 714.9 ± 92.4 | 833.3 ± 201.1 | 622.6 ± 123.8 | 551.1 ± 62.7 | 588.4 ± 66.7 | 572.0 ± 11.6 | 544.2 ± 114.2 | 566.5 ± 6.9 | 520.7 ± 39.0 | ns | * | ns |
2012 | 2013 | 2014 | T | Y | T × Y | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | DI | SDI | R | DI | SDI | R | DI | SDI | ||||
Methanol (mg L−1) | 21 ± 1 | 18 ± 1 | 17 ± 0 | 19 ± 1 | 20 ± 1 | 18 ± 0 | 22 ± 3 | 19 ± 1 | 18 ± 1 | * | ns | ns |
Ethyl acetate (mg L−1) | 59 ± 11 | 56 ± 5 | 59 ± 1 | 26 ± 2 | 26 ± 1 | 27 ± 3 | 37 ± 6 | 34 ± 1 | 38 ± 0 | ns | * | ns |
Acetaldehyde (mg L−1) | 58 ± 12 | 39 ± 1 | 28 ± 2 | 31 ± 3 | 35 ± 3 | 30 ± 2 | 31 ± 6 | 28 ± 0 | 25 ± 0 | * | ** | ns |
Higher alcohols (mg L−1) | ||||||||||||
1-propanol | 12 ± 0 | 13 ± 1 | 12 ± 2 | 22 ± 1 ab | 24 ± 0 b | 20 ± 0 a | 23 ± 4 | 24 ± 4 | 17 ± 2 | ns | ** | ns |
2-methyl-1-propanol | 61 ± 5 | 60 ± 3 | 69 ± 7 | 35 ± 2 | 37 ± 1 | 34 ± 0 | 28 ± 6 | 24 ± 3 | 45 ± 8 | ns | *** | ns |
2-methyl-1-butanol | 67 ± 4 | 64 ± 1 | 67 ± 1 | 64 ± 1 | 72 ± 1 | 64 ± 3 | 42 ± 4 | 44 ± 4 | 50 ± 1 | ns | *** | ns |
3-methyl-1-butanol | 252 ± 23 | 261 ± 19 | 275 ± 4 | 289 ± 6 a | 313 ± 2 b | 286 ± 0 a | 221 ± 8 | 219 ± 8 | 253 ± 15 | ns | ns | ns |
∑ Higher alcohols | 392 ± 21 | 398 ± 23 | 423 ± 12 | 409 ± 8 a | 446 ± 2 b | 403 ± 3 a | 314 ± 14 | 311 ± 11 | 365 ± 21 | ns | ** | ns |
Other alcohols (mg L−1) | ||||||||||||
1-hexanol | 1.8 ± 0.1 | 1.7 ± 0.8 | 2.3 ± 0.4 | 1.8 ± 0.0 | 1.8 ± 0.2 | 1.8 ± 0.0 | 2.0 ± 0.2 | 2.0 ± 0.1 | 2.1 ± 0.1 | ns | ns | ns |
trans-3-hexen-1-ol | 0.26 ± 0.06 | 0.34 ± 0.08 | 0.16 ± 0.02 | 0.14 ± 0.00 | 0.13 ± 0.00 | 0.12 ± 0.00 | 0.15 ± 0.01 | 0.15 ± 0.00 | 0.12 ± 0.03 | ns | * | ns |
cis-3-hexen-1-ol | 0.54 ± 0.10 | 0.52 ± 0.01 | 0.27 ± 0.03 | 0.21 ± 0.02 | 0.22 ± 0.01 | 0.23 ± 0.03 | 0.22 ± 0.00 | 0.23 ± 0.01 | 0.18 ± 0.05 | ns | ** | ns |
Benzyl alcohol | 3.82 ± 0.06 b | 2.73 ± 0.03 a | 2.77 ± 0.04 a | 2.28 ± 0.14 | 2.47 ± 0.13 | 2.15 ± 0.11 | 2.12 ± 0.08 a | 2.48 ± 0.03 ab | 2.79 ± 0.11 b | ns | ** | ** |
2-phenylethanol | 56 ± 2 | 50 ± 4 | 43 ± 5 | 48 ± 4 | 57 ± 1 | 50 ± 4 | 34 ± 1 ab | 38 ± 0 b | 33 ± 1 a | ns | ** | ns |
Other compounds (mg L−1) | ||||||||||||
Ethyl lactate | 14 ± 1 | 10 ± 0 | 12 ± 2 | 5 ± 0 | 6 ± 0 | 6 ± 0 | 4 ± 0 a | 5 ± 0 ab | 6 ± 0 b | ns | *** | ns |
Acetoine | 8 ± 1 b | 4 ± 1 a | 3 ± 0 a | 3 ± 0 | 3 ± 0 | 3 ± 0 | 4 ± 2 | 3 ± 2 | <LOD | * | * | ns |
Acetol | 92 ± 0 b | 34 ± 6 a | 30 ± 2 a | 33 ± 3 | 35 ± 1 | 28 ± 1 | 10 ± 4 | 8 ± 0 | 11 ± 1 | ** | *** | *** |
2,3-butanediol levo | 729 ± 116 | 776 ± 51 | 618 ± 54 | 712 ± 11 | 691 ± 29 | 692 ± 13 | 1565 ± 367 | 1552 ± 422 | 733 ± 110 | ns | ** | ns |
2,3-butanediol meso | 332 ± 17 | 332 ± 15 | 317 ± 13 | 352 ± 3 | 350 ± 6 | 347 ± 8 | 318 ± 81 | 314 ± 90 | 130 ± 28 | ns | ns | ns |
Methionol | 0.78 ± 0.05 | 0.82 ± 0.14 | 0.67 ± 0.10 | 0.41 ± 0.04 | 0.49 ± 0.06 | 0.44 ± 0.06 | 0.25 ± 0.05 | 0.22 ± 0.04 | 0.43 ± 0.07 | ns | *** | ns |
Acetates of higher alcohols (mg L−1) | ||||||||||||
Isoamyl acetate | 0.71 ± 0.03 | 0.67 ± 0.04 | 0.51 ± 0.10 | 1.25 ± 0.38 | 1.34 ± 0.35 | 0.76 ± 0.01 | 0.74 ± 0.09 | 0.83 ± 0.03 | 0.86 ± 0.06 | ns | ns | ns |
Hexyl acetate | 0.54 ± 0.21 | 0.36 ± 0.08 | 0.22 ± 0.16 | 0.26 ± 0.02 | 0.37 ± 0.04 | 0.42 ± 0.05 | 0.29 ± 0.04 | 0.22 ± 0.02 | 0.25 ± 0.01 | ns | ns | ns |
2-phenylethyl acetate | 0.04 ± 0.00 ab | 0.05 ± 0.00 b | 0.03 ± 0.00 a | 0.25 ± 0.01 | 0.22 ± 0.03 | 0.20 ± 0.01 | 0.08 ± 0.03 | 0.09 ± 0.01 | 0.06 ± 0.01 | ns | ns | ns |
∑ Acetates | 1.29 ± 0.20 | 1.08 ± 0.18 | 0.76 ± 0.14 | 1.76 ± 0.33 | 1.93 ± 0.35 | 1.38 ± 0.16 | 1.11 ± 0.20 | 1.14 ± 0.23 | 1.17 ± 0.24 | ns | ns | ns |
Esters (mg L−1) | ||||||||||||
Ethyl butyrate | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.03 ± 0.02 | < LOD | < LOD | < LOD | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.06 ± 0.00 | ns | * | ns |
Ethyl hexanoate | 0.26 ± 0.01 | 0.29 ± 0.01 | 0.30 ± 0.09 | 0.44 ± 0.03 | 0.36 ± 0.01 | 0.39 ± 0.02 | 0.24 ± 0.02 | 0.25 ± 0.00 | 0.22 ± 0.00 | ns | ns | ns |
Ethyl octanoate | 0.34 ± 0.00 | 0.41 ± 0.01 | 0.38 ± 0.08 | 0.71 ± 0.07 | 0.54 ± 0.07 | 0.60 ± 0.11 | 0.29 ± 0.00 | 0.34 ± 0.01 | 0.32 ± 0.04 | ns | ns | ns |
Ethyl decanoate | 0.08 ± 0.02 | 0.09 ± 0.01 | 0.08 ± 0.01 | 0.30 ± 0.03 | 0.28 ± 0.05 | 0.29 ± 0.03 | 0.11 ± 0.01 | 0.12 ± 0.00 | 0.12 ± 0.02 | ns | ns | ns |
∑ Ethyl esters C6-C10 | 0.72 ± 0.03 | 0.83 ± 0.03 | 0.79 ± 0.21 | 1.45 ± 0.13 | 1.18 ± 0.13 | 1.29 ± 0.16 | 0.70 ± 0.02 | 0.76 ± 0.01 | 0.72 ± 0.06 | ns | ns | ns |
Volatile fatty acids (mg L−1) | ||||||||||||
Isobutyric acid | 3.40 ± 0.47 | 2.78 ± 0.17 | 2.76 ± 0.11 | 3.87 ± 0.30 | 4.15 ± 0.40 | 3.65 ± 0.15 | 1.76 ± 0.17 a | 1.53 ± 0.10 a | 2.48 ± 0.14 b | ns | * | ns |
Butyric acid | 0.98 ± 0.11 | 0.92 ± 0.00 | 0.87 ± 0.08 | 1.48 ± 0.03 | 1.46 ± 0.03 | 1.37 ± 0.04 | 0.85 ± 0.08 | 0.86 ± 0.06 | 0.86 ± 0.00 | ns | ns | ns |
Isovaleric acid | 1.41 ± 0.01 | 1.35 ± 0.18 | 1.16 ± 0.15 | 2.59 ± 0.03 | 2.84 ± 0.20 | 2.81 ± 0.01 | 1.25 ± 0.10 | 1.29 ± 0.05 | 1.30 ± 0.03 | ns | ns | ns |
∑ Volatile fatty acids C4-C5 | 5.79 ± 0.59 | 5.05 ± 0.35 | 4.79 ± 0.19 | 7.94 ± 0.35 | 8.45 ± 0.64 | 7.84 ± 0.19 | 3.86 ± 0.01 a | 3.68 ± 0.10 a | 4.64 ± 0.11 b | ns | ns | ns |
Hexanoic acid | 1.96 ± 0.27 | 2.27 ± 0.12 | 2.12 ± 0.36 | 2.94 ± 0.04 | 2.78 ± 0.15 | 2.75 ± 0.23 | 2.05 ± 0.22 | 2.22 ± 0.04 | 1.95 ± 0.09 | ns | ns | ns |
Octanoic acid | 1.84 ± 0.24 | 2.23 ± 0.22 | 1.88 ± 0.24 | 2.75 ± 0.31 | 2.36 ± 0.01 | 2.71 ± 0.32 | 1.97 ± 0.06 | 2.33 ± 0.06 | 2.05 ± 0.28 | ns | ns | ns |
Decanoic acid | 0.39 ± 0.15 | 0.43 ± 0.06 | 0.34 ± 0.66 | 1.22 ± 0.08 | 0.99 ± 0.03 | 1.12 ± 0.10 | 0.62 ± 0.06 | 0.69 ± 0.05 | 0.59 ± 0.02 | ns | ns | ns |
∑ Volatile fatty acids C6-C10 | 4.19 ± 0.66 | 4.93 ± 0.41 | 4.33 ± 0.65 | 6.91 ± 0.43 | 6.14 ± 0.19 | 6.58 ± 0.65 | 4.64 ± 0.22 | 5.24 ± 0.08 | 4.58 ± 0.39 | ns | ns | ns |
Free terpenes (µg L−1) | ||||||||||||
trans-linalool oxide (furan) † | 7.0 ± 0.8 | 5.4 ± 0.9 | 6.2 ± 0.1 | 5.2 ± 0.9 | 3.9 ± 0.3 | 4.1 ± 0.5 | 7.9 ± 0.2 | 7.8 ± 0.1 | 8.1 ± 0.7 | ns | ns | ns |
cis-linalool oxide (furan) † | 0.7 ± 0.0 | 0.7 ± 0.2 | 0.8 ± 0.1 | 0.9 ± 0.0 | 0.6 ± 0.1 | 0.7 ± 0.1 | 1.1 ± 0.0 | 0.7 ± 0.1 | 0.8 ± 0.2 | ns | ns | ns |
trans-linalool oxide (pyran) † | 4.5 ± 0.1 | 4.1 ± 0.1 | 4.0 ± 0.0 | 4.7 ± 0.2 b | 4.2 ± 0.1 ab | 3.4 ± 0.3 a | 4.9 ± 2.5 | 4.9 ± 0.1 | 4.6 ± 0.7 | ns | ns | ns |
cis-linalool oxide (pyran) † | 1.2 ± 0.2 | 0.9 ± 0.0 | 0.9 ± 0.1 | 1.1 ± 0.2 | 1.1 ± 0.2 | 0.9 ± 0.2 | 1.1 ± 0.1 | 0.9 ± 0.1 | 1.1 ± 0.5 | ns | ns | ns |
Linalool (L) | 1.5 ± 0.0 | 1.4 ± 0.0 | 1.3 ± 0.2 | 3.6 ± 0.6 | 3.7 ± 0.7 | 3.4 ± 0.2 | 6.3 ± 0.2 | 6.2 ± 0.6 | 5.3 ± 0.5 | ns | *** | ns |
Hotrienol † | 0.5 ± 0.0 | 0.6 ± 0.0 | 0.6 ± 0.0 | 0.9 ± 0.2 | 1.1 ± 0.3 | 1.8 ± 0.6 | 1.3 ± 0.2 | 1.0 ± 0.1 | 1.3 ± 0.2 | ns | * | ns |
A-terpineol (αT) | 2.2 ± 0.3 | 2.4 ± 0.1 | 2.3 ± 0.0 | 3.2 ± 0.0 | 2.8 ± 0.1 | 3.3 ± 0.3 | 4.5 ± 0.1 | 3.9 ± 0.7 | 3.1 ± 1.3 | ns | ** | ns |
Citronellol (C) | <LOD | <LOD | <LOD | 8.1 ± 1.4 b | 5.2 ± 0.4 a | 4.2 ± 0.6 a | 7.5 ± 0.6 b | 6.3 ± 0.1 ab | 5.7 ± 0.3 a | * | ns | ns |
Nerol (N) | <LOD | <LOD | <LOD | 0.2 ± 0.2 | 0.2 ± 0.1 | 0.7 ± 0.3 | 2.2 ± 0.1 | 2.6 ± 0.4 | 2.7 ± 0.6 | ns | *** | ns |
Geraniol (G) | <LOD | <LOD | <LOD | 5.6 ± 1.1 | 5.5 ± 0.2 | 6.1 ± 0.5 | 6.8 ± 0.4 | 7.3 ± 0.9 | 6.3 ± 0.1 | ns | ns | ns |
Σ Free terpenes (L + αT + C + N + G) | 3.6 ± 0.3 | 3.8 ± 0.4 | 3.6 ± 0.4 | 20.7 ± 1.7 | 17.2 ± 0.8 | 17.8 ± 1.1 | 27.3 ± 1.2 | 26.3 ± 1.1 | 23.1 ± 0.9 | ns | *** | ns |
Hodiol I † | <LOD | <LOD | <LOD | 5.4 ± 0.5 | 5.5 ± 0.5 | 5.9 ± 0.6 | 5.7 ± 0.0 c | 4.3 ± 0.0 b | 3.7 ± 0.2 a | ns | * | * |
2,7-dimethyloctane-4,5-diol † | 81.2 ± 6.4 | 111.0 ± 17.8 | 91.5 ± 12.5 | 160.9 ± 2.7 | 169.3 ± 15.1 | 152.7 ± 27.6 | 86.3 ± 17.3 | 76.0 ± 4.3 | 64.5 ± 5.3 | ns | *** | ns |
Odor Threshold (µg L−1) | Odor Descriptor | 2012 | 2013 | 2014 | T | Y | T × Y | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | DI | SDI | R | DI | SDI | R | DI | SDI | ||||||
Ethyl acetate | 7500 | Pineapple | 8 ± 1 | 7 ± 1 | 8 ± 0 | 4 ± 0 | 3 ± 0 | 4 ± 0 | 5 ± 1 | 5 ± 0 | 5 ± 0 | ns | * | ns |
Acetaldehyde | 500 | Fruity | 116 ± 25 | 77 ± 2 | 56 ± 4 | 62 ± 6 | 71 ± 7 | 61 ± 4 | 62 ± 12 | 55 ± 1 | 49 ± 1 | * | ** | ns |
Higher alcohols | ||||||||||||||
1-propanol | 750 | Alcohol | 16 ± 0 | 17 ± 1 | 16 ± 3 | 29 ± 1 ab | 32 ± 0 b | 26 ± 0 a | 31 ± 6 | 32 ± 5 | 22 ± 3 | ns | ** | ns |
2-methyl-1-propanol | 40000 | Alcohol | 2 ± 0 | 1 ± 0 | 2 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | ns | *** | ns |
3-methyl-1-butanol | 30000 | Alcohol | 8 ± 1 | 9 ± 1 | 9 ± 0 | 10 ± 0 | 10 ± 0 | 10 ± 0 | 7 ± 0 | 7 ± 0 | 8 ± 0 | ns | ns | ns |
Other alcohols | ||||||||||||||
cis-3-hexen-1-ol | 400 | Grass | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | <1 | ns | ** | ns |
Benzyl alcohol | 620 | Blackberry | 6 ± 0 b | 4 ± 0 a | 4 ± 0 a | 4 ± 0 | 4 ± 0 | 3 ± 0 | 3 ± 0 a | 4 ± 0 ab | 5 ± 0 b | ns | ** | ** |
2-phenylethanol | 14000 | Rose | 4 ± 0 | 4 ± 0 | 3 ± 0 | 3 ± 0 | 4 ± 0 | 4 ± 0 | 2 ± 0 a | 3 ± 0 b | 2 ± 0 a | ns | ** | ns |
Acetates of higher alcohols | ||||||||||||||
Isoamyl acetate | 30 | Banana | 24 ± 1 | 22 ± 1 | 17 ± 3 | 42 ± 13 | 45 ± 12 | 26 ± 1 | 25 ± 3 | 28 ± 1 | 29 ± 2 | ns | ns | ns |
Esters | ||||||||||||||
Ethyl butyrate | 20 | Fruity | 2 ± 0 | 2 ± 0 | 2 ± 1 | <1 | <1 | <1 | 3 ± 0 | 3 ± 0 | 3 ± 0 | ns | ns | ns |
Ethyl hexanoate | 14 | Fruity | 19 ± 1 | 21 ± 1 | 21 ± 6 | 31 ± 2 | 26 ± 1 | 28 ± 2 | 18 ± 2 | 15 ± 0 | 15 ± 0 | ns | ns | ns |
Ethyl octanoate | 5 | Fruity | 67 ± 1 | 82 ± 2 | 76 ± 16 | 141 ± 13 | 108 ± 14 | 120 ± 22 | 59 ± 1 | 67 ± 1 | 65 ± 9 | ns | ns | ns |
Ethyl decanoate | 200 | Grape | <1 | <1 | <1 | 2 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | ns | ns | ns |
Volatile fatty acids | ||||||||||||||
Isobutyric acid | 2300 | Cheese | 1 ± 0 | 1 ± 0 | 1 ± 0 | 2 ± 0 | 2 ± 0 | 2 ± 0 | <1 a | <1 a | 1 ± 0 b | ns | ns | ns |
Butyric acid | 173 | Cheese | 6 ± 1 | 5 ± 0 | 5 ± 0 | 9 ± 0 | 8 ± 0 | 8 ± 0 | 5 ± 0 | 5 ± 0 | 5 ± 0 | ns | ns | ns |
Isovaleric acid | 33 | Cheese | 43 ± 0 | 41 ± 5 | 35 ± 5 | 78 ± 1 | 86 ± 6 | 85 ± 0 | 38 ± 3 | 39 ± 2 | 39 ± 1 | ns | ns | ns |
Hexanoic acid | 3000 | Cheese | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | ns | ns | ns |
Octanoic acid | 500 | Rancid | 4 ± 0 | 4 ± 0 | 4 ± 0 | 6 ± 1 | 5 ± 0 | 5 ± 1 | 4 ± 0 | 5 ± 0 | 4 ± 1 | ns | ns | ns |
Decanoic acid | 1000 | Rancid | <1 | <1 | <1 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | ns | ns | ns |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirás-Avalos, J.M.; Bouzas-Cid, Y.; Trigo-Córdoba, E.; Orriols, I.; Falqué, E. Effects of Two Different Irrigation Systems on the Amino Acid Concentrations, Volatile Composition and Sensory Profiles of Godello Musts and Wines. Foods 2019, 8, 135. https://doi.org/10.3390/foods8040135
Mirás-Avalos JM, Bouzas-Cid Y, Trigo-Córdoba E, Orriols I, Falqué E. Effects of Two Different Irrigation Systems on the Amino Acid Concentrations, Volatile Composition and Sensory Profiles of Godello Musts and Wines. Foods. 2019; 8(4):135. https://doi.org/10.3390/foods8040135
Chicago/Turabian StyleMirás-Avalos, José Manuel, Yolanda Bouzas-Cid, Emiliano Trigo-Córdoba, Ignacio Orriols, and Elena Falqué. 2019. "Effects of Two Different Irrigation Systems on the Amino Acid Concentrations, Volatile Composition and Sensory Profiles of Godello Musts and Wines" Foods 8, no. 4: 135. https://doi.org/10.3390/foods8040135
APA StyleMirás-Avalos, J. M., Bouzas-Cid, Y., Trigo-Córdoba, E., Orriols, I., & Falqué, E. (2019). Effects of Two Different Irrigation Systems on the Amino Acid Concentrations, Volatile Composition and Sensory Profiles of Godello Musts and Wines. Foods, 8(4), 135. https://doi.org/10.3390/foods8040135